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Linear Regression Models

Previously we have fitted, by least squares, the linear regression
model which is of the type:

Y=X3+e J

where

@ X is the n x p matrix (p parameters and n observations) of
explanatory variables, (or so-called derivative matrix);

@ (3 is the vector of regression parameters to be estimated,;

@ € is a vector of random variables representing the disturbances,
assumed to be iid normally distributed, E[e] = 0 and Var(e) = o2 - |

Model in vector notation:
T .
Yi=x;B+¢ i=1,...,n J
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Getting Started: Review of Linear Regression
Nonlinear R e odel: Definitions

There are many situations in which a model of this form is not
appropriate and too simple to represent the true relationship
between the response variable Y and the predictor variables
X1,... Xp.
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Transformably Linear Models
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First Definitions

The more general normal nonlinear regression model can be
written

Y= f(x,0) +€& i=1,....n J

where f is the expectation function and x; is a vector of
associated regressor variables for the ith observation.
f is a nonlinear function of the parameter 6!

That is, for nonlinear models, at least one of the derivatives of the

expectation function with respect to the parameters depends on at
least one of the parameters.
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Transformably Linear Models

Consider the vectors x;, i = 1,2,...,n as fixed (observations) and
concentrate on the dependance of the expected responses on 6.
We create the n-dimensional vector (@) with ith element

ni(0) = f(x;,0) i=1,2,....n
and write the nonlinear regression model as

Y =n(0) +e¢ J

with € assumed to have a spherical normal distribution as in the
linear model.
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Examples for the nonlinear functions:

@ From the membrane separation technology:

01 + 65 - 1093 +0axi

Yi = f(xi,0)+ € + €
1 ( (B ) 1 1+1003+94X{ 1
000200 Qo
163 &
s 8
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e Hill model (enzyme kinetics):

91 —I—X,-e3
PP +
(62 +X;3)

€j
For 85 = 1 also known as Michaelis-Menton model.

@ Mitscherlich function (growth analysis):

Y, = 01+92-exp(93-x,~)+ei
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Transformably Linear Models

Many models can be transformed into a linear model. For example,
f(x,0) = 0; x*
can be tranformed into a linear model:

In (f(x,@)) =Inb1+02Inx = o + B1X,

where By =1Inf; and X = Inx.

We call such regression models transformably linear.
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Attention!

Transformation of the data = transformation of €!
Initial model:
InY; = Bo + B1X + €,

where ¢; additive, normally distributed. Transform it back, obtain:
Yi=0,-x" &,
where €; perform as multiplicative and lognormally distributed!

Trasformation of the data is to enjoy with caution!
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Example:

> Puromycin
Cong rate state

1 0.02 76 treated

Z2 0.02 47 treated

3 0.08 a7 treated

4 0.0 107 treated

. . . 5 0.11 1E3 treated
Description: Puromycin 6 0.11 139 treated
. . . 7 0.2z 158 treated
is an antibiotic used by § 0.2z 152 treated
. . . . 9 0.58 1591 treated
scientists in bio-research 10 0.56 201  treated
o 11 1.10 207 treated

to select cells modified 12 1.10 200 treated
) ) . 13 0.02 67 untreated

by genetic engineering. 13.0.02 STyuncredeed
15 0.08 54 untreated

16 0.08 86 untreated

17 0.11 98 untreated

15 0.11 115 untreated

18 0.22 131 untreated

20 0.22 124 untreated

21 0.56 144 untreated

2z 0.568 158 untreated

1.10 160 untreated
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The data, for an enzyme treated and untreated:
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Example: Puromycin

Mechanism of action: This is described by the Michaelis-Menten
model for enzyme kinetics, which relates the initial velocity on an
enzymatic reaction to the substrate concentration x trough the

equation:
91X

f(X70) - 0> + x

Note, that for x — oo we obtain the "asymptotic” reaction
velocity equal to 6.
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Puromycin

The Michaelis-Menten model can be transformed to a linear model:

(91X
f(x,0) = O+ x
L1 s
f - 91 91 X
= B1+ Pou — linear model!

Question: Is it a good option to do linear regression on this
transformed data?
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Linearized Raw Data

1 1
?:ﬂl-i-ﬁz'*
X

The reciprocal data shows decidely
nonconstant variance.

