
GENERALIZED LINEAR MIXED MODELS: THEORY AND

PRACTICE

1. Introduction and Definition

1.1. Intuition. In GLMM there are consequences for having random effects that we
haven’t seen before. Many of these consequences are related to the potentially nonlinear
nature of the model via the link function.

1.2. Structure of the GLMM. We start with the conditional distribution of y given
b. We assume conditional independence of the elements of y with each distribution
belonging to the exponential family or similar.

(1) yi|b ∼ indep.fYi|b(yi|b)

(2) f(yi, θi, τ
2, ωi) = exp

(
θiyi − d(θi)

τ2
ωi

)
h(yi, τ

2, ωi)

As in the basic GLM case, we have a condition mean, µi, which is connected to a
linear predictor, ηi = x′iβ + z′ib, via an invertible link function g.

E[yi|b] = µi =
∂d(θi)

∂θi
= g−1(ηi )

g(µi) = η

We also need to specify the distribution of b. Most of the time we assume:

b ∼ N (0,Σ (θ))

where 0 is an n-dimensional vector of zeros and Σ is a q X q variance covariance matrix
determined by parameter vector θ.

1.3. Marginal properties. All is the same as the GLM framework except µi represents
the conditional mean instead of the marginal or unconditional mean. We need to derive
the properties of the marginal so that we can better understand the assumptions made.

E[yi] = E[E[yi|b]] = E[µi] = E[g−1(x′iβ + z′ib)]

We cannot continue if g is a non-linear function without specifying it. Let’s suppose
that g(µ) = log(µ) and g−1(x) = exp(x). So,

E[yi] = E[exp(x′iβ + z′ib)] = exp(x′iβ )E[z′ib] = exp(x′iβ )

Now we need to apply the assumption b ∼ N (0, σ2b ). Suppose that Z is some per-
mutation of the identity matrix. E[z′ib] equals the moment generating function, Mu(zi),
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of b evaluated at zi. We can then deduce that Mu(zi) = E[z′ib] and ηi = logE[yi] =
x′iβ + σ2b/2.

The marginal variance can be calculated in a similar manner:

var(yi) = var(E[yi|b]) + E[var(yi|b)] = var(µi) + E[τ2v(µi)]

= var(g−1(x′iβ + z′ib) + E[τ2v(g−1(x′iβ + z′ib))]

We can’t continue without further specification of g or the conditional distribution of
y. Let’s suppose yi|b ∼ Poisson(µi) and the log link for g.

var(yi) = var(µi) + E[µi] = var(exp(x′iβ + z′ib)) + E[exp(x′iβ + z′ib)]

= E(exp(2(x′iβ + z′ib))− E[exp(x′iβ + z′ib)]
2 + E[exp(x′iβ + z′ib)]

= exp(2(x′iβ ))(Mu(2zi)− [Mu(zi)]
2 + exp(−x′iβ )Mu(zi))

With a little algebra and the same normal assumptions on the random effects that we
assumed before, we finally arrive at the following:

var(yi) = E[yi][exp(x′iβ )(exp(3σ2b/2)− exp(σ2b/2)) + 1]

Notice that the term on the right is greater than one, which means that under our
assumptions, our marginal variance will always be greater than the marginal expected
value (it is ”overdispersed”). If the conditional distribution of yi given b is Poisson,
then the marginal cannot be. Random effects are a way to attribute overdispersion to a
particular source.

Marginal covariances and correlations can be derived using a similar process that we
used for deriving the marginal variance.

2. Maximum Likelihood Estimation

2.1. Conditional Likelihood. To find the maximum likelihood estimates, β̂ and θ̂, we
need to find the values of β and θ that maximize the following conditional likelihood:

(3) f(y|β, θ) =

∫
b
p(y|β, b)f(b|Σ(θ))db

where p(y|β, b) is the probability mass function of y given β and b, and f(b|Σ(θ)) is the
density at b usually assumed to be normal.

There is no guarantee that a closed form solution exists to this integral. The strategy
employed in LME4 is to use a Laplace approximation. For the Laplace approximation,
we will need to compute the conditional modes of the random effects. Conditional modes
are calculated using Penalized Iterated Reweighted Least Squares (PIRLS).
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2.2. The Laplace Approximation. The idea behind the Laplace approximation is to
represent a ”not nice” density function with a Gaussian. For simplicity, consider an
example where we want to approximate density p(x) = f(x)/z where f(x) ≥ 0. First,
take the taylor series expansion of log f(x).

