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Abstract

We have seen a few examples of different mixed-effect models and
datasets. In this talk we now look at the formalized model, using matrix
notation. We then want to fit our model to a given dataset, we thus look
into the mathematical background of the computational techniques used
in the lme4-Package in R.

1 General Model

Two random variables:
Y: the n-dimensional response vector (visible, the data we we get)
B: the q-dimensional vector of random effects (invisible)
with:

B ∼ N (0,Σθ). (1)

(Y|B = b) ∼ N
(
Zb+Xβ, σ2In

)
(2)

Thus the linear predictor is:

Zb+Xβ (3)

With the model matrices Z of dimension n× q and X of dimension n× p,
where p is the dimension of the fixed-effects parameter vector β.
θ: the variance-component parameter vector ; Σθ: the variance-covariance ma-
trix ; σ : common scale parameter.
We then define:
Λθ: relative covariance factor (q x q),

Σθ := σ2ΛθΛT
θ (4)

with the spherical random effects U ∼ N (0,σ2Iq), we get B = ΛθU .

We concentrate on Λθ (not Σθ) and U (not B).
(1) and (2) thus turn into:

U ∼ N (0,σ2Iq). (5)

(Y|U = u) ∼ N
(
ZΛθu+Xβ, σ2In

)
(6)

and the linear predictor becomes:

γ = ZΛθu+Xβ (7)

the conditional mean of Y, given U = u:

µ = E[Y|U = u] (8)

Note: For a linear mixed model, we have µ = γ.



2 Likelihood and its evaluation

Now we want to fit the model parameters θ, β and σ. That is, we are given an
observation yobs and want to find the ”best” (i.e. the most likely) estimates of
those parameters, we can not measure.
The likelihood of those parameters, given the observed data, yobs, is the corre-
sponding probability density of Y, evaluated at yobs.

We mix up the usual steps (details in the slides) to calculate the likelihood
and do it the following way:

• Determine joint density of U and Y: fY,U (y,u)

• Evaluate fY,U (y,u) at yobs. (→ intermediate function h(u) := fY,U (yobs,u))

• Integrate this function h(u) along u.

h(u) is called the unnormalized conditional density. We understand why, when
we see that:

fU|Y(u|yobs) =
h(u)∫

Rq
h(u) du

(9)

Thus the likelihood becomes:

L(θ,β, σ|yobs) =
∫
Rq
fY,U (yobs,u) du =

∫
Rq
h(u) du. (10)

We define the conditional mode of u, given Y = yobs:

ũ := arg max
u

fU|Y(u|yobs) = arg max
u

h(u) = arg max
u

fY|U (yobs|u)fU (u) (11)

Looking at (5) and (6) we see that:

fY|U (y|u) =
exp(− 1

2σ2 ‖y −Xβ −ZΛθ u‖2)
(2πσ2)n/2

(12)

fU (u) =
exp(− 1

2σ2 ‖u‖2)
(2πσ2)q/2

(13)

And thus:

h(u) = fY|U (yobs|u)fU (u) =
exp(−

[
‖yobs −Xβ −ZΛθ u‖2 + ‖u‖2

]
/(2σ2))

(2πσ2)(n+q)/2

(14)
Taking the negative log density, we get:

−2 log(h(u)) = (n+ q) log(2πσ2) +
‖yobs −Xβ −ZΛθ u‖2 + ‖u‖2

σ2
(15)

So we get:

ũ = arg min
u
‖yobs −Xβ −ZΛθ u‖2 + ‖u‖2 (16)

The expression to be minimized ‖yobs−Xβ−ZΛθ u‖2 + ‖u‖2 is called the
objective function, here it is a penalized residual sum of squares (PRSS).
The minimizer ũ is called the penalized least squares (PLS) solution

We think of the PRSS criterion as a function of the parameters, given the
data, ie.:

r2
θ,β = min

u

[
‖yobs −Xβ −ZΛθ u‖2 + ‖u‖2

]
(17)

We can also minimize this expression wrt β. The minimum value we get is:

r2
θ = min

u,β

[
‖yobs −Xβ −ZΛθ u‖2 + ‖u‖2

]
(18)
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β̃: conditional estimate of β as the value of β for which the minimum in (18) is
attained.
We rephrase (16) using the so-called pseudo-data approach by adding pseudo-
observations.
We get a linear least squares problem:

ũ = arg min
u

∥∥∥∥[yobs −Xβ0

]
−
[
ZΛθ

Iq

]
u

∥∥∥∥2

(19)

whose solution satisfies:

(ΛTθ Z
TZΛθ + Iq)ũ = ΛTθ Z

T (yobs −Xβ) (20)

We want fast evaluation of ũ for different inputs, so we form the sparse
Cholesky factor, Lθ. It is a lower q x q matrix with:

LθL
T
θ = (ΛTθ Z

TZΛθ + Iq) (21)

We want this matrix as sparse as possible and thus may permutate the
columns of our data beforehands (formally applying a permutation matrix P ).

The PRSS for general u can then be written as:

‖yobs −Xβ −ZΛθ u‖2 + ‖u‖2 = r2θ,β + ‖LTθ (u− ũ)‖2 (22)

Using (11), (14) and (22) we are now able to evaluate L(θ,β, σ|yobs) and get:

L(θ,β, σ|yobs) =
exp(− r

2
θ,β

2σ2 )
(2πσ2)n/2|Lθ|

So the deviance (negative twice the log-likelihood) is:

d(θ,β, σ|yobs) = −2 log(L(θ,β, σ|yobs)) = n log(2πσ2) +
r2θ,β
σ2

+ 2 log(|Lθ|2)

The maximum-likelihood estimates for the parameters are those, that min-
imize this deviance (a numerical problem) By using the dependances between
the parameters as seen in the PRSS (we can find the minimizers of β and u for
any given θ), we can reduce this to a function only of θ.
This is called the profiled deviance:

d̃(θ|yobs) = 2 log |Lθ|+ n

[
1 + log

(
2πr2θ
n

)]
(23)

Now minimization of d̃(θ|yobs) wrt θ determines the MLE θ̃.
The MLEs for β̂ and σ̂ then are the corresponding conditional estimates evalu-
ated at θ̂.
So we found all maximum-likelihood-estimators. That is we fitted our model to
the data.
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