The Linear Mixed-Effects Probability Model

Christian Haas

A synopsis of the slides presented in the
 2nd talk
 of the seminary on Mixed-Effects Models.

Abstract

We have seen a few examples of different mixed-effect models and datasets. In this talk we now look at the formalized model, using matrix notation. We then want to fit our model to a given dataset, we thus look into the mathematical background of the computational techniques used in the lme4-Package in R .

1 General Model

Two random variables:
\mathcal{Y} : the n-dimensional response vector (visible, the data we we get)
\mathcal{B} : the q-dimensional vector of random effects (invisible)
with:

$$
\begin{align*}
\mathcal{B} & \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\theta}\right) . \tag{1}\\
(\mathcal{Y} \mid \mathcal{B}=\boldsymbol{b}) & \sim \mathcal{N}\left(\boldsymbol{Z} \boldsymbol{b}+\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}_{n}\right) \tag{2}
\end{align*}
$$

Thus the linear predictor is:

$$
\begin{equation*}
Z b+X \boldsymbol{\beta} \tag{3}
\end{equation*}
$$

With the model matrices \boldsymbol{Z} of dimension $n \times q$ and \boldsymbol{X} of dimension $n \times p$, where p is the dimension of the fixed-effects parameter vector $\boldsymbol{\beta}$.
$\boldsymbol{\theta}$: the variance-component parameter vector; $\boldsymbol{\Sigma}_{\boldsymbol{\theta}}$: the variance-covariance matrix; $\boldsymbol{\sigma}$: common scale parameter.
We then define:
$\boldsymbol{\Lambda}_{\theta}$: relative covariance factor ($q \times q$),

$$
\begin{equation*}
\boldsymbol{\Sigma}_{\theta}:=\sigma^{2} \boldsymbol{\Lambda}_{\theta} \boldsymbol{\Lambda}_{\theta}^{T} \tag{4}
\end{equation*}
$$

with the spherical random effects $\mathcal{U} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\sigma}^{2} I_{q}\right)$, we get $\mathcal{B}=\boldsymbol{\Lambda}_{\theta} \mathcal{U}$.
We concentrate on $\boldsymbol{\Lambda}_{\theta}\left(\operatorname{not} \boldsymbol{\Sigma}_{\theta}\right)$ and $\mathcal{U}(\operatorname{not} \mathcal{B})$.
(1) and (2) thus turn into:

$$
\begin{align*}
\mathcal{U} & \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\sigma}^{2} I_{q}\right) \tag{5}\\
(\mathcal{Y} \mid \mathcal{U}=\boldsymbol{u}) & \sim \mathcal{N}\left(\boldsymbol{Z} \boldsymbol{\Lambda}_{\theta} u+\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}_{n}\right) \tag{6}
\end{align*}
$$

and the linear predictor becomes:

$$
\begin{equation*}
\gamma=\boldsymbol{Z} \boldsymbol{\Lambda}_{\theta} u+\boldsymbol{X} \boldsymbol{\beta} \tag{7}
\end{equation*}
$$

the conditional mean of \mathcal{Y}, given $\mathcal{U}=\boldsymbol{u}$:

$$
\begin{equation*}
\mu=E[\mathcal{Y} \mid \mathcal{U}=\boldsymbol{u}] \tag{8}
\end{equation*}
$$

Note: For a linear mixed model, we have $\mu=\gamma$.

2 Likelihood and its evaluation

Now we want to fit the model parameters $\boldsymbol{\theta}, \boldsymbol{\beta}$ and $\boldsymbol{\sigma}$. That is, we are given an observation $y_{o b s}$ and want to find the "best" (i.e. the most likely) estimates of those parameters, we can not measure.
The likelihood of those parameters, given the observed data, $\boldsymbol{y}_{\text {obs }}$, is the corresponding probability density of \mathcal{Y}, evaluated at $\boldsymbol{y}_{\text {obs }}$.

We mix up the usual steps (details in the slides) to calculate the likelihood and do it the following way:

- Determine joint density of \mathcal{U} and $\mathcal{Y}: f_{\mathcal{Y}, \mathcal{U}}(\boldsymbol{y}, \boldsymbol{u})$
- Evaluate $f_{\mathcal{Y}, \mathcal{U}}(\boldsymbol{y}, \boldsymbol{u})$ at $y_{o b s} .\left(\rightarrow\right.$ intermediate function $\left.h(u):=f_{\mathcal{Y}, \mathcal{U}}\left(\boldsymbol{y}_{o b s}, \boldsymbol{u}\right)\right)$
- Integrate this function $h(u)$ along \boldsymbol{u}.
$h(u)$ is called the unnormalized conditional density. We understand why, when we see that:

$$
\begin{equation*}
f_{\mathcal{U} \mid \mathcal{Y}}\left(\boldsymbol{u} \mid \boldsymbol{y}_{o b s}\right)=\frac{h(\boldsymbol{u})}{\int_{R^{q}} h(\boldsymbol{u}) d \boldsymbol{u}} \tag{9}
\end{equation*}
$$

