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Linear Regression Models

Previously we have fitted, by least squares, the linear regression
model which is of the type:

Y = Xβ + ε

where

X is the n × p matrix (p parameters and n observations) of
explanatory variables, (or so-called derivative matrix);

β is the vector of regression parameters to be estimated;

ε is a vector of random variables representing the disturbances,
assumed to be iid normally distributed, E[ε] = 0 and Var(ε) = σ2 · I

Model in vector notation:

Yi = xT
i β + εi i = 1, . . . , n
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There are many situations in which a model of this form is not
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between the response variable Y and the predictor variables
X1, . . .Xp.
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First Definitions

The more general normal nonlinear regression model can be
written

Yi = f (xi,θ) + εi i = 1, . . . , n

where f is the expectation function and xi is a vector of
associated regressor variables for the ith observation.
f is a nonlinear function of the parameter θ!

That is, for nonlinear models, at least one of the derivatives of the
expectation function with respect to the parameters depends on at
least one of the parameters.
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Consider the vectors xi , i = 1, 2, . . . , n as fixed (observations) and
concentrate on the dependance of the expected responses on θ.
We create the n-dimensional vector η(θ) with ith element

ηi (θ) = f (xi ,θ) i = 1, 2, . . . , n

and write the nonlinear regression model as

Y = η(θ) + ε

with ε assumed to have a spherical normal distribution as in the
linear model.
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Examples for the nonlinear functions:

From the membrane separation technology:

Yi = f (xi,θ) + εi =
θ1 + θ2 · 10θ3+θ4xi

1 + 10θ3+θ4xi
+ εi
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Hill model (enzyme kinetics):

Yi =
θ1 + xθ3

i

(θ2 + xθ3
i )

+ εi

For θ3 = 1 also known as Michaelis-Menton model.

Mitscherlich function (growth analysis):

Yi = θ1 + θ2 · exp (θ3 · xi ) + εi
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Transformably Linear Models

Many models can be transformed into a linear model. For example,

f (x ,θ) = θ1 xθ2

can be tranformed into a linear model:

ln
(
f (x ,θ)

)
= ln θ1 + θ2 ln x = β0 + β1x̃ ,

where β0 = ln θ1 and x̃ = ln x .

We call such regression models transformably linear.
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Attention!

Transformation of the data ⇒ transformation of ε!
Initial model:

ln Yi = β0 + β1x̃ + εi ,

where εi additive, normally distributed. Transform it back, obtain:

Yi = θ1 · xθ2 · ε̃i ,

where ε̃i perform as multiplicative and lognormally distributed!

Trasformation of the data is to enjoy with caution!
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Example: Puromycin

Description: Puromycin
is an antibiotic used by
scientists in bio-research
to select cells modified
by genetic engineering.
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Example: Puromycin

The data, for an enzyme treated and untreated:
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Example: Puromycin

Mechanism of action: This is described by the Michaelis-Menten
model for enzyme kinetics, which relates the initial velocity on an
enzymatic reaction to the substrate concentration x trough the
equation:

f (x ,θ) =
θ1x

θ2 + x

Note, that for x →∞ we obtain the ”asymptotic” reaction
velocity equal to θ1.
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Puromycin

The Michaelis-Menten model can be transformed to a linear model:

f (x ,θ) =
θ1x

θ2 + x

1

f
=

1

θ1
+
θ2

θ1

1

x

= β1 + β2u ← linear model!

Question: Is it a good option to do linear regression on this
transformed data?
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Puromycin

1

f
= β1 + β2 ·

1

x

The reciprocal data shows decidely
nonconstant variance.

Transformation affected the
disturbances!
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Puromycin

Hence, we should use nonlinear regression on the original data.

- Can we bring the results obtained from the linear regression back
into play?
- Yes, we can!
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The Geometry of the Expectation Surface

The n-dimensional vector η(θ) defines a P-dimensional surface
called the expectation surface in the N-dimensional response space.
The least squares estimates correspond to the point on the
expectation surface,

η̂ = η(θ̂)

which is closest to y ∈ Rn. That is, θ̂ minimizes the residual sum
of squares

S(θ) = ‖y − η(θ)‖2

where η(θ) = f (x,θ).
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find the point η̂ on the expectation surface which is closest to
y, and then

determine the parameter vector θ̂ which corresponds to the
point η̂.
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Determining the Least Squares Estimates

In the nonlinear case the two steps are very difficult, because:

the expectation space is curved, often of finite extent (or, at least,
has edges)

we can map point easily only in one direction - from the parameter
plane to the expectation surface. => It is extremely dificult to
determine the parameter plane coordinates θ̂ corresponding to that
point η̂.