Regression Line
B, = 0.0051072 | ]
B,=0.00024722 | Transformation affected the
disturbances!
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Puromycin

Hence, we should use nonlinear regression on the original data.

- Can we bring the results obtained from the linear regression back
into play?
- Yes, we can!
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The Geometry of the Expectation Surface

The n-dimensional vector 17(6@) defines a P-dimensional surface
called the expectation surface in the N-dimensional response space.
The least squares estimates correspond to the point on the
expectation surface,

7 = n(6)
which is closest to y € R”. That is, § minimizes the residual sum
of squares

5(6) = [ly — n(6)|
where n(0) = f(x,0).
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Expectation
surface

6 2 parameters
3 observations
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@ find the point 77 on the expectation surface which is closest to
y, and then

o determine the parameter vector & which corresponds to the
point 7.
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Determining the Least Squares Estimates

Expectation
sutace

SR

ST

e wu
S

2 parameters
3 observations

In the nonlinear case the two steps are very difficult, because:

@ the expectation space is curved, often of finite extent (or, at least,
has edges)

@ we can map point easily only in one direction - from the parameter
plane to the expectation surface. => It is extremely dificult to
determine the parameter plane coordinates 8 corresponding to that
point 7.

To overcome these difficulties, we use iterative methods to determine
the least squares estimates 6.
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The Gauss-Newton Method: Idea

Goal: to iteratively improve an initial guess 6 for 6 and keep
improving the estimates until there is no change.

@ we expand the expectation function f(x;, @) in a first order Taylor
series about 6(°) as

F(xi, 8) ~ f(xi, 8©) + Ain(61 — 67) + - + Ap(6, — 69)
where

Of (xi, 0) k=10

A= ———=
ik 89/( |0(0)7 ) &y P

Incorporating all n cases, we write

n(0) ~ n(6®) + A*(6 — 01)

where A is the n X p derivative matrix with elements Aj.
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The Gauss-Newton Method

@ adding the error terms:
Y -—n6®)=A"-(0-69)+E
| —
=0
@ on this stage we do linear regression and obtain 3.
o Put 8 =6 1 g,

@ The point n(G(l)) should now be closer to y and so we move to this
better parameter value 0% and perform another iteration.

@ We iterate this process until there is no useful change in the
elements of the parameter vector.
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The Gauss-Newton Method

Short Overview: Gauss-Newton Method
1 Start with an initial value 8%

2 Linear approximation of the expectation surface near n(O(O)):
matrix A

3 Local linear regression
4 Obtain better value %)

5 lterate this process
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Initial Values

Iterative methods need initial values to start from. How can we find
them?

@ From the previous knowledge of the experiment design
@ Via transfomed linear model

@ Analysis of the expectation function f
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Puromycin

Now we are ready to do nonlinear regression on the Puromycin data.
Take the initial values from the linear model:

00 =1/8, =196, 6% = 51/3 = 0.048

In R: use function nls to obtain nonlinear least squares estimates:

> r.nls<-nls(rate~(T1*conc) / (T24+cone), start=list( T1=196, T2=0.043))
> summary(r.nls)

Formula: rate ~ (TlL * conc)/iTZ + conc)
Parameters:
Estimate Std. Error £ walue Prix|t|)
Tl 2.12Z7e+0Z 6.947e+00 30.615 3.Z4e-11 #*%#
T2 6.412e-02 S.281e-03 AIRAALER 055 E
Signif. codes: 0F YEFES LOI00T WERY TOI0L LES LDE0S: YL 0L v vl

Residual standard error: 10.93 on 10 degrees of freedom

MNuwber of iterations to convergence: &
Achieved convergence tolerance: 9.75e-07
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The fitted
4 expectation function
£ o . R for the Puromycin
2 / 0y =212.7 data (treated)
) [ 0, = 0.0641
- & 01x
f(x,0) = ——
; (x:0) = 5"~
0.0 0.2 04 0.8 0.8 1.0
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Model diagnostics: Normal QQ-Plot

Normal Q-Q Plot

20

10

Sample Quantiles
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Model diagnostics: Tukey-Anscombe-Plot

Tukey-Anscombe Plot

a
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fittedl(r.nls)
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Approximate Tests and Confidence Regions

Goal: to construct confidence intervals for the parameters.

