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1 Why Nonlinear Mixed-Effects?

So far we learned linear mixed-effects models and nonlinear regression. Now
we consider the situation combining these two concepts at the same time:
Grouped data with nonlinear expectation function. It means that the ran-
dom effects are incorporated in the coefficients, and the expectaion function
is allowed to be nonlinear in random effects.

2 Model for Nonlinear Mixed-Effects

yij = f(φij , νij) + εij i = 1, . . . ,M, j = 1, . . . , ni

where εij ∼ N (0, σ2), f is nonlinear differentiable function of group specific
parameter vector φij = Aijβ +Bijbi and covariate vector νij .

Example:

Indomethicin Kinetics is known that it is expressed by a linear combination
of two exponentials. This model is nonlinear, and its coefficients vary with
subject i.

yij = (β1+b1i) exp [− exp (β2 + b2i) tj ]+(β3+b3i) exp [− exp (β4 + b4i) tj ]+εij

β’s are fixed effects representing the mean value at the parameter and bi’s
stand for random effects that are representing individual deviations. Using
group specific parameter vector φij

yij = (φ1i) exp [− exp (φ2i) tj ] + (φ3i) exp [− exp (φ4i) tj ] + εij

where bi ∼ N (0,Ψ) and εij ∼ N (0, σ2).
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In the case b4i = 0 (no random effect on β4),
φ1i

φ2i

φ3i

φ4i


︸ ︷︷ ︸

φi

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

A


β1

β2

β3

β4


︸ ︷︷ ︸

β

+


1 0 0
0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

B

 b1i
b2i
b3i


︸ ︷︷ ︸

bi

3 Estimation of the Parameter

We want to estimate parameters β, σ2 and Ψ incorporated in φij . For
computational purpose Ψ is expressed in terms of the relative prediction
factor ∆ satisfying

∆T∆ =
Ψ−1

σ2

such that Ψ = σ2(∆T∆)−1. We use likelihood functions.

L(β, σ2,∆|y) = p(y|β, σ2,∆)︸ ︷︷ ︸
marginal density ofy

=
∫

p(y|b, β, σ2)︸ ︷︷ ︸
conditional density of ygivenb

p(b|∆, σ2)db

Notice that yi|bi ∼ N (fi(β, bi), σ2I) and bi ∼ N (0, σ2(∆T∆)−1) so that

=
|∆|M

(2πσ2)(N+Mq)/2

M∏
i=1

∫
exp

(
‖yi − fi(β, bi)‖2 + ‖∆bi‖2

−2σ2

)
dbi i = 1, . . . ,M, j = 1, . . . , ni

(1)

where fi(β, bi) = fi [φi(β, bi), νi], bi is q-dim vector. Since f can be nonlinear
in random effects the integral in (1) does not have closed form. To make the
numerical optimization of this likelihood function tractable three different
approximation methods are introduced.

3.1 Approximation of Likelihood Function in NLME

3.1.1 LME Approximation (Alternating Algorithm)

It consists of alternating between two steps:

1. Penalized nonlinear Least Squares(PNLS)

2. Linear Mixed-Effects (LME)

Details on 1: For a fixed current estimate of ∆, bi and β are estimated by
minimizing a penalized nonlinear least squares objective function (from (1)):

M∑
i=1

[
‖yi − fi(β, bi)‖2 + ‖∆bi‖2

]
(2)
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For computation Gauss-Newton method is used (see refsec:GN).

Details on 2: We update the estimate of ∆, based on a first order Taylor
Expansion of the model function around current estimates β̂(w) and b̂(w)

i .
Let ω̂(w)

i (β̂, b̂i) := yi − fi(β̂(w), b̂
(w)
i ) + X̂

(w)
i β̂(w) + Ẑ

(w)
i b̂

(w)
i . Then

‖yi − fi(β, bi)‖2 ' ‖ω̂(w)
i (β̂, b̂i)− X̂(w)

i β − Ẑ(w)
i bi‖2

with X̂
(w)
i =

∂fi
∂βT

∣∣∣∣
(β̂(w),b̂

(w)
i )

and Ẑ
(w)
i =

∂fi

∂bTi

∣∣∣∣
(β̂(w),b̂

(w)
i )

