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Overview

• Problem and Motivation (2 min.)

• Model-Building Strategies (3 min.)

• Two Examples• Two Examples

1. Two-Level Models for Clustered Data : The Rat Pup 
Example (15 min.)

2. Random Coefficient Models for Longitudinal Data: 
The Autism Example (25 min.)

� Structures of Analyzing 

� The Autism Example in R



Problem and Motivation

• What is important in an application of LMM ?

� Dependent variable

� Covariances:  fixed-effect parameters and random-effect parameters

� The relationships between a continuous dependent variable and various predictor

variables

• What kind of data sets are they?• What kind of data sets are they?

� Clustered, longitudinal, or repeated-measures

• How can we analyze those data?

• How can we build a suitable model?

• How can we know, if it is a good model?

• …….



Model-Building Strategies

�The Top-Down Strategy

1. Start with a well-specified mean structure for the 
model

2. Select a structure for the random effects in the 
modelmodel

3. Select a covariance structure for the residuals in the 
model

4. Reduce the model

�The Step-Up Strategy

�….



The Rat Pup Study

• Litter (Level 2) Variables

LITTER = Litter ID number

TREATMENT = Dose level of the 

experimental compound assigned to 

the litter(high, low, control)

LITSIZE = Litter size (i.e., number of 

pups per litter)

• Rat Pup (Level 1) Variables

PUP_ID = Unique identifier for each rat 

pup

WEIGHT = Birth weight of the rat pup 

(the dependent variable)

SEX = Sex of the rat pup (male, female)



Data Summary

LITTER (number of litters) = 27

LITSIZE (number of rat pups per litter) = 2~18

The number of pups =  322

Female (rat pups ) = 151

Male (rat pups ) = 171

WEIGHT (Birth weight of the rat pup) = 3.68 ~ 8.33



Model 

Specification



• Step 1: Fit a model with a “loaded” mean structure (Model 3.1).

Model 3.1 includes treatment, sex, litter size, interaction between treatment and sex, random effect 
associated with the intercept for each litter and a residual (i.i.d.) associated with each birth weight observation. 

• Step 2: Select a structure for the random effects (Model 3.1 vs. Model 3.1A).

Model 3.1 A : by omitted the random litter effects from  Model 3.1 (Hypothesis 3.1). 

• Step 3: Select a covariance structure for the residuals (Model 3.1, Model 3.2A, or Model 3.2B).

Model 3.1 : homogeneous residual for all treatment groups

Analysis Steps

Model 3.1 : homogeneous residual for all treatment groups

Model 3.2A: heterogeneous residual for for each level of treatment (high, low, and control).

Model 3.2B:  a common residual variance for the high and low treatment groups, and a different residual 
variance for the control group.

• Step 4: Reduce the model by removing nonsignificant fixed effects, test the main effects associated with 
treatment, and assess model diagnostics.

Decide whether to keep the treatment by sex interaction in Model 3.2B (Model 3.2B

vs. Model 3.3).

Test the significance of the treatment effects in our final model, Model 3.3 (Model 3.3

vs. Model 3.3A).

Assess the assumptions for Model 3.3.



Hypothesis Tests

• Hypothesis 3.1: The random effects, 
uj, associated with the litter-specific 
intercepts can be omitted from Model 
3.1.

• Hypothesis 3.2: The variance of the 
residuals is the same (homogeneous) 
for the three treatment groups (high, 
low, and control).

• Hypothesis 3.3: The residual 
variances for the high and low variances for the high and low 
treatment groups are equal.

• Hypothesis 3.4: The residual variance 
for the combined high/low treatment 
group is equal to the residual variance 
for the control group.

• Hypothesis 3.5: The fixed effects 
associated with the treatment by sex 
interaction are equal to zero in Model 
3.2B.

Hypothesis 3.6: The fixed effects 
associated with treatment are equal to 
zero in Model 3.3.





Random Coefficient Models for Longitudinal Data

• Definition of Longitudinal Data: data sets in which the dependent variable is 

measured at several points in time for each unit of analysis.



