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Purpose of nonlinear mixed effects modeling

nonlinearity
fitting to mechanistic or semimechanistic model with fixed
number of parameters
parsimonious model-specification, few parameters.

mixed effects modeling
data has grouping structure and parameter estimates are
allowed to vary among groups.
for parsimonious modeling: Parameter variation is modeled
by an underlying distribution
gives information about variation of parameter values
between groups.



single level nlme model

yij = f (φi ,νij) + εij i = 1, . . . ,M j = 1, . . . ,ni (1)

where φi is a group-specific parameter vector. νij is a covariate
vector and εij ∼ N1(0, σ2). M is the number of groups, and ni
the number of observations within a group

φi is modeled via

φi = Aβ + Bbi bi ∼ N (0,Ψ) (2)

and εij⊥bi ∀i , j

(note: slight generalization later on.)



Orange tree example(1)

Growth of Orange trees
Data: trunk circumference of 5 trees measured over time.

Time since December 31, 1968 (days)
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Orange tree example(2)

Growth of Orange trees
Data: trunk circumference of 5 trees measured over time.

model:
yij =

φ1

1 + exp[−(tij − φ2)/φ3]
+ εij (3)

φ1: asymptotic height: t →∞⇒ yij = φ1 + εij (Asym)
φ2: time at half-asymptotic height: t = φ2 ⇒ yij = φ1/2 + εij
(xmid)
φ3: time between 1/2 and 3/4 of asymptotic height. (scal)

allows for simple heuristic to find starting estimates.
more elaborate heuristic implemented in function SSlogis:



SSlogis algorithm

Conditional linearizability

1 scale reponse variable y to (0,1)-interval: new response y ′

y ′ ≈ 1
1 + exp[(φ2 − x)/φ3]

2 take logistic transformation: z := log[y ′/(1− y ′)]

z ≈ −(φ2 − x)/φ3

3 fit linear regression for x = a + bz. choose φ2(0) = a,
φ3(0) = b

4 use algorithm for partially linear models (see Golub and
Pereyra 73) to fit:

y =
φ1

1 + exp[(φ2 − x)/φ3]



Orange tree example(3)

Overview of procedure

1 plot and structure of data
2 Ignore grouping structure at first: nls-function
3 fit model separately for each group: nlsList-function
4 fit non-linear mixed effect model: nlme-function
5 analyse non-linear mixed effect model, go back to step 4

→ R



Orange tree example(4)

the nlme-model

yij = f (φi ,νij) + εij i = 1, . . . ,M j = 1, . . . ,ni (4)

becomes
yij =

φ1

1 + exp[−(tij − φ2)/φ3]
+ εij (5)

and
φi = Aβ + Bbi bi ∼ N (0,Ψ) (6)

becomesφi1
φi2
φi3

 =

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

A

×

β1
β2
β3

+

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

B

×

b1i
b2i
b3i

 (7)



The nlme function call

> nlme(model, data, fixed, random, groups, start)

’model’ can be a two-sided formula an SSlogis function or
an nlsList-Object
’data’, ’start’: clear; ’groups’ not needed if groups are
specified somewhere else
’fixed’ gives models for the fixed effects: most natural: list
of right-hand side formulas, each one corresponding to a
row in the fixed effect matrix
fixed=list(Asym~1, xmid~1, scal~1)

bug-note: doesn’t work. However, abreviation works.
fixed=Asym+xmid+scal~1

Else specify via nlsList



The nlme function call cont’

> nlme(model, data, fixed, random, groups, start)

’random’ works analog to ’fixed’ (including bug). Additionally,
use ’pdMat’-objects to specify additionally correlation structure:

random=pdDiag(list(Asym~1, xmid~1, scal~1) )

pdMat’-constructor functions available:
’pdBlocked’: block-diagonal
’pdCompSymm’: compound-symmetry structure
’pdDiag’: diagonal
’pdIdent’: multiple of identity
’pdSymm’: general positive-definite matrix

→R



the Theophyline example

Setup:
Serum concentration of Theophyline measured in 12 subjects
at eleven times after receiving an oral dose.

Time since drug administration (hr)
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the Theophyline example model

Model:

ct =
Dkeka

Cl(ka − ke)
[exp(−ket)− exp(−kat)] (8)

log-transformed version (ensure positive estimates):

ct =
DlKe + lKa − Cl

exp lKa − exp(lKe)
(exp[exp(lKe)t ]− exp[−exp(lKa)t ]) (9)

where lKe = log(ke), lKa = log(ka) and lCl = log(Cl)

→R



Using covariates

Random effects model deviations of individual parameter from
the fixed effect. But deviation might be explainable by covariate
values among groups
example In the Theophyline example also weight of subject is
known. Assume, that the subject specific absorbtion rate lKai
depends linearly on weight Wti :

φi =

lKei
lKai
lCli

 =

1 0 0 0
0 1 0 Wti
0 0 1 0


︸ ︷︷ ︸

Ai

×


β1
β2
β3
β4

+ Bbi (10)

Then some variation in lKai is explained by weight Wti

fixed=list(lKe~1, lKa~Wt, lCl~1)



Using covariates cont’

Need for more general model formulation:

yij = f (φij ,νij) + εij i = 1, . . . ,M j = 1, . . . ,ni (11)

φij is modeled via

φij = Aijβ + Bijbi bi ∼ N (0,Ψ) (12)

i.e.: Matrices are allowed to be functions of covariates.
Note: covariate does not need to be constant within one group.
(That is why Matrices are allowed to vary within each
observation)



Using covariates cont’