To overcome these difficulties, we use iterative methods to determine

the least squares estimates θ̂.
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The Gauss-Newton Method: Idea

Goal: to iteratively improve an initial guess θ(0) for θ and keep

improving the estimates until there is no change.

we expand the expectation function f (xi, θ) in a first order Taylor

series about θ(0) as

f (xi, θ) ≈ f (xi, θ
(0)) + Ai1(θ1 − θ(0)

1 ) + · · ·+ Aip(θp − θ(0)
p )

where

Aik =
∂f (xi,θ)

∂θk
|θ(0) , k = 1, 2, . . . , p

Incorporating all n cases, we write

η(θ) ≈ η(θ(0)) + A∗(θ − θ(0))

where A∗ is the n × p derivative matrix with elements Aik .
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The Gauss-Newton Method

adding the error terms:

Y − η(θ(0)) = A∗ · (θ − θ(0))︸ ︷︷ ︸
:=β

+E

on this stage we do linear regression and obtain β.

Put θ(1) := θ(0) + β;

The point η(θ(1)) should now be closer to y and so we move to this

better parameter value θ(1) and perform another iteration.

We iterate this process until there is no useful change in the
elements of the parameter vector.
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The Gauss-Newton Method

Short Overview: Gauss-Newton Method

1 Start with an initial value θ(0)

2 Linear approximation of the expectation surface near η(θ(0)):
matrix A

3 Local linear regression

4 Obtain better value θ(1)

5 Iterate this process
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Initial Values

Iterative methods need initial values to start from. How can we find
them?

From the previous knowledge of the experiment design

Via transfomed linear model

Analysis of the expectation function f
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Puromycin

Now we are ready to do nonlinear regression on the Puromycin data.
Take the initial values from the linear model:

θ
(0)
1 = 1/β̂0 = 196, θ

(0)
2 = β̂1/β̂0 = 0.048

In R: use function nls to obtain nonlinear least squares estimates:
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Puromycin

The fitted
expectation function
for the Puromycin
data (treated)

f (x ,θ) =
θ1x

θ2 + x
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Puromycin

Model diagnostics: Normal QQ-Plot
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Puromycin

Model diagnostics: Tukey-Anscombe-Plot
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Approximate Tests and Confidence Regions

Goal: to construct confidence intervals for the parameters.

There are two approaches:

1. Approximate test, which is based on the linearization issue.

2. Exact test, where we compare the residual sums of squares
S(θ∗) with S(θ).
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Approximate Tests: Construction

Starting point: we have estimated θ̂ with the LS method.

Question: is this estimate consistent with the observations?

Main assumption: The LS estimate θ̂ is asymptotically normal
distributed:

θ̂
a∼ N

(
θ,

Vθ

n

)
,

with asymptotic covariance matrix

Vθ = σ2 ·
(

AT
θ · Aθ

)−1

Substitute Vθ by its estimate:

V̂θ = σ̂2 ·
(

AT
θ̂
· Aθ̂

)−1

where σ̂2 =
1

n − p
S(θ̂)
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H0,j : θj = 0 against HA,j : θj 6= 0

Nonlinear Model:

Tj =
θ̂j√

σ̂2(ATA)−1
jj

H0,j , as.
∼ tn−p

Confidence region:

θ̂j ±
√
σ̂2(ATA)−1

jj · q
tn−p

1−α/2, as.

Linear Model:

Tj =
β̂j√

σ̂2(XTX )−1
jj

H0,j∼ tn−p

Confidence region:

β̂j ±
√
σ̂2(XTX )−1

jj · q
tn−p

1−α/2
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Approximate Inference Bands for the Expected Response

The 1− α approximate inference interval for the expected response
is:

f (x, θ̂)± q
tn−p

1−α/2 · σ̂x0

where

σ̂x0 = σ̂

√
âT

0

(
ATA

)−1
â0

with

â0 =
∂f (x0,θ)

∂θ
| θ̂
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Puromycin

In the Puromycin experiment, two blocks of experiments were run.
In one the enzyme was treated with puromycin, and in the other
the same enzyme was untreated.
Question: Does the Puromycin affect the parameters θ1 or/and θ2?
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The combined model is then:

Yi =
(θ1 + θ3zi ) · xi

θ2 + θ4 · zi + xi
+ εi

where zi is the indicator variable:

zi =

{
0 ith case untreated, or

1 treated
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We see, θ4 could be zero, because its t-value 1.44 is smaller than
the boundary qt19

0.975 = 2.09.

The treatment has a significant effect on the velocity, which is
expressed in θ3:

The approximative 95% confidence interval for the parameter θ3 is:

θ̂3 ± qt19
0.975 · σ̂ = 52.398± 9.5513 · 2.09 = [32.4, 72.4]
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Exact Tests: Construction

The quality of the aprroximate test depends strongly on the quality
of the linear approximation of the expectation surface. We can
avoid this issue and construct tests which do not use linearisation
components.

To test the null-hypothesis:
H0 : θ = θ∗ or: H0,j : θj = θ∗j
we can compare the residual sums of squares S(θ∗) with S(θ).
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Exact Tests: F-Test

The test statistic is

T =
n − p

p
· S(θ∗)− S(θ̂)

S(θ̂)

a∼ Fp,n−p.

This gives us the confidence region{
θ | S(θ) ≤ S(θ̂)

(
1 +

p

n − p
· q
)}

where q = q
Fp,n−p

1−α is the (1− α)-quantile of the F (p, n − p)
distribution.