(3)

Plugging (3) in (1) we obtain

lLME(β,σ2,∆|y) = −N
2

log
(
2πσ2

)
− 1

2

M∑
i=1

(
log |Σi(∆)|+ 1

σ2

[
ω̂

(w)
i − X̂(w)

i β
]

Σ−1
i (∆)

[
ω̂

(w)
i − X̂(w)

i β
])

(4)

with Σi(∆) = I + Ẑ
(w)
i ∆−1∆−T (Ẑ(w)

i )T .
Now calculate optimal values for β̂(∆) and σ̂2(∆) and then plug them into
lLME so as to work with the profiled log-likelihood lLME,p of ∆ to estimate
∆.

3.1.2 Laplacian Approximation

Let g(β,∆, yi, bi) = ‖yi − f(β, bi)‖2 + ‖∆bi‖2 from the integral in (1). By
second order of Taylor expansion around b̂i it holds

g(β,∆, yi, bi) = g(β,∆, yi, b̂i) +
1
2

(bi − b̂i)T g′′(β,∆, yi, b̂i)(bi − b̂i)

where b̂i = argmin
bi

g(β,∆, yi, bi), g′ =
∂g

∂bi
and g′ =

∂g

∂2bi∂bTi

Then we obtain the Laplacian Approximation likelihood function by substi-
tution

p(y|β, σ2,∆) ' (2πσ2)−N/2|∆|M exp

(
− 1

2σ2

M∑
i=1

g(β,∆, yi, b̂i)
M∏
i=1

g′′(β,∆, yi, b̂i)

)−1/2

.

(5)
By approximating Hessian g′′ ' G it can be modified as

lLA(β, σ2,∆) ' −N
2

log(2πσ2)+

M log |∆| − 1
2

(
M∑
i=1

log |G(β,∆, yi)|+
1
σ2

M∑
i=1

g(β,∆, yi, b̂i)

)−1/2

.

(6)
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where g′′(β,∆, yi, bi) ' G(β,∆, yi) =
∂fi
∂bi

∣∣∣∣
b̂i

∂fi

∂bTi

∣∣∣∣
b̂i

+ ∆T∆. This equation

is called modified Laplacian Approximation to the LL. Then, for given β and
∆

σ̂2
MLE =

M∑
i=1

1
N
g(β,∆, yi, b̂i)

so that we profile lLA on σ2.

3.1.3 Adaptive Gaussian Approximation

To improve Laplacian approximation (5) Gaussian quadrature rules are used,
which approximates integrals of functions by a weighted average of the inte-
gral evaluated predetermined abscisses such that

1∫
−1

f(x)dx =
n∑
i=1

wif(xi)

It is quite technical to derive the likelihood function on this approach.

3.2 Computational Methods for Estimating Parameters

For the moment we concentrate on PNLS step in alternating algorithm. The
objective function is given by (1). We add pseudo observations to simplify
it. Then

M∑
i=1

[
‖yi − fi(β, bi)‖2 + ‖∆bi‖2

]
=

M∑
i=1

[
‖ỹi − f̃i(β, bi)‖2

]
where

ỹi =
(
yi
0

)
and f̃i(β, bi) =

(
fi(β, bi)

∆bi

)
For this nonlinear square problem, we use Gaussian-Newton optimization.
Replacing nonlinear f̃ by Taylor approximation around current estimates
gives Least-Squares problem.

M∑
i=1

[
‖Yi − fi(β, bi)‖2 + ‖∆bi‖2

]
'

M∑
i=1

‖ω̃(w)
i − X̃(w)

i β − Z̃(w)
i bi‖2

where

ω̃
(w)
i =

(
ω̂

(w)
i

0

)
We can find least squares estimates β̂ and bi and obtain then the Gauss
Newton increments. The process will be repeated until there is no change
according to "step-halving".
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4 Extended NLME Model

For general case we extend the basic NLME. We allow the within-group
errors εi to be heteroscedastic or/and correlated. So our model is given by

yi = fi(φi, νi) + εi

φi = Aiβ +Bibi, bi ∼ N (0,Ψ) and εi ∼ N (0, σ2Λi)
(7)
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