There are two approaches:
1. Approximate test, which is based on the linearization issue.

2. Exact test, where we compare the residual sums of squares
5(6*) with 5(0).
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Approximate Tests: Construction

Starting point: we have estimated @ with the LS method.
Question: is this estimate consistent with the observations?
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Approximate Tests: Construction

Starting point: we have estimated @ with the LS method.
Question: is this estimate consistent with the observations?

Main assumption: The LS estimate @ is asymptotically normal
distributed:

with asymptotic covariance matrix
-1
Vo= o2 (A;-Ag)
Substitute Vy by its estimate:

A~ -1 1
Vy =52 (AéT . Aé) where 62 =
n—p

5(6)
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Tests and Confidence Regions

Hoj: 0;=0 against Hp;: 0;#0 J
Nonlinear Model: Linear Model:
T - 0; Ho j, as. - T = Azﬁjl Ho,j trp
52(ATA);* GA(XTX);
Confidence region: Confidence region:
0 \[62AT AL - q) 2 o 5. B+ 2 (XTX); - a2,
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Approximate Inference Bands for the Expected Response

The 1 — a approximate inference interval for the expected response
is:

f(x,0) a2, by

where
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Puromycin

In the Puromycin experiment, two blocks of experiments were run.
In one the enzyme was treated with puromycin, and in the other
the same enzyme was untreated.

Question: Does the Puromycin affect the parameters 67 or/and 657

200
1
.
.

150
.

o o treated

Velacity

100
1

* untreated

T T T T T T
0.0 0.2 0.4 08 0.8 10
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Tests and Confidence Regions

The combined model is then:

(91 + 932,') - X;

W:—
0o + 04 - zj + X

+ €

where z; is the indicator variable:

0 ith case untreated, or
1 treated
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Tests and Confidence Regions

Parameters:
Value Std. Error t value
#1  160.286 6.8064 23.24

) 0.048 0.0083 5.76
#s  52.308 9.5513 5.49
i 0.016 0.0114 1.44

Residual standard error: 10.4 on 19 degrees of freedom

We see, 04 could be zero, because its t-value 1.44 is smaller than
the boundary q(tfg75 = 2.09.

The treatment has a significant effect on the velocity, which is
expressed in 03:

The approximative 95% confidence interval for the parameter 63 is:

03+ i35 - & = 52.398 + 9.5513 - 2.09 = [32.4,72.4]
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Exact Tests: Construction

The quality of the aprroximate test depends strongly on the quality
of the linear approximation of the expectation surface. We can
avoid this issue and construct tests which do not use linearisation
components.

To test the null-hypothesis:

Hoi 6 =07 or: HO’J'Z QJZQJ*
we can compare the residual sums of squares S(6*) with 5(8).
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Exact Tests: F-Test

The test statistic is

n—p S()-50) .

T = _ Fyoo
p 5(0) Pk ’

This gives us the confidence region

{0156)<s@)(1+-L—-q)}

n—p

where g = qfﬁ‘&”’ is the (1 — «v)-quantile of the F(p,n — p)
distribution.

This test is not based on the issue of the linearization => it is
more precise than the approximate test!
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Tests and Confidence Regions

Exact Tests for p=2

When P =2, we can determine a likelihood contour in 8 by standard
contouring methods, that is, by evaluating S(0) for a grid of 8 values
and approximating the contour by straight line segments in the grid.

010
0.0 The figure shows nominal
0.08 4 80 and 95% likelihood
i contours for the Puromycin
parameters. The dashed
0.06 4 lines are the linear
0.05 1 approximation ellipses, and
- the least square estimate is
T

T I I I I indicated by +.
190 200 210 220 230 240

8
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Exact Test for a Single Parameter

For a single parameter:

Hoi 91':9;

Te=(n—p)-

which is approx. Fi ,—p - distributed.

We obtain the confidence interval by solving the equation

T Fl,nfp . %
T, = U numerically for 0.
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t-Test via F-Test

In the case of nonlinear regression the F-test is not equivalent to
the f-test. But we can transform the the F-test into the t-test.

Ti(0) = sign(ék ~6i) - (n—»p) 50

This statistic is approx. t,_p - distributed.
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Profile-t-Function

We introduce here some graphical techniques for assessing the
severity of the nonlinearity in an estimation situation.

