

The Linear Mixed-Effects Probability Model

So far:

- Micro Introduction
- Examples of different models and datasets

In this talk:

- Formalize notation
- Introduce new definitions
- Model fitting (as done in the *lme4*-package)

Recall a basic example of a model (workers and machines)

Model:

$$y_{ijk} = \mu + \beta_j + b_i + \epsilon_{ijk}, \qquad i = 1, ..., 6 \qquad j = 1, 2, 3 \qquad k = 1, 2, 3$$

 β_j : effect of machine (fixed) b_i : effect of worker (random)

Assumption:

$$b_i \sim \mathcal{N}(0, \sigma_b^2) \epsilon_{ijk} \sim \mathcal{N}(0, \sigma^2)$$

Generalization:

Two random variables:

\mathcal{Y} : the *n*-dimensional response vector

 \mathcal{B} : the q-dimensional vector of random effects

$$\mathcal{B} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{\theta}).$$
 (1)

$$(\mathcal{Y}|\mathcal{B} = \mathbf{b}) \sim \mathcal{N}\left(\mathbf{Z}\mathbf{b} + \mathbf{X}\boldsymbol{\beta}, \sigma^{2}\mathbf{I}_{n}\right)$$
 (2)

So the *linear predictor* is

$$Zb + X\beta$$
 (3)

With the model matrices \boldsymbol{Z} of dimension $n \times q$ and \boldsymbol{X} of dimension $n \times p$,

where p is the dimension of the *fixed-effects* parameter vector $\boldsymbol{\beta}$

More definitions:

- $\pmb{\theta}$: variance-component parameter vector
- Σ_{θ} : variance-covariance matrix
 - $\pmb{\sigma}$: common scale parameter

The form of the random-effects model matrix, Z, and the form of the variance-covariance matrix, Σ_{θ} , and the method by which Σ_{θ} is determined from the value of θ are all based on the random-effects terms in the model formula.

Z can be large, but it is sparse (i.e. most elements in the matrix are zero).

More definitions:

 Λ_{θ} : relative covariance factor, defined so that

$$\Sigma_{\theta} = \sigma^2 \Lambda_{\theta} \Lambda_{\theta}^T$$

where σ^2 is the same variance parameter as in (Y|B = b).

With the spherical random effects:

$$\mathcal{U} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\sigma}^2 I_q)$$

we get:

$$\mathcal{B} = \Lambda_{ heta} \mathcal{U}$$

So we really have:

$$E[\mathcal{B}] = \mathbf{\Lambda}_{\theta} E[\mathcal{U}] = \mathbf{\Lambda}_{\theta} 0 = 0$$

and:

$$\begin{aligned} Var(\mathcal{B}) &= E[(\mathcal{B} - E[\mathcal{B}])(\mathcal{B} - E[\mathcal{B}])^T] = E[\mathcal{B}\mathcal{B}^T] \\ &= E[\Lambda_{\theta}\mathcal{U}\mathcal{U}^T\Lambda_{\theta}^T] = \Lambda_{\theta}E[\mathcal{U}\mathcal{U}^T]\Lambda_{\theta}^T = \Lambda_{\theta}Var(\mathcal{U})\Lambda_{\theta}^T \\ &= \Lambda_{\theta}\sigma^2 I_q\Lambda_{\theta}^T = \sigma^2\Lambda_{\theta}\Lambda_{\theta}^T = \Sigma_{\theta} \end{aligned}$$

In our discussion we will concentrate on Λ_{θ} (not Σ_{θ}) and \mathcal{U} (not \mathcal{B}):

So we look at:

$$\mathcal{U} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\sigma}^2 I_q).$$
 (4)

$$(\mathcal{Y}|\mathcal{U} = \boldsymbol{u}) \sim \mathcal{N}\left(\boldsymbol{Z}\boldsymbol{\Lambda}_{\theta}\boldsymbol{u} + \boldsymbol{X}\boldsymbol{\beta}, \sigma^{2}\boldsymbol{I}_{n}\right)$$
 (5)

So the *linear predictor* becomes:

$$\gamma = \mathbf{Z} \Lambda_{\theta} u + \mathbf{X} \boldsymbol{\beta} \tag{6}$$

And the *conditional mean* of \mathcal{Y} , given $\mathcal{U} = u$:

$$\mu = E[\mathcal{Y}|\mathcal{U} = \boldsymbol{u}] \tag{7}$$

Note: For a linear mixed model, we obviously have $\mu = \gamma$.