The Autism Example

• Subject (Level 2) Variables

CHILDID = Unique child identifier

SICDEGP = Sequenced Inventory of 
Communication Development 
Expressive

Group: categorized expressive 
language score at age 2 years 

(1 = low, 2 =medium, 3 = high)(1 = low, 2 =medium, 3 = high)

• Time-Varying (Level 1) 
Variables

AGE = Age in years (2, 3, 5, 9, 13); 
the time variable

VSAE = Vineland Socialization Age 
Equivalent: parent-reported 
socialization, the dependent 
variable, measured at each age



Data Summary
• We begin by reading the comma-

separated raw data file (autism.csv) into R 
functions  

• Next, we apply the factor() function to 
the numeric variables SICDEGP and AGE 
to create categorical versions of these 
variables (SICDEGP.F and AGE.F), 

• Add the new variables to the data frame 
object. After creating these factors, we 
request descriptive statistics for both the 
continuous and factor variables included 
in the analysis using the summary() 
function

• We next generate graphs that show the 
observed VSAE scores as a function of 
age for each child within levels of 
SICDEGP (Figure 6.1) and the mean VSAE 
profiles by SICDEGP (Figure 6.2).



Result of Data Summary

• The plots of the observed VSAE 
values for individual children in 
Figure 6.1 show substantial variation 
from child to child within each level 
of SICD group. the VSAE scores of 
some children tend to increase as the 
children get older, for other children 
remain relatively constant. we do not 
see much variability in the initial 
values of VSAE at age 2 years for any values of VSAE at age 2 years for any 
of the levels of the SICD group. 
Overall.

• The mean profiles displayed in Figure 
6.2 show that mean VSAE scores 
generally increase with age. There 
may also be a quadratic trend in VSAE 
scores, especially in SICD group two. 
This suggests that a model to predict 
VSAE should include both linear and 
quadratic fixed effects of age, and 
possibly interactions between the 
linear and quadratic effects of age 
and SICD group.



General Model Specification

• (Vineland Socialization Age Equivalent): on child i, at the t-th visit (t = 1, 2, 3, 4, 5, corresponding to 

ages 2, 3, 5, 9 and 13)

• SICDEGP1 and SICDEGP2:  the first two levels of the SICD group, SICDEGP = 3 as the “reference category.”

• AGE_2. SICDEGP1 and AGE_2 . SICDEGP2: interaction between age and SICD group

• AGE_2 SQ . SICDEGP1 and AGE_2SQ . SICDEGP2: interaction between age-squared and SICD group

• β0 - β8 :the fixed effects associated with the intercept,the covariates, and the interaction terms in the model.

• u0i, u1i,  u2i  the random effects associated with the child-specific intercept, linear effect of age, and 

quadratic effect of age for child i. 

•εti in Equation 6.1 represents the residual associated with the observation at

time t on child i. εti ~ N(0,σ2 )



Overview of the Autism Data Analysis

• Step 1: Fit a model with a 
“loaded” mean structure 
(Model 6.1).

• Step 2: Select a structure for 
the random effects (Model 
6.2 vs. Model 6.2A).

Fit a model without the 
random child-specific random child-specific 
intercepts (Model 6.2), and 
test, whether to keep the 
remaining random effects in 
the model.

• Step 3: Reduce the model by 
removing nonsignificant fixed 
effects (Model 6.2 vs.

Model 6.3), and check model 
diagnostics.



Hypothesis Tests

•Hypothesis 6.1: The random effects 

associated with the quadratic effect of 

AGE can be omitted from Model 6.2.

•Hypothesis 6.2: The fixed effects 

associated with the AGE-squared . 

SICDEGP interaction are equal to zero SICDEGP interaction are equal to zero 

in Model 6.2.

•Hypothesis 6.3: The fixed effects 

associated with the AGE . SICDEGP 

interaction are equal to zero in Model 

6.3.



Results of Hypothesis Tests

• Hypothesis 6.1: The child-specific quadratic random 
effects of age can be omitted from Model 6.2.

• Hypothesis 6.2: The age-squared by SICD group interaction 
effects can be dropped from Model 6.2 (β7 = β8 = 0).

• Hypothesis 6.3: The age by SICD group interaction effects 
can be dropped from Model 6.3 (β5 = β6 = 0).



Diagnostics for 

the Final Model

•Residual Diagnostics

•Diagnostics for the 

Random Effects

•Observed and Predicted

ValuesValues



Structures of Analyzing

• Data Summary

• General Model Specification

• Analysis Steps in R

• Hypothesis Tests• Hypothesis Tests

• Diagnostics for the final Model



Thank youThank you