Thus the likelihood becomes:

$$
\begin{equation*}
L\left(\boldsymbol{\theta}, \boldsymbol{\beta}, \sigma \mid \boldsymbol{y}_{o b s}\right)=\int_{R^{q}} f_{\mathcal{Y}, \mathcal{U}}\left(\boldsymbol{y}_{o b s}, \boldsymbol{u}\right) d \boldsymbol{u}=\int_{R^{q}} h(\boldsymbol{u}) d \boldsymbol{u} \tag{10}
\end{equation*}
$$

We define the conditional mode of \boldsymbol{u}, given $\mathcal{Y}=\boldsymbol{y}_{\text {obs }}$:

$$
\begin{equation*}
\tilde{\boldsymbol{u}}:=\arg \max _{\boldsymbol{u}} f_{\mathcal{U} \mid \mathcal{Y}}\left(\boldsymbol{u} \mid \boldsymbol{y}_{o b s}\right)=\arg \max _{\boldsymbol{u}} h(\boldsymbol{u})=\arg \max _{\boldsymbol{u}} f_{\mathcal{Y} \mid \mathcal{U}}\left(\boldsymbol{y}_{o b s} \mid \boldsymbol{u}\right) f_{\mathcal{U}}(\boldsymbol{u}) \tag{11}
\end{equation*}
$$

Looking at (5) and (6) we see that:

$$
\begin{gather*}
f_{\mathcal{Y} \mid \mathcal{U}}(\boldsymbol{y} \mid \boldsymbol{u})=\frac{\exp \left(-\frac{1}{2 \sigma^{2}}\left\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{Z} \boldsymbol{\Lambda}_{\theta} \boldsymbol{u}\right\|^{2}\right)}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \tag{12}\\
f_{\mathcal{U}}(\boldsymbol{u})=\frac{\exp \left(-\frac{1}{2 \sigma^{2}}\|\boldsymbol{u}\|^{2}\right)}{\left(2 \pi \sigma^{2}\right)^{q / 2}} \tag{13}
\end{gather*}
$$

And thus:

$$
\begin{equation*}
h(\boldsymbol{u})=f_{\mathcal{Y} \mid \mathcal{U}}\left(\boldsymbol{y}_{o b s} \mid \boldsymbol{u}\right) f_{\mathcal{U}}(\boldsymbol{u})=\frac{\exp \left(-\left[\left\|\boldsymbol{y}_{o b s}-\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{Z} \boldsymbol{\Lambda}_{\theta} \boldsymbol{u}\right\|^{2}+\|\boldsymbol{u}\|^{2}\right] /\left(2 \sigma^{2}\right)\right)}{\left(2 \pi \sigma^{2}\right)^{(n+q) / 2}} \tag{14}
\end{equation*}
$$

Taking the negative log density, we get:

$$
\begin{equation*}
-2 \log (h(\boldsymbol{u}))=(n+q) \log \left(2 \pi \sigma^{2}\right)+\frac{\left\|\boldsymbol{y}_{o b s}-\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{Z} \boldsymbol{\Lambda}_{\theta} \boldsymbol{u}\right\|^{2}+\|\boldsymbol{u}\|^{2}}{\sigma^{2}} \tag{15}
\end{equation*}
$$

So we get:

$$
\begin{equation*}
\tilde{\boldsymbol{u}}=\arg \min _{\boldsymbol{u}}\left\|\boldsymbol{y}_{o b s}-\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{Z} \boldsymbol{\Lambda}_{\theta} \boldsymbol{u}\right\|^{2}+\|\boldsymbol{u}\|^{2} \tag{16}
\end{equation*}
$$

The expression to be minimized $\left\|\boldsymbol{y}_{\text {obs }}-\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{Z} \boldsymbol{\Lambda}_{\theta} \boldsymbol{u}\right\|^{2}+\|\boldsymbol{u}\|^{2}$ is called the objective function, here it is a penalized residual sum of squares (PRSS). The minimizer $\tilde{\boldsymbol{u}}$ is called the penalized least squares ($\mathbf{P L S}$) solution

We think of the PRSS criterion as a function of the parameters, given the data, ie.:

$$
\begin{equation*}
\boldsymbol{r}_{\theta, \beta}^{2}=\min _{\boldsymbol{u}}\left[\left\|\boldsymbol{y}_{o b s}-\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{Z} \Lambda_{\theta} \boldsymbol{u}\right\|^{2}+\|\boldsymbol{u}\|^{2}\right] \tag{17}
\end{equation*}
$$

We can also minimize this expression wrt β. The minimum value we get is:

$$
\begin{equation*}
\boldsymbol{r}_{\theta}^{2}=\min _{\boldsymbol{u}, \beta}\left[\left\|\boldsymbol{y}_{\text {obs }}-\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{Z} \Lambda_{\theta} \boldsymbol{u}\right\|^{2}+\|\boldsymbol{u}\|^{2}\right] \tag{18}
\end{equation*}
$$