In other forms of mixed models this may not be the case anymore.

Conditional Distribution:

Notation:

 y_{obs} : an observed data vector (an actual realization of \mathcal{Y}) y: an arbitrary value of \mathcal{Y}

Now we are interested in the conditional distribution of $(\mathcal{U}|\mathcal{Y} = y)$

Our model parameters are θ , β and σ .

The likelihood of those parameters, given the observed data, y_{obs} , is the probability density of \mathcal{Y} , evaluated at y_{obs} .

Parameters fixed, y varying

y fixed at y_{obs}, parameters varying

Natural approach for evaluating the likelihood:

1. Determine marginal distribution of ${\mathcal Y}$

- Determine joint density of \mathcal{U} and \mathcal{Y} : $f_{\mathcal{Y},\mathcal{U}}(\boldsymbol{y},\boldsymbol{u})$
- Integrate this density wrt. \boldsymbol{u} to get the marginal density: $f_{\mathcal{Y}}(\boldsymbol{y})$

2. Evaluate that density at y_{obs} .

But here we choose a different order of the steps, that is:

Evaluate the joint density at y_{obs} to produce an intermediate function $h(\boldsymbol{u})$.

And then integrate this function $h(\boldsymbol{u})$ along \boldsymbol{u} .

This does not work generally, it could even happen that the joint density does not exist (think of a joint distribution that is discrete wrt. \boldsymbol{y} and continuous wrt. \boldsymbol{u})

We define:

$$h(u) = f_{\mathcal{Y},\mathcal{U}}(\boldsymbol{y}_{obs}, \boldsymbol{u}) \tag{9}$$

the unnormalized conditional density.

We see that:

$$f_{\mathcal{U}|\mathcal{Y}}(\boldsymbol{u}|\boldsymbol{y}_{obs}) = \frac{h(\boldsymbol{u})}{\int_{R^q} h(\boldsymbol{u}) \, d\boldsymbol{u}}$$
(10)

and thus the likelihood is:

$$L(\boldsymbol{\theta}, \boldsymbol{\beta}, \sigma | \boldsymbol{y}_{obs}) = \int_{R^q} f_{\mathcal{Y}, \mathcal{U}}(\boldsymbol{y}_{obs}, \boldsymbol{u}) \, d\boldsymbol{u} = \int_{R^q} h(\boldsymbol{u}) \, d\boldsymbol{u}.$$
(11)

Tools to evaluate the likelihood in general situations:

 \tilde{u} : the conditional mode of u, given $\mathcal{Y} = y_{obs}$:

$$\tilde{\boldsymbol{u}} = \arg\max_{\boldsymbol{u}} f_{\mathcal{U}|\mathcal{Y}}(\boldsymbol{u}|\boldsymbol{y}_{obs}) = \arg\max_{\boldsymbol{u}} h(\boldsymbol{u}) = \arg\max_{\boldsymbol{u}} f_{\mathcal{Y}|\mathcal{U}}(\boldsymbol{y}_{obs}|\boldsymbol{u}) f_{\mathcal{U}}(\boldsymbol{u})$$
(12)

Recall (4) and (5):

$$\mathcal{U} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\sigma}^2 I_q).$$
 (4)

$$(\mathcal{Y}|\mathcal{U}=u) \sim \mathcal{N}\left(\mathbf{Z}\Lambda_{\theta}u + \mathbf{X}\boldsymbol{\beta}, \sigma^{2}\boldsymbol{I}_{n}\right)$$
 (5)

Thus we have:

$$f_{\mathcal{Y}|\mathcal{U}}(\boldsymbol{y}|\boldsymbol{u}) = \frac{\exp(-\frac{1}{2\sigma^2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{Z}\boldsymbol{\Lambda}_{\theta}\,\boldsymbol{u}\|^2)}{(2\pi\sigma^2)^{n/2}}$$
(13)

$$f_{\mathcal{U}}(\boldsymbol{u}) = \frac{\exp(-\frac{1}{2\sigma^2} \|\boldsymbol{u}\|^2)}{(2\pi\sigma^2)^{q/2}}$$
(14)

And so the product:

$$h(\boldsymbol{u}) = \frac{\exp(-\left[\|\boldsymbol{y}_{obs} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{Z}\boldsymbol{\Lambda}_{\theta}\,\boldsymbol{u}\|^{2} + \|\boldsymbol{u}\|^{2}\right]/(2\sigma^{2}))}{(2\pi\sigma^{2})^{(n+q)/2}}$$
(15)