(4) log f(x) = log f(x0)+
∂ log f(x)

∂x
|x=x0∗(x−x0)+

1

2

∂2 log f(x)

∂x2
|x=x0∗(x−x0)2+h.o.t.

The second term will be zero if x0 = xmax. So the first step is to solve for xmax, which
will yield the local maxima of the density.

Neglecting the higher order terms, evaluate (5) at xmax to get:

log f(x) = log f(xmax) +
1

2

∂2 log f(x)

∂x2
|x=xmax ∗ (x− x0)2(5)

exp(log f(x)) = exp(log f(xmax) +
1

2

∂2 log f(x)

∂x2
|x=xmax ∗ (x− x0)2)(6)

∫
exp(log f(x))dx = exp(log f(xmax))

∫
exp

[
1

2

∂2 log f(x)

∂x2
|x=xmax ∗ (x− x0)2)

]
dx

(7)

For notational simplicity let log f(x) = l(x). We can see the density function for a
Gaussian if we let σ2 = − 1

l′′ (xmax)
.

(8)

∫
el(x)dx ≈ el(xmax)

∫
exp

[
−(x− xmax)2

2σ2

]
dx

3 steps for the Laplace approximation: 1) Find local maximum of pdf f(x); 2) Calculate
variance σ2 = − 1

f ′′ (xmax
; 3) Approximate the pdf with p(x) ≈ N (xmax, σ

2).

LME4 uses the Laplace approximation to find the MLEs, β̂ and θ̂, that maximize (4).
It takes the log of the integrand of (4) and evaluates the second order taylor series at

the conditional maximum b̃(β, θ) which is explained in the next section on PIRLS. On
the deviance scale:

−2l(β, θ|y) = − 2 log(

∫
b
p(y|β, b)f(b,Σ(θ)))db(9)

≈ 2 log(

∫
b
exp(−1

2
[d(β, b̃, y) + b̃∗T b̃∗ + bTD−1b])db)(10)

= d(β, b̃, y) + b̃∗T b̃∗ + log |D|(11)

where d(β, b̃, y) = −2 log p(y|β, b) is the deviance function of the linear predictor and
can be evaluated as the sum of deviance residuals.

2.3. PIRLS. In order to apply the Laplace approximation we need to compute for given
β and θ the conditional modes of the random effects:

(12) b̃(β, θ) = argmaxbp(y|β, b)f(b,Σ(θ))
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where β is incorporated as an offset, Xβ is the contribution of the variance components
and θ is part of a penalty term.

This will be very similar to the IRLS procedure used in the GLM case except that we
are going to add a penalty term. We are going to take the minimum of − log p(y|β, b)
instead of the maximum so that we can add our penalty.

(13) b̃(β, θ) = argminb

[
− log p(y|β, b) +

bTΣ−1(θ)b

2

]
The solution will be the iteration of the following solution:

(14) (ZTW (r)Z + Σ−1)b(r+1) = ZTW (r)z(r)

Stop the iteration using the convergence criteria ||η
(r+1)−η(r)||
||η(r)|| . The variance-covariance

matrix of b is var(b|β, θ, y) ≈ D = (ZTW (r)Z + Σ−1)−1.

2.4. Maximum Quasi Likelihood. We often don’t know a prior the distribution of the
response variable. Quasi likelihood relies on fewer assumptions and is a work-around
for this problem. We want to preserve certain characteristics of the mean-variance
relationship to generate workable estimators.

E

[
∂ log fYi(yi)

∂µi

]
= 0(15)

var

(
∂ log fYi(yi)

∂µi

)
=

1

τ2v(µi)
(16)

We want a quantity for
∂ log fYi (yi)

∂µi
with these properties. It turns out:

qi =
yi − µi
τ2v(µ)

(17)

One could attempt to define Qi =
∫ µi
yi

yi−t
τ2v(t)

dt but we actually can maximize it without

knowing exactly what it is.

∂

∂β

∑
Qi = 0(18) ∑ yi − µi

τ2v(µi)gµ(µi)
x′i = 0(19)

This can also be expressed as:

1

τ2
X ′WΛ(y − µ) = 0(20)

This method maximizes the likelihood only using the mean-to-variance relationship.
We could also include a penalty term and use a penalized quasi likelihood (PQL) tech-
nique. However, LME4 does not do this.


