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1. Introduction and Definition

1.1. Generalization of the Linear Model. The concept of generalized linear models
(GLMs) unifies different approaches to explaining variation in data in terms of a linear
combination of covariates. Examples of approaches to non-normal data that fall into
this category of models are the logistic regression and the log-Poisson regression.

In what follows we are going to consider a sample of n independent observations for
some response variable Y .

Recall the linear model which can be formulated as follows for the i-th observation:

Yi ∼ N (µi, σ
2)

with

E[Yi] = µi = xTi β = ηi = g−1(ηi) ηi = g(µi) = µi

where ηi, g
−1(ηi) and g(µi) are typically called linear predictor, inverse link function

and link function, respectively.
The generalization of the linear model is twofold by relaxing the following two crucial

assumptions:

(1) E[Yi] = µi can be a function of the linear predictor ηi other than the identity
(2) Distribution of Yi can be any distribution from the exponential family of distri-

butions

The exponential family of distributions is very varied and encompasses distributions
such as the normal, Bernoulli, binomial, Poisson, exponential and gamma distributions
for instance.

Logistic regression: Yi ∼ Bern(µi) or Yi = Zi
mi
∼ B(mi, µi) (where Zi is the sum of mi

i.i.d. copies of a Bern(µi)-distributed random variable)

E[Yi] = µi = g−1(ηi) =
eηi

1 + eηi
ηi = g(µi) = log

µi
1− µi

where the link function g(µi) is the so called logit function and the inverse link function
g−1(ηi) is the logistic function, hence the name logistic regression.

Log-Poisson regression: Yi ∼ P(µi)

E[Yi] = µi = g−1(ηi) = eηi ηi = g(µi) = log µi

and the name stems from the fact that the link function used is the log.
1
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1.2. Canonical Representation of the Probability Density (Mass) Function
(pdf/pmf) and the Link Function. The pdf (or pmf) of Yi following a distribution
from the exponential family of distributions can be written in canonical form as,

f(yi|θi, τ2, ωi) = exp (
θiyi − d(θi)

τ2
ωi)h(yi, τ

2, ωi)

where

θi canonical parameter of the distribution
τ2 dispersion parameter
ωi some number

usually 1, in case of binomially distributed data equal to mi

d(θi) function characterizing the type of distribution
h(yi, τ, ωi) normalizing function

and everything known except θi.

It holds that

E[Yi] = µi = ∂d(θi)
∂θi

= d′(θi) and var(Yi) = ∂2d(θi)
∂2θi

τ2

ωi
= d′′(θi)

τ2

ωi
= ν(µi)

τ2

ωi

For normal data:
θi = µi d(θi) =

θ2i
2 τ2 = σ2 ωi = 1 ν(µi) = 1

For Bernoulli data:
θi = log µi

1−µi d(θi) = log (1 + eθi) τ2 = 1 ωi = 1 ν(µi) = µi(1− µi)

For Poisson data:
θi = logµi d(θi) = eθi τ2 = 1 ωi = 1 ν(µi) = µi

In principle any link function g(µi) could be used but the most useful and mathe-
matically convenient link functions are the canonical link functions. Canonical because
these link functions relate µi to the canonical parameter θi, i.e., θi = ηi = xTi β. For
the normal, Bernoulli/binomial and Poisson distributions the canonical link functions
are the identity, the logit and the log function, respectively. In what follows we are only
considering canonical link functions.

2. Parameter Estimation

2.1. Maximum Likelihood Estimates. Assuming canonical link is used, we solve the
following set of equations to obtain the maximum likelihood estimate (MLE) of β, β̂,

∂`(y, β)

∂β

∣∣∣
β=β̂

=
n∑
i=1

∂ log f(yi, ηi)

∂ηi

∂ηi
∂β

∣∣∣
β=β̂

=
n∑
i=1

(yi − d′(ηi))
τ2

ωixi

∣∣∣
β=β̂

= 0

using a modification of the iterative Newton-Raphson algorithm called Fisher’s method
of scoring.

Recall Newton-Raphson at the (k + 1)-th iteration:
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β̂(k+1) = β̂(k) −H−1(β̂(k))
∂`(y, β)

∂β

∣∣∣
β=β̂(k)

with (for canonical link function)

H(β̂(k)) =
∂2`(y, β)

∂β∂βT

∣∣∣
β=β̂(k)

= −
n∑
i=1

d′′(ηi)

τ2
ωixix

T
i

∣∣∣
β=β̂(k)

Fisher’s method of scoring replaces the Hessian H(β̂(k)) in the Newton-Raphson al-

gorithm with its expectation, i.e., E[∂
2`(y,β)
∂β∂βT |β=β̂(k) ], which is the negative Fisher infor-

mation I(β̂(k)). If the canonical link is used, Fisher’s method of scoring and Newton-

Raphson are identical since ∂2`(y,β)
∂β∂βT do not involve any yi-values and, thus, I(β̂(k)) =

−H(β̂(k)).

2.2. Iteratively Weighted Least Squares (IWLS) Estimates. The iterative ML
approach using Fisher scoring is equivalent to an IWLS approach.

3. Parameter Inference

3.1. Distribution of MLE. MLEs are asymptotically unbiased and normally dis-
tributed, i.e., if n is sufficiently large, it holds approximately that

β̂ ∼ Np(β, I−1(β̂MLE))

3.2. Tests and Confidence Intervals. There are mainly two ways in which hypotheses
on β (or a linear transformation or subset of it) can be tested and confidence intervals
(CIs) can be derived: Wald tests and CIs or likelihood based tests and CIs.