Looking at the negative log density, we get:

$$-2\log(h(\boldsymbol{u})) = (n+q)\log(2\pi\sigma^2) + \frac{\|\boldsymbol{y}_{obs} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{Z}\boldsymbol{\Lambda}_{\theta}\boldsymbol{u}\|^2 + \|\boldsymbol{u}\|^2}{\sigma^2} \quad (16)$$

So we get:

$$\tilde{\boldsymbol{u}} = \arg\min_{\boldsymbol{u}} \|\boldsymbol{y}_{obs} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{Z}\boldsymbol{\Lambda}_{\boldsymbol{\theta}}\,\boldsymbol{u}\|^{2} + \|\boldsymbol{u}\|^{2}$$
(17)
penalty for high complexity

sum of squared residuals

The expression to be minimized $\|y_{obs} - X\beta - Z\Lambda_{\theta} u\|^2 + \|u\|^2$ is called the *objective function*, here it is a *penalized residual sum of squares* (**PRSS**).

The minimizer \tilde{u} is called the *penalized least squares* (**PLS**) solution

We think of the **PRSS** criterion as a function of the parameters, given the data, ie.:

$$\boldsymbol{r}_{\theta,\beta}^{2} = \min_{\boldsymbol{u}} \left[\|\boldsymbol{y}_{obs} - \boldsymbol{X}\beta - \boldsymbol{Z}\Lambda_{\theta} \boldsymbol{u}\|^{2} + \|\boldsymbol{u}\|^{2} \right]$$
(18)

We can also minimize this expression wrt β .

And we will see that this can even be done simultaniously wrt \boldsymbol{u} and $\boldsymbol{\beta}$ without using iterations. The minimum value we get is:

$$\boldsymbol{r}_{\theta}^{2} = \min_{\boldsymbol{u},\beta} \left[\left\| \boldsymbol{y}_{obs} - \boldsymbol{X}\beta - \boldsymbol{Z}\Lambda_{\theta} \, \boldsymbol{u} \right\|^{2} + \left\| \boldsymbol{u} \right\|^{2} \right]$$
(19)

 β : conditional estimate of β

the value of β for which the minimum in (19) is attained.

One way to determine the solution is to rephrase it as a linear least squares problem for an extended residual vector

$$\tilde{\boldsymbol{u}} = \arg\min_{\boldsymbol{u}} \left\| \begin{bmatrix} \boldsymbol{y}_{obs} - \boldsymbol{X}\boldsymbol{\beta} \\ \boldsymbol{0} \end{bmatrix} - \begin{bmatrix} \boldsymbol{Z}\boldsymbol{\Lambda}_{\boldsymbol{\theta}} \\ \boldsymbol{I}_{q} \end{bmatrix} \boldsymbol{u} \right\|^{2}$$
(20)

This is called a pseudo-data approach because we create the effect of the penalty term, $\|\boldsymbol{u}\|^2$, by adding "pseudo-observations" to the response vector and to the predictor (adding zeros and $I_q \boldsymbol{u}$).

For this linear least squares problem, we can give the solution by solving the normal equations. So we get that the solution satisfies:

$$(\Lambda_{\theta}^{T} \boldsymbol{Z}^{T} \boldsymbol{Z} \Lambda_{\theta} + \boldsymbol{I}_{q}) \tilde{\boldsymbol{u}} = \Lambda_{\theta}^{T} \boldsymbol{Z}^{T} (\boldsymbol{y}_{obs} - \boldsymbol{X} \boldsymbol{\beta})$$
(21)

We want fast evaluation of \tilde{u} for different inputs, so we form the *sparse* Cholesky fatcor, L_{θ} . It is a lower $q \ge q$ matrix with:

$$\boldsymbol{L}_{\theta} \boldsymbol{L}_{\theta}^{T} = \left(\Lambda_{\theta}^{T} \boldsymbol{Z}^{T} \boldsymbol{Z} \Lambda_{\theta} + \boldsymbol{I}_{q} \right)$$
(22)

In order to get a sparse Cholesky factor L_{θ} we might want to permutate the columns of our data.

This is done through a so-called *Permutation matrix* \boldsymbol{P} .