Look at the test statistic Ty as a function of 8, and call it
profile-t-function:

Tk(0k) = sign (ék — Qk) “(n—p)-
What do we obtain in the classical linear model?

What do we obtain in the nonlinear model?
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Profile-t-Plot

The profile-t-plot provides exact likelihood intervals for individual
parameters and, in addition, reveal how nonlinear the estimation
sitiation is.

[
190 200 210 220 230 240 250
| | | | | |
p | ! i Usually we plot on the x-axis the
! = standardised version of 6
o 0—0; .
! |- 0.0 5.(0.) = kY% dof 6
£ | = k\Ok) : ~<- Instead of 0.
SN .o B (0) = @
= ; =
| 080 Interpretation?
A | 098
]
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Tests and Confidence Regions

Likelihood Profile Traces

Another tool is plotting the likelihood profile traces.
Here, we look at the estimated parameters 0;,j # k, as a fuction

A~

k . ..
0j( )(Qk), while 6y remains fixed. In addition, we may plot the
likelihood contours, as in the following graphics: (Puromycin)

/
¥
0.10 /
/
v

0.08 - v,
&

0.08 —

.04 —

190 200 210 220 230 240 250
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Interpretation?

010 —

0.08 —

8,

0.06 —

0.04 —

traces are quite straight — linear
approximation is good.

Simular to the linear case: angle of
intersection provides information
about the correlation between the
i — parameters.
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Short Summary

@ Look at the model: is it transformably linear?
@ Collect the initial values
o Parameter estimates: the Gauss-Newton algorithm
@ In R: function nls
@ To construct inference regions: approximative or exact tests
@ To look at the goodness of linearisation: profile-t-plot
@ Correlation, how the estimate parameters interact: look at the
profile traces
Good luck!
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Tests and Confidence Regions
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Tests and Confidence Regions

Any questions so far 77
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Example with R: Chlorine

Chlorine decay from time t = 0, ..., 00 in
some product. Initial content of chlorine is
50%. The following nonlinear regression
model is assumed:

chlorine = o + (0.49 — ) - exp(3 - weeks + ) + ¢ J
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Linearly transformable? First, we need oo < min(chlorine). Why?
Here, min(chlorine) = 0.38, so take az = 0.37 as initial value.

chlorine = o + (0.49 — «) - exp(3 - weeks + 7)

chlorine — 0.37

049037 = exp(3 - weeks + )
chlorine — 0.37

I (T) = (- weeks + «

That is, the transformed linear model is:

| (chlorine —0.37

012 ):ﬁ~weeks+'y+e J
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Example with R: n-Pentane

Data on the reaction rate of the catalytic
X S isometrisation of n-pentane to isopentane
v ‘ S versus the partial pressures of hydrogen,
n-pentane and isopentane.
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n-Pentane

The following nonlinear regression model (Hougen-Watson model)
is assumed:

91 (93 (X2 — X3/1.632)
146> x; + 03 xo + 04 x3

Yy = f(X,O) =

where
y is the rate of reaction
x1 partial pressure of hydrogen
X partial pressure of n-pentane

x3 partial pressure of isopentane

Note: 0 has to be positive!
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n-Pentane

This model is linear transformable:

o 91 63 (X2 — X3/1.632)
y= 14605 x1 +03x0 + 04 x3

1 . 14605 -x1+03-x+04-x3

y 0103 (x2 — x3/1.632)
X — X3/1.632 o 1 02 1 (94

y 6105 * 6163 at 61 ot 6103 s
xp — x3/1.632

" =0Bo+P1-x1+ P2 x4+ B3-x3
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n-Pentane

Denote
~ Xj2 — X,'3/1.632
: Yi
The linear model is then:
Vi= 0o+ P1-xi1+ B2 X2+ B3 xi3 + € J
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n-Pentane

Choose another parameter transformation:

0163 (x0 —x3/1.632)
N 146 x1 4+ 03x0 + 04 x3

Write

1 0 1 04

QSIZE» ¢2:@7

Note, the ¢ corresponds to the 8 from above.

Then we obtain

B xp — x3/1.632
P1 + Pox1 + P3x0 + Pax3’

Evgenia Ageeva
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The End
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