Variation for the particular parameter is explained away.⇒
often random effects drop out. e.g.:

lKei
lKai
lCli

 =

1 0 0 0
0 1 0 Wti
0 0 1 0

×

β1
β2
β3
β4

+

b1i
0

b3i

 (13)

But sometimes additional random effects lead to better fit:

lKei
lKai
lCli

 =

1 0 0 0
0 1 0 Wti
0 0 1 0

×

β1
β2
β3
β4

+


b1i
b2i
b3i
b4i

 (14)



Using covariates procedure

Recommended heuristic procedure

use forward stepwise approach, testing covariates one at
the time.
fit model without covariate and plot estimated random
effects against covariate
Compare models as usual (AIC, BIC, likelihood ratio)

In Theophyline example with above setup: Fit model without
weight covariate,
plot b̂2i vs. Wti



updated Procedure

Overview of procedure

1 plot and structure of data
2 Ignore grouping structure at first: nls-function
3 fit model separately for each group: nlsList-function
4 fit non-linear mixed effect model: nlme-function
5 analyse non-linear mixed effect model, go back to step 4
6 incorporate Covariates if possible or necessary



CO2 uptake example
Study of cold tolerance inC4-grass species.
setup:
2 species of grass (Quebec/Missisipi) 6 plants each. Each
group divided into 2 groups: control and chilled. (plants were
chilled for 14h at 7◦C; after 10h of recovery CO2 uptake was
measured for various ambient CO2 concentrations.
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CO2 uptake example

Study of cold tolerance in C4-grass species.
setup:
2 species of grass (Quebec/Missisipi) 6 plants each. Each
group divided into 2 groups: control and chilled. (plants were
chilled for 14h at 7◦C; after 10h of recovery CO2 uptake was
measured for various ambient CO2 concentrations.

Model: Offset asymptotic regression model
(log-transformed):

U(c) = φ1(1− exp[−exp(φ2)(c − φ3)]) (15)

φ1: Asymptote (Asym)
φ2: log-rate constant (lrc)
φ3: offset, max CO2-conc. without uptake (c0)

→R(flash resulting model)



CO2 uptake model with covariate

φi1
φi2
φi3

 =

1 Treati Typei Treati ∗ Typei 0 0
0 0 0 0 1 0
0 0 0 0 0 1

×


β1
γ1
γ2
γ3
β2
β3

+

b1i
b2i
0


(16)

where

Treati =

{
−1 Treatment of Plant i = nochilled
1 Treatment of Plant i = chilled

(17)

Typei =

{
−1 Type of Plant i = Quebec
1 Type of Plant i = Mississippi

(18)



extended single level nlme model

y i = f (θi ,νi) + εi i = 1, . . . ,M (19)

φi = Aiβ + Bibi bi ∼ N (0,Ψ) εi ∼ N (0, σΛi) (20)

i.e.: within-group errors are allowed to be correlated and have
non-constant variance.



extended single level nlme model: variance functions

Motivation: When plotting residuals against (a) a covariate or
(b) the fitted values, we sometimes see trends. How to
incorporate this most naturally?

Var(εij |bi) = σ × g2(µij ,νij , δ), i = 1, . . . ,M, j = 1, . . . ,ni
(21)

µij = E[yij |bi ],
νij : a variance- covariate vector
δ is a vector of variance parameters.
g(·) is the variance function.

Example: if we see increase of variance when plotted against
the fitted values, a possible choice for the variance function
would be: Var(εij |bi) = σ × |µij |2δ



variance functions cont’

Var(εij |bi) = σ × g2(µij ,νij , δ), i = 1, . . . ,M, j = 1, . . . ,ni
(22)

Problem: Within group error and random effects no longer
independent.
Approximation scheme:

fit without modeling heteroscedasticity. Calculate
µ̂ij = xT

ij β + zT
ij b̂i (i.e: estimate of model fit given the

random effect)
use the following approximation:

Var(ε) ≈ σ × g2(µ̂ij ,νij , δ), i = 1, . . . ,M, j = 1, . . . ,ni
(23)

(i.e: assuming independence between within-group errors
and random effects.)
repeat until convergence



variance functions cont’

independence Assumption is core of approximation scheme:

Var(ε) ≈ σ × g2(µ̂ij ,νij , δ), i = 1, . . . ,M, j = 1, . . . ,ni (24)

assuming independence between within-group errors and
random effects.

intuition for independence approximation: if our estimate of
µij = E[yij |bi] is "good", plugging in µ̂ij instead of µij won’t
change a lot. thus actually knowing bi will not give you more
information.



varFunc Classes

set of classes of variance functions, for specifying within-group
variance models. varFunc-constructor functions available:

’varFixed’: fixed variance (if variance is linear one
covariate.)
’varIdent’: different variances per stratum
’varPower: power of covariate or expected value
’varExp’: exponential of covariate or expected value
’varConstPower’: constant plus power of covariate or
expected value
’varComb’:combination of variance functions.



varFunc Classes

a closer look at varPower
Implemented variance model:

Var(εij) = σ2|νij |2δ (25)

νij may be a covariate or E[yij |bi ].
call:

weight = varPower(value, form)

value specifies initial value for δ.
form specifies covariate or conditional expected value as
right-hand-side formula.

Note: if covariate or conditional expected value takes on zero
values, variance is undefined.⇒ use varConstPower
→R



Optional example: Indomethicin Kinetics

Setup: 6 volunteers received intravenous injections of the same
dose of indomethicin and had their plasma concentration
measured 11 times.

Time since drug administration (hr)
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Optional example: Indomethicin Kinetics

The Model
already in log-transformed version:

yij = φ1 exp[−exp(φ2)tj ] + φ3 exp[−exp(φ4)tj ] + εij (26)

uses the SelfStarting function SSbiexp