We also call them *fill-reducing permutations* as we want to avoid positions in the factor getting filled, where the matrix being decomposed is zero.

(22) thus becomes:

$$\boldsymbol{L}_{\theta}\boldsymbol{L}_{\theta}^{T} = \boldsymbol{P}(\Lambda_{\theta}^{T}\boldsymbol{Z}^{T}\boldsymbol{Z}\Lambda_{\theta} + \boldsymbol{I}_{q})\boldsymbol{P}^{T}$$
(23)

The pseudo-data representation in (20) becomes:

$$\tilde{\boldsymbol{u}} = \arg\min_{\boldsymbol{u}} \left\| \begin{bmatrix} \boldsymbol{y}_{obs} - \boldsymbol{X}\boldsymbol{\beta} \\ \boldsymbol{0} \end{bmatrix} - \begin{bmatrix} \boldsymbol{Z}\boldsymbol{\Lambda}_{\boldsymbol{\theta}}\boldsymbol{P}^{T} \\ \boldsymbol{P}^{T} \end{bmatrix} \boldsymbol{P}\boldsymbol{u} \right\|^{2}$$
(24)

And the system of linear equations for \tilde{u} accordingly:

$$\boldsymbol{L}_{\theta} \boldsymbol{L}_{\theta}^{T} \boldsymbol{P} \tilde{\boldsymbol{u}} = \boldsymbol{P} (\Lambda_{\theta}^{T} \boldsymbol{Z}^{T} (\boldsymbol{y}_{obs} - \boldsymbol{X} \boldsymbol{\beta})) \boldsymbol{P}^{T} \boldsymbol{P} \tilde{\boldsymbol{u}} = \boldsymbol{P} \Lambda_{\theta}^{T} \boldsymbol{Z}^{T} (\boldsymbol{y}_{obs} - \boldsymbol{X} \boldsymbol{\beta})$$
(25)

Note: Once we evaluate L_{θ} it is straight forward to solve (25) for \tilde{u} . Thus this step is very crucial, and the ability to evaluate L_{θ} rapidly for many different values of θ is what makes the methods in 1me4 feasible.

Back to the evaluation of the likelihoood:

We've seen in (11) and (15) that:

$$L(\boldsymbol{\theta}, \boldsymbol{\beta}, \sigma | \boldsymbol{y}_{obs}) = \int_{R^q} f_{\mathcal{Y}, \mathcal{U}}(\boldsymbol{y}_{obs}, \boldsymbol{u}) \, d\boldsymbol{u} = \int_{R^q} h(\boldsymbol{u}) \, d\boldsymbol{u}.$$
$$h(\boldsymbol{u}) = \frac{\exp(-\left[\|\boldsymbol{y}_{obs} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{Z}\boldsymbol{\Lambda}_{\theta}\,\boldsymbol{u}\|^2 + \|\boldsymbol{u}\|^2\right]/(2\sigma^2))}{(2\pi\sigma^2)^{(n+q)/2}}$$

We can now write the **PRSS** for general \boldsymbol{u} as:

$$\|\boldsymbol{y}_{obs} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{Z}\boldsymbol{\Lambda}_{\theta}\,\boldsymbol{u}\|^{2} + \|\boldsymbol{u}\|^{2} = r_{\theta,\beta}^{2} + \|\boldsymbol{L}_{\theta}^{T}(\boldsymbol{u} - \tilde{\boldsymbol{u}})\|^{2}$$
(26)

Plugging this into the definition of $h(\boldsymbol{u})$ and using the change-of-variable:

$$z = \frac{\boldsymbol{L}_{\theta}^{T}(\boldsymbol{u} - \tilde{\boldsymbol{u}})}{\sigma} \tag{27}$$

We get after a calculation (Bates [10], ch. 5.4.2 - available on http://lme4.r-forge.r-project.org/book/):

$$L(\boldsymbol{\theta}, \boldsymbol{\beta}, \sigma | \boldsymbol{y}_{obs}) = \frac{\exp(-\frac{r_{\boldsymbol{\theta}, \boldsymbol{\beta}}^2}{2\sigma^2})}{(2\pi\sigma^2)^{n/2} |\boldsymbol{L}_{\boldsymbol{\theta}}|}$$

So the deviance (negative twice the log-likelihood) becomes:

$$d(\boldsymbol{\theta}, \boldsymbol{\beta}, \sigma | \boldsymbol{y}_{obs}) = -2\log(L(\boldsymbol{\theta}, \boldsymbol{\beta}, \sigma | \boldsymbol{y}_{obs})) = n\log(2\pi\sigma^2) + \frac{r_{\boldsymbol{\theta}, \boldsymbol{\beta}}^2}{\sigma^2} + 2\log(|\boldsymbol{L}_{\boldsymbol{\theta}}|^2)$$

So the maximum-likelihood estimates for the parameters are those that minimize this deviance. We can even further simplify this expression by using the facts, that β only occurs in $r^2_{\theta,\beta}$ and minimizing this expression wrt β for any value of θ goes back to the penalized least square problems.

