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Linear regression is a powerful method for an-
alyzing data described by models which are lin-
ear in parameters. Often, however, a researcher
has a mathematical expression which relates the
response to the predictor variables, and these mod-
els are usually nonlinear in the parameters. In
such cases, linear regression techniques must be ex-
tended, which introduces considerable complexity.

1 Nonlinear Model: Setting

The general normal nonlinear regression model
can be written

Yi = f(xi,θ) + εi

where f is the expectation function, xi is a
vector of associated regressor variables for the ith
case, and εi the error terms, iid∼ N(0, σ2) .

That is, for nonlinear models, at least one of the
derivatives of the expectation function with respect
to the parameters depends on at least one of the
parameters.

Consider the vectors xi, i = 1, 2, . . . , N as fixed
(observations) and concentrate on the dependance
of the expected responses on θ.

We create the N-vector η(θ) with ith element

ηi(θ) = f(xi,θ) i = 1, 2, . . . , N

and write the nonlinear regression model as

Y = η(θ)+ε

1.1 Transformably Linear Models

Many models can be transformed into a linear
model. For example,

f(x,θ) = θ1 x
θ2

can be tranformed into a linear model:

ln
(
f(x,θ)

)
= ln θ1 + θ2 lnx = β0 + β1x̃,

where β0 = ln θ1 and x̃ = lnx.

We call such regression models transformably
linear. Transformation of the model implies trans-
formation of the disturbance terms, which undesir-
able.

Examle: If we start with

lnYi = β0 + β1x̃+ εi,

where εi additiv, normally distributed. Transform
it back, obtain:

Yi = θ1 · xθ2 · ε̃i,

where ε̃i perform as multiplicative and lognormally
distributed! Therefore: trasformation of the data
is to enjoy with caution.

2 Determining the Least
Squares Estimates: The
Gauss-Newton Method

2.1 The Geometry of the Expecta-
tion Surface

The N-vectors η(θ) define a P-dimensional surface
called the expectation surface in the response
space.

The least squares estimates correspond to the
point on the expectation surface,

η̂ = η(θ̂)

which is closest to y. That is, θ̂ minimizes the
residual sum of squares

S(θ) = ‖y − η(θ)‖2

where η(θ) = f(x,β).

• find the point η̂ on the expectation surface
which is closest to y, and then

• determine the parameter vector θ̂ which cor-
responds to the point η̂.

In the nonlinear case, however, the two steps
are very difficult, so we use iterative methods
to determine the least squares estimates θ̂.

Goal: to iteratively improve an initial
guess θ(0) for θ and keep improving the esti-
mates until there is no change.

(1) Expand the expectation function f(xi, θ) in a
first order Taylor series about θ(0) as

f(xi, θ) ≈ f(xi, θ(0)) +Ai1〈θ(0)〉(θ1 − θ(0)1 ) + . . .

· · ·+AiP 〈θ(0)〉(θP − θ(0)P )

where

Aip〈θ〉 =
∂ηi〈θ〉
∂θp

|θ(0) , p = 1, 2, . . . , P
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Incorporating all N cases, write

η(θ) ≈ η(θ(0)) +A〈θ(0)〉(θ − θ(0))

where A〈θ∗〉 is the N × P derivative matrix
with elements Aip.

(2) Adding the error terms:

Y − η(θ(0)) = A〈θ(0)〉 · (θ − θ(0))︸ ︷︷ ︸
:=β

+E

This is equivalent to the linear regression
model.

(3) On this stage do linear regression and obtain
β.

(4) Put θ(1) := θ(0) + β;

(5) The point η(θ(1)) should now be closer to y
and so we move to this better parameter value
θ(1) and perform another iteration.

(6) Iterate this process until there is no useful
change in the elements of the parameter vec-
tor.

2.2 Initial Values

Iterative methods need initial values to start from.
How can we find them?

• From the previous knowledge of the experiment
design

• Via the transfomed linear model

• Analysis of the expectation function f

2.3 nls-Function

In R: use function nls to obtain
nonlinear least squares estimates:

The fitted expectation function for the Puromycin
data.

3 Tests and Inference Regions

3.1 Approximative Tests and Confi-
dence Regions

Suppose, we have estimated θ̂ with the LS method.
Question: is this estimate consistent with the observa-
tions? Confidence regions or intervals contains all these
values θ.

Main assumption: The LS estimate θ̂ is asymp-
totically normal distributed:

θ̂
a∼ N

(
θ,
V θ

n

)
,

with asymptotic covariance matrix

V θ = σ2 ·
(
AT
θ ·Aθ

)−1

Substitute V θ by its estimate:

V̂ θ = σ̂2 ·
(
AT
θ̂ ·Aθ̂

)−1

where σ̂2 =
1

n− pS(θ̂)

H0,j : θj = 0 against HA,j : θj 6= 0

Tj =
θ̂j√

σ̂2(ATA)−1
jj

H0,j∼ tn−p

Confidence region:

θ̂j ±
√
σ̂2(ATA)−1

jj · q
tn−p

1−α/2

3.2 Exact Tests and Confidence Re-
gions

The quality of the aprroximative test depends strongly
on the quality of the linear apriximation of the expec-
tation surface. We can avoid this issue and construct
tests which do not use linearisation components.

To test the null-hypothesis:

H0 : θ = θ∗

we can compare the residual sums of squares S(θ∗)
with S(θ).

The test statistic is

T =
n− p
p
· S(θ∗)− S(θ̂)

S(θ̂)

a∼ Fp,n−p.

This gives us the confidence region{
θ | S(θ) ≤ S(θ̂)

(
1 +

p

n− p · q
)}

where q = q
Fp,n−p

1−α is the (1 − α)-quantile of the
F (p, n− p) distribution.

This test is not based on the issue of the linearization
=> it is more precise than the approximative test!

For a single parameter:

H0 : θj = θ∗j

T̃k = (n− p) · S̃k(θ∗k)− S̃(θ̂)

S(θ̂)
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which is approx. F1,n−p - distributed.

We obtain the confidence interval by solving the

equation T̃k = q
F1,n−p

1−α/2 numerically for θ∗k.

3.3 t-Test via F-Test

In the case of nonlinear regression the F -
test is not equivalent to the f -test. But we
can transform the the F-test into the t-test.

This statistic is approx. tn−p - distributed.

3.4 Profile-t-Plot and Profile Traces

We introduce here some graphical techniques for as-
sessing the severity of the nonlinearity in an estimation
situation.

Look at the test statistic Tk as a function of θk, and
call it profile-t-function:

Tk(θk) = sign
(
θ̂k − θk

)
· (n− p) ·

√
S̃k(θk)− S(θ̂)

S(θ̂)

The profile-t-plot provides exact likelihood inter-
vals for individual parameters and, in addition, reveals
how nonlinear the estimation sitiation is.

Usually we plot on the x-axis the standardised

version of θk: δk(θk) :=
θ̂k−θ∗k
se〈(θ̂k)〉 instead of θk.

Another tool is plotting the likelihood profile
traces.

Here, we look at the estimated parameters θ̂j , j 6=
k, as a fuction θ̂j

(k)
(θk), while θk remains fixed.

In addition, we may plot the likelihood contours:

(Puromycin) In-
terpretation: traces are quite straight→ linear approx-
imation is good. Simular to the linear case: angle of
intersection provides information about the correlation
between the parameters.
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