This test is not based on the issue of the linearization => it is
more precise than the approximate test!
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Exact Tests for p=2

When P = 2, we can determine a likelihood contour in θ by standard
contouring methods, that is, by evaluating S(θ) for a grid of θ values
and approximating the contour by straight line segments in the grid.

The figure shows nominal
80 and 95% likelihood
contours for the Puromycin
parameters. The dashed
lines are the linear
approximation ellipses, and
the least square estimate is
indicated by +.
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Exact Test for a Single Parameter

For a single parameter:

H0 : θj = θ∗j

T̃k = (n − p) · S̃k(θ∗k)− S̃(θ̂)

S(θ̂)

which is approx. F1,n−p - distributed.

We obtain the confidence interval by solving the equation

T̃k = q
F1,n−p

1−α/2 numerically for θ∗k .
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t-Test via F-Test

In the case of nonlinear regression the F-test is not equivalent to
the f-test. But we can transform the the F-test into the t-test.

This statistic is approx. tn−p - distributed.
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Profile-t-Function

We introduce here some graphical techniques for assessing the
severity of the nonlinearity in an estimation situation.

Look at the test statistic Tk as a function of θk , and call it
profile-t-function:

Tk(θk) = sign
(
θ̂k − θk

)
· (n − p) ·

√
S̃k(θk)− S(θ̂)

S(θ̂)

What do we obtain in the classical linear model?

What do we obtain in the nonlinear model?
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Profile-t-Plot

The profile-t-plot provides exact likelihood intervals for individual
parameters and, in addition, reveal how nonlinear the estimation
sitiation is.

Usually we plot on the x-axis the
standardised version of θk

δk(θk) :=
θ̂k−θ∗k

se〈(θ̂k )〉
instead of θk .

Interpretation?
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Likelihood Profile Traces

Another tool is plotting the likelihood profile traces.
Here, we look at the estimated parameters θ̂j , j 6= k , as a fuction

θ̂j
(k)

(θk), while θk remains fixed. In addition, we may plot the
likelihood contours, as in the following graphics: (Puromycin)
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Interpretation?

traces are quite straight → linear
approximation is good.

Simular to the linear case: angle of
intersection provides information
about the correlation between the
parameters.
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Short Summary

Look at the model: is it transformably linear?

Collect the initial values

Parameter estimates: the Gauss-Newton algorithm

In R: function nls

To construct inference regions: approximative or exact tests

To look at the goodness of linearisation: profile-t-plot

Correlation, how the estimate parameters interact: look at the
profile traces

Good luck!
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Any questions so far ??
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Example with R: Chlorine

Chlorine decay from time t = 0, ...,∞ in
some product. Initial content of chlorine is
50%. The following nonlinear regression
model is assumed:

chlorine = α + (0.49− α) · exp(β · weeks + γ) + ε
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Linearly transformable? First, we need α < min(chlorine). Why?
Here, min(chlorine) = 0.38, so take α = 0.37 as initial value.

chlorine = α + (0.49− α) · exp(β · weeks + γ)

chlorine− 0.37

0.49− 0.37
= exp(β · weeks + γ)

log
(chlorine− 0.37

0.12

)
= β · weeks + γ

That is, the transformed linear model is:

log
(chlorine− 0.37

0.12

)
= β · weeks + γ + ε∗
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Example with R: n-Pentane

Data on the reaction rate of the catalytic
isometrisation of n-pentane to isopentane
versus the partial pressures of hydrogen,
n-pentane and isopentane.
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n-Pentane

The following nonlinear regression model (Hougen-Watson model)
is assumed:

y = f (x, θ) =
θ1 θ3 (x2 − x3/1.632)

1 + θ2 xi + θ3 x2 + θ4 x3

where

y is the rate of reaction

x1 partial pressure of hydrogen

x2 partial pressure of n-pentane

x3 partial pressure of isopentane

Note: θ has to be positive!
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n-Pentane

This model is linear transformable:

y =
θ1 θ3 (x2 − x3/1.632)

1 + θ2 x1 + θ3x2 + θ4 x3

1

y
=

1 + θ2 · x1 + θ3 · x2 + θ4 · x3

θ1θ3 · (x2 − x3/1.632)

x2 − x3/1.632

y
=

1

θ1θ3
+

θ2

θ1θ3
· x1 +

1

θ1
· x2 +

θ4

θ1θ3
· x3

x2 − x3/1.632

y
= β0 + β1 · x1 + β2 · x2 + β3 · x3
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Denote

ỹi =
xi2 − xi3/1.632

yi

The linear model is then:

ỹi = β0 + β1 · xi1 + β2 · xi2 + β3 · xi3 + εi
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Choose another parameter transformation:

y =
θ1 θ3 (x2 − x3/1.632)

1 + θ2 x1 + θ3x2 + θ4 x3

Write

φ1 =
1

θ1θ3
, φ2 =

θ2

θ1θ3
, φ3 =

1

θ1
, φ4 =

θ4

θ1θ3

Note, the φk corresponds to the βk from above.

Then we obtain

y =
x2 − x3/1.632

φ1 + φ2x1 + φ3x2 + φ4x3
.
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