3.2.1. Wald Tests and CIs. Assuming that normality of the MLE holds, we can derive
the Wald test statistic W for any linear transformation Bβ of β with B being a (q x p)
matrix,

W = (Bβ̂ −Bβ)TV −1(Bβ̂ −Bβ) ∼ χ2
q V = cov(Bβ̂) = BI−1(β̂)BT

(1− α)100%-CIs for Bβ based on the Wald test statistic are of the form

{b : W = (Bβ̂ − b)TV −1(Bβ̂ − b) ≤ χ2
q,1−α}

Note that these CIs are symmetric around Bβ̂.

3.2.2. Likelihood Based Tests and CIs. A likelihood ratio test (LRT) compares the max-
imum likelihood under some null hypothesis, LH0 , with the maximum likelihood under
an alternative hypothesis, LHA⊃H0 , that encompasses the null hypothesis, i.e., is ’larger’.
The LRT-statistic follows asymptotically a χ2-distribution, i.e.,

LRT − statistic = −2(`H0 − `HA⊃H0) ∼app χ2
q (if H0 is true)

where q is the difference in df .
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A (1− α)100%-CI for e.g. βj based on the LRT statistic is

{b : LRT − statistic = −2(`β̂|βj=b − `β̂) ≤ χ2
1,1−α}

Note that these CIs must not be symmetric around MLE.
The approximation for the LRT is better than the approximation for the Wald test

statistic. On the other hand, LRT comes with the major drawback of having to fit the
model repeatedly under H0 to construct CIs.

4. Model Fit and Diagnostics

4.1. Assessing Model Fit. A way of examining the goodness of fit of a GLM is by
looking at its deviance. The deviance D is defined as

−2(`M − `F )(up to the factor τ2)

where `M is the log likelihood of the fitted model and `F is the maximized log likelihood
under the full or saturated model, i.e., when each observation is fitted with a separate
parameter.

The distribution of D can be approximated by a χ2
n−p distribution if the chosen model

is correct. The approximation can, however, be poor or not hold at all as in the case of
binary data (Yi ∈ {0, 1}).

Note that in case of normal data, the deviance is equal to Σn
i=1(yi − µ̂i)2, i.e., it is

equal to the sum of squared residuals (or residual SS) and exactly τ2χ2
n−p-distributed.

4.2. Diagnostics - Assessing Adequacy of Fitted Model. Similar to linear models,
GLMs assume that the specified model is correct, i.e., that the Yi values are independent
and follow the specified type of distribution with E[Yi] = µi = g−1(ηi) and ηi = xTi β.
Fulfillment of these assumptions should therefore be investigated.

Measures of agreement between the individual observed response yi and its corre-
sponding fitted value µ̂i are known as residuals and form the basis of many diagnostic
techniques. In GLMs, there are several different definitions of residuals with different
properties. Some are

Raw or response residuals R
(R)
i = yi − µ̂i

Working residuals R
(W )
i = R

(R)
i /ν(µ̂i)

Pearson residuals R
(P )
i = R

(R)
i /

√
ν(µ̂i)
ωi

Standardized Pearson residuals R
(SP )
i = R

(R)
i /

√
v̂ar(R

(R)
i )

τ2

Deviance residual R
(D)
i = sgn(R

(R)
i

√
di (with Σn

i=1di = D)

Standardized deviance residual R
(SD)
i = standardized R

(D)
i

The basic diagnostics approach is as for linear models. E.g., use of Tukey-Anscombe
plots of residuals versus µ̂i or η̂i (add a smoothing graph (not too robust) to the plot for
ease of interpretation).

There are also special methods to investigate whether a chosen link function or dis-
tribution is satisfactory. So called overdispersion, i.e., if the variance of Yi is greater
than expected given the distribution, can be an indication for the distribution not being
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correct. A mean deviance, i.e., the deviance divided by the degrees of freedom of the
approximate χ2 distribution, which is considerably larger than 1 is indicative of overdis-
persion given the model. This can, for instance, occur as a result of a misspecification of
the linear predictor, e.g, a relevant covariate is missing in the model, or an inappropriate
link function or outliers in the data. If overdispersion cannot be remedied by changes
in the linear predictor or link function, or by excluding outlying observations, a model
can be fitted using a quasi-likelihood approach. For this approach, instead of specifying
a likelihood (and, thus, a specific distribution) one can fix only the relationship between
µi, the expectation of Yi, and the variance of Yi. If we model count data that exhibit
overdispersion, instead of assuming a Poisson distribution, we can assume quasi-Poisson
with the variance of Yi modeled as τ2µi and estimate τ2. Note that in such cases, com-
parisons between nested models cannot be done with the LRT, i.e., a deviance difference,
but must be based upon comparing the deviance difference divided by the difference in
degrees of freedom (df) with the deviance of the larger model divided by its df . This
results in an approximate F -test. As a consequence of estimating τ2 from the data,
estimated variances for β̂ are larger and CIs for β wider.

For Bernoulli data, assessing the adequacy of the fitted model is much more difficult
due to the nature of the residuals. Also overdispersion cannot be assessed for such data.

5. Fitting GLMs in R

Fitting GLMs in R can be done with the function glm(). Important arguments of the
glm() function are:

formula: as for e.g., function lm, the right hand side is a symbolic description of
the linear predictor

family: specifies the distribution of the response variable and the link function to
be used

. . . : several arguments for supplying starting values for the parameters, must not
be specified (especially if canonical links are used)

offset: to specify an a priori known component to be included in the linear predic-
tor during fitting
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