$\tilde{\beta}$: conditional estimate of β as the value of β for which the minimum in (18) is attained.
We rephrase (16) using the so-called pseudo-data approach by adding pseudoobservations.
We get a linear least squares problem:

$$
\tilde{\boldsymbol{u}}=\arg \min _{\boldsymbol{u}}\left\|\left[\begin{array}{c}
\boldsymbol{y}_{o b s}-\boldsymbol{X} \boldsymbol{\beta} \tag{19}\\
\mathbf{0}
\end{array}\right]-\left[\begin{array}{c}
\boldsymbol{Z} \boldsymbol{\Lambda}_{\theta} \\
\boldsymbol{I}_{q}
\end{array}\right] \boldsymbol{u}\right\|^{2}
$$

whose solution satisfies:

$$
\begin{equation*}
\left(\Lambda_{\theta}^{T} \boldsymbol{Z}^{T} \boldsymbol{Z} \Lambda_{\theta}+\boldsymbol{I}_{q}\right) \tilde{\boldsymbol{u}}=\Lambda_{\theta}^{T} \boldsymbol{Z}^{T}\left(\boldsymbol{y}_{o b s}-\boldsymbol{X} \boldsymbol{\beta}\right) \tag{20}
\end{equation*}
$$

We want fast evaluation of $\tilde{\boldsymbol{u}}$ for different inputs, so we form the sparse Cholesky factor, \boldsymbol{L}_{θ}. It is a lower $q \mathrm{x} q$ matrix with:

$$
\begin{equation*}
\boldsymbol{L}_{\theta} \boldsymbol{L}_{\theta}^{T}=\left(\Lambda_{\theta}^{T} \boldsymbol{Z}^{T} \boldsymbol{Z} \Lambda_{\theta}+\boldsymbol{I}_{q}\right) \tag{21}
\end{equation*}
$$

We want this matrix as sparse as possible and thus may permutate the columns of our data beforehands (formally applying a permutation matrix P).

The PRSS for general \boldsymbol{u} can then be written as:

$$
\begin{equation*}
\left\|\boldsymbol{y}_{o b s}-\boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{Z} \boldsymbol{\Lambda}_{\theta} \boldsymbol{u}\right\|^{2}+\|\boldsymbol{u}\|^{2}=r_{\theta, \beta}^{2}+\left\|\boldsymbol{L}_{\theta}^{T}(\boldsymbol{u}-\tilde{\boldsymbol{u}})\right\|^{2} \tag{22}
\end{equation*}
$$

Using (11), (14) and (22) we are now able to evaluate $L\left(\boldsymbol{\theta}, \boldsymbol{\beta}, \sigma \mid \boldsymbol{y}_{o b s}\right)$ and get:

$$
L\left(\boldsymbol{\theta}, \boldsymbol{\beta}, \sigma \mid \boldsymbol{y}_{o b s}\right)=\frac{\exp \left(-\frac{r_{\theta, \beta}^{2}}{2 \sigma^{2}}\right)}{\left(2 \pi \sigma^{2}\right)^{n / 2}\left|\boldsymbol{L}_{\theta}\right|}
$$

So the deviance (negative twice the log-likelihood) is:

$$
d\left(\boldsymbol{\theta}, \boldsymbol{\beta}, \sigma \mid \boldsymbol{y}_{o b s}\right)=-2 \log \left(L\left(\boldsymbol{\theta}, \boldsymbol{\beta}, \sigma \mid \boldsymbol{y}_{o b s}\right)\right)=n \log \left(2 \pi \sigma^{2}\right)+\frac{r_{\boldsymbol{\theta}, \boldsymbol{\beta}}^{2}}{\sigma^{2}}+2 \log \left(\left|\boldsymbol{L}_{\theta}\right|^{2}\right)
$$

The maximum-likelihood estimates for the parameters are those, that minimize this deviance (a numerical problem) By using the dependances between the parameters as seen in the PRSS (we can find the minimizers of β and u for any given θ), we can reduce this to a function only of θ.
This is called the profiled deviance:

$$
\begin{equation*}
\tilde{d}\left(\theta \mid \boldsymbol{y}_{o b s}\right)=2 \log \left|\boldsymbol{L}_{\theta}\right|+n\left[1+\log \left(\frac{2 \pi r_{\theta}^{2}}{n}\right)\right] \tag{23}
\end{equation*}
$$

Now minimization of $\tilde{d}\left(\theta \mid \boldsymbol{y}_{\text {obs }}\right)$ wrt θ determines the MLE $\tilde{\theta}$.
The MLEs for $\hat{\beta}$ and $\hat{\sigma}$ then are the corresponding conditional estimates evaluated at $\hat{\theta}$.
So we found all maximum-likelihood-estimators. That is we fitted our model to the data.