So let $\hat{\beta}_{\theta}$ be the value of β that minimizes PRSS wrt to β and u.

And r_{θ}^2 the PRSS at these minimizing values.

Furthermore let $\hat{\sigma}_{\theta}^2 = r_{\theta}^2/n$, the value of σ^2 that minimizes the above deviance or a given r_{θ}^2 .

Then the *profiled deviance*, which is now only a function of θ , becomes:

$$\tilde{d}(\theta | \boldsymbol{y}_{obs}) = 2 \log |\boldsymbol{L}_{\theta}| + n \left[1 + \log \left(\frac{2\pi r_{\theta}^2}{n} \right) \right]$$

Now minimization of $\tilde{d}(\theta | \boldsymbol{y}_{obs})$ wrt θ determines the MLE, $\tilde{\theta}$. The MLEs for $\hat{\beta}$ and $\hat{\sigma}$ then are the corresponding conditional estimates evaluated at $\hat{\theta}$. Simultaniously evaluating \tilde{u} and β_{θ} uses the same approach we've already seen in (20), that is to rephrase the PLS problem into a linear least square problem.

Thus we rewrite:

$$\tilde{\boldsymbol{u}} = \arg\min_{\boldsymbol{u}} \left\| \begin{bmatrix} \boldsymbol{y}_{obs} - \boldsymbol{X}\boldsymbol{\beta} \\ \boldsymbol{0} \end{bmatrix} - \begin{bmatrix} \boldsymbol{Z}\boldsymbol{\Lambda}_{\boldsymbol{\theta}} \\ \boldsymbol{I}_{q} \end{bmatrix} \boldsymbol{u} \right\|^{2}$$
(20)

as

$$\begin{bmatrix} \tilde{\boldsymbol{u}} \\ \hat{\beta}_{\theta} \end{bmatrix} = \arg\min_{\boldsymbol{u},\beta} \left\| \begin{bmatrix} \boldsymbol{y}_{obs} \\ 0 \end{bmatrix} - \begin{bmatrix} \boldsymbol{Z}\boldsymbol{\Lambda}_{\theta}\boldsymbol{P}^{T} & \boldsymbol{X} \\ \boldsymbol{P}^{T} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{P}\boldsymbol{u} \\ \beta \end{bmatrix} \right\|^{2}$$
(28)

Which now yields the equation:

$$\begin{bmatrix} \boldsymbol{P}(\boldsymbol{\Lambda}_{\theta}^{T}\boldsymbol{Z}^{T}\boldsymbol{Z}\boldsymbol{\Lambda}_{\theta}+\boldsymbol{I}_{q})\boldsymbol{P}^{T} & \boldsymbol{P}\boldsymbol{\Lambda}_{\theta}^{T}\boldsymbol{Z}^{T}\boldsymbol{X} \\ \boldsymbol{X}^{T}\boldsymbol{Z}\boldsymbol{\Lambda}_{\theta}\boldsymbol{P}^{T} & \boldsymbol{X}^{T}\boldsymbol{X} \end{bmatrix} \begin{bmatrix} \boldsymbol{P}\tilde{\boldsymbol{u}} \\ \hat{\boldsymbol{\beta}}_{\theta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{P}\boldsymbol{\Lambda}_{\theta}^{T}\boldsymbol{Z}^{T}\boldsymbol{y}_{obs} \\ \boldsymbol{X}^{T}\boldsymbol{y}_{obs} \end{bmatrix}$$

The Matrix on the LHS can be decomposed into a 'Cholesky-like' decomposition.

This way we also found a fast way to get $\tilde{\boldsymbol{u}}$ and $\hat{\beta}_{\theta}$, thus we have found all MLE estimators of the parameters.

That is we fitted the model to the actual data.

Outlook: Complete Analysis of several data examples