
1 Modell

The model we are talking about is the same as in the previous and presumably
the next few talks and consists of a fixed and a random part:

yi = α+ βXi + biZi + εi, i = 1, . . . , N, (1)

If we put all the groups i together (every group having ni observations, with
a total of NT , m fixed and k random effects) and write one single model, we
end up with:

y1
y2
...
yN


︸ ︷︷ ︸
NT×1

=


X1

X2

...
XN


︸ ︷︷ ︸
NT×m


β1

β2

...
βm


︸ ︷︷ ︸
m×1

+


Z1 0 0 0
0 Z2 0 0

0 0
. . .

...
0 0 . . . ZN


︸ ︷︷ ︸

NT×Nk


b1
b2
...
bN


︸ ︷︷ ︸
Nk×1

+


ε1
ε2
...
εN


︸ ︷︷ ︸
NT×1

(2)

We assume that the errors and the random effects are normally distributed,
so we can calculate the covariance matrix of all random effects (error plus the
bi), defining D := D∗σ

−2 and knowing that thus cov(b) = σ2(I ×D):

V = σ2


In1 + Z1DZ

T
1 0 0 0

0 In2 + Z2DZ
T
2 0 0

...
...

. . .
...

0 0 . . . InN
+ ZNDZ

T
N

 (3)

2 Log-Likelihood function

From the density of the multivariate normal distribution we conclude

l(θ) = −1
2

(
NT lnσ

2 +
N∑
i=1

[ln|I + ZiDZ
T
i |+ σ−2(yi −Xiβ)T (I + ZiDZ

T
i )−1(yi −Xiβ)]

)
(4)

This is what we want to optimise over βσ2vec(D). However this involves taking
determinants and inverses of large matrices. We can Improve the function.

3 Dealing with computational problems

There are (at least) three ways in which we can simplify this expression:

• Dimension reduction: As we see, l(θ) includes both |Vi|andV −1. As V
is of the dimension ni × ni the computation might take a while (As the
algorithms are iterative, this is a problem). But we can get a formula only
containing k × k matrices that have to be inverted.
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• Prfoile-likelihood: We can substitute β and σ2 as they can be expressed
in terms of D. Thus we have to optimise over a less dimensional parameter
space.

• Inverse D: We can even find a Form totally avoiding matrix inverses,
which facilitates computation even more.

4 The three algorithms

All algorithms that we present here have an iterative approach.
The NR-Algorithm, as well as the FS-Algorithm have the form:

us+1 = us + λsH
−1
s gs (5)

Where s denotes the iteration index, Hs a positive definite matrix and g the
gratient of the Function at the point us. λ is in (0, 1] such that F (us+1) > F (us).
(E.g. one first takes λ = 1 and if the likelihood improves one keeps the result,
otherwise one takes λ = 1/2, 1/4, 1/8 etc until one has an improvement, which
eventually will be the case as analysis tells us.) The Newton-Raphson algorithm
takes the negative Hessian for H but this is not always positive definite, which
is required for the algorithm to work properly). The Fisher-Scoring algorithm
takes the expected negative Hessian, which is always positive definite and there-
fore it is more commonly used. Also an algorithm using some steps of FS first
and then go over to NR is possible.

We can formulate the NR-Algorithm as: βs+1

σ2
s+1

vec(Ds+1)

 =

 βs
σ2
s

vec(Ds)

+ λs

H11 H12 H13

HT
12 H22 H23

HT
13 HT

23 H33

−1

s

 ∂l
∂β
∂l
∂σ2

vec( ∂l∂D )


s

(6)

where the entries of H are blocks of complicated entries, making up the sym-
metric hessian matrix of l(θ)

Last there is the EM-Algorithm consisting of an Estimation and an Maximation
step. First the expectation of the joint log likelihood is calculated (fore some θt
and then the maximiser of that function is taken to be the seed for the next cal-
culation of the expectation of the joint likelihood. This process is then iterated
until the changes become small enough.
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