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1 Introduction

In the context of analysis of variance (ANOVA),
a response variable y is modelled by one or more dis-
crete or categorical covariates (also called factors).
In the classical ANOVA, these covariates are consid-
ered as fixed factors, i.e. their levels pose a theo-
retically meaningful set of comparisons. We cannot
change the levels of these factors without fundamen-
tally changing the research question itself. Often, all
potential level of such a covariate are implemented
in the experimental design. Examples: different
varieties of crops in a field experiment, dosages of
drugs in a comparative study, production methods
in a quality control study, gender in experiments
where sex differences are an issue.

Often, though, the levels of a covariate do not
carry themselves much meaning, being but a sam-
ple of possible values. These covariates are called
random effects and are brought into the analy-
sis (1) to assess variability, (2) to reduce threats to
validity related to concrete implementations of ab-

stract treatments, (3) to increase generalizability.
Examples are subjects in psychological or medical
tests, experimental units like batches or samples,
different plots in a field study.

When should a factor be considered random?
(1) When its specific levels could be replaced by
other equally acceptable levels without changing the
research question or the conclusion drawn from the
study (the chosen levels are arbitrary or substi-
tutable). (2) When the conclusion of the experiment
is to be generalized to examined and unexamined
levels. (3) When conclusions drawn for each sepa-
rate level are uninteresting, arbitrary particulars.

What happens if random factors are misclassi-
fied as fixed? In general a loss of control over Type
I error in testing hypotheses of interest occurs. The
inflation of the Type I error rate can be considered
as a result of an unintended shift in which null hy-
pothesis is being tested, leading to test results that
are irrelevant as evidence for the conclusions drawn.

2 Examples of different models/datasets

Terms used:
nested design A factor is nested under (or within) another factor if any given level of the nested factor appears at only

one level of the nesting factor. Another way of putting it is to say that a factor is nested if its levels are divided
among the levels of another factor. A nested design is also called hierarchical.

crossed design Two factors are crossed if all levels of the first factor appear in combination with all levels of the other
factor; the levels of the factors are “multiplied” to produce all possible combinations of the levels of the first factor
and the levels of the second factor. A crossed design is also called factorial.

interaction If the effect of one covariate changes considerably as the value of another covariate changes. The resulting effect
is no longer additive and, therefore, has to be modelled separately. Example: Both smoking and inhaling asbestos
fibres increase the risk for lung carcinoma, but in smokers exposition to abestos increases the cancer risk much more
than it does in non-smokers.

µ Popoulation mean, intercept (fixed effect)

ε Error, variation in the data at the “lowest level” (usually the unit of observation, e.g. subjects, samples), denoted as
variance (σ2). If possible, the error is identified with a within-variability.

One factor or one-way classification

1. Repeated measures (dataset: Rail, package: nlme)

Experiment: Six rails chosen at random, three measurements of travel time of a ultrasonic wave through each rail.

Interest: Expected travel time, variation in travel time among rails (between-rail variability), variation in travel
time for a single rail (within-rail variability or error-term).

Model: yij = µ+ bi + εij , i = 1, . . . , 6, j = 1, 2, 3

bi deviation from β for the ith rail (random)

Assumptions: bi ∼ N〈 0, σ2
b 〉, εij ∼ N〈 0, σ2 〉, bi ⊥ εij

R: lme(fixed = travel ~ 1, random = ~ 1 | rail, data = Rail)

lmer(travel ~ Type + (1|Subject), data = Rail)
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Two factor or (randomized) blocked designs

2. One fixed / one random factor, no replications (dataset: ergoStool, package: nlme)

Experiment: Nine testers had to sit in four different ergonomic stools and their effort to raise was measured once.

Interest: Expected effort to raise for each of the four stools, variation among stools (between-stool variability),
variation within testers (error).

Model: yij = µ+ βj + bi + εij , i = 1, . . . , 9, j = 1, . . . , 4

βj : effect of stool type (fix), bi effect of testing subject (random)

Assumptions: bi ∼ N〈 0, σ2
b 〉, εij ∼ N〈 0, σ2 〉, bi ⊥ εij

R: lme(fixed = effort ~ Type, random = ~ 1 | Subject, data = ergoStool)

lmer(effort ~ Type + (1|Subject), data = ergoStool)

3. One fixed / one random factor, with replications, no interaction (dataset: Machines, package: nlme)

Experiment: Six workers in a plant had to operate three different machines three times while their productivity
scores were taken.

Interest: Expected productivity score of the three different machines, variation among workers (between
variability), variation within a worker (error).

Model: yijk = µ+ βj + bi + εijk, i = 1, . . . , 6, j = 1, 2, 3, k = 1, 2, 3 (replications)

βj : effect of machine (fix), bi effect of worker (random)

Assumptions: bi ∼ N〈 0, σ2
b 〉, εijk ∼ N〈 0, σ2 〉, bi ⊥ εijk

R: lme(fixed = score ~ Machine, random = ~ 1 | Worker, data = Machines)

lmer(score ~ Machine + (1|Worker), data = Machines)

4. One fixed / one random factor, with replications, with interaction (dataset: Machines, package: nlme)

Experiment: See above.

Interest: See above, interdependence of worker and machine.

Model: yijk = µ+ βj + bi + bij + εijk, i = 1, . . . , 6, j = 1, 2, 3, k = 1, 2, 3 (replications)

βj : effect of machine (fix), bi effect of worker (random), bij interaction term (random)

Assumptions: bi ∼ N〈 0, σ2
b1 〉, bij ∼ N〈 0, σ2

b2 〉, εijk ∼ N〈 0, σ2 〉, bi ⊥ bij , bi, bij ⊥ εijk

R: lme(fixed = score ~ Machine, random = ~ 1 | Worker/Machine, data = Machines)

lmer(score ~ Machine + (1|Worker) + (1|Worker:Machine), data = Machines)

5. Two random factors, no replications, crossed design (dataset: manager1)

Experiment: Three trained raters evaluate once the style of leadership of twenty individual managers. Each rater
evaluates all managers.

Interest: How much variability is there from rater to rater (can the method be generalized?).

Model: yij = µ+ bi1 + bj2 + εij , i = 1, 2, 3, j = 1, . . . , 20

bi1 effect of rater (random), bj2 effect of manager (random)

Assumptions: bi1 ∼ N〈 0, σ2
b1 〉, bj2 ∼ N〈 0, σ2

b2 〉, εij ∼ N〈 0, σ2 〉, bi1 ⊥ bj2, bi1, bj2 ⊥ εij

R: lme() does not support crossed designs

lmer(score ~ 1 + (1|Rater) + (1|Manager), data = manager1)

6. Two random factors, no replications, nested design (dataset: manager2)

Experiment: Three trained raters evaluate once the style of leadership of twenty individual managers. Each rater
is assigned an independent sample of managers to evaluate.

Interest: How much variability is there from rater to rater (can the method be generalized?).

Model: yij = µ+ bi + bj(i) + εij , i = 1, 2, 3, j = 1, . . . , 20

bi effect of rater (random), bj(i) effect of manager nested within rater (random)

Assumptions: bi ∼ N〈 0, σ2
b1 〉, bj(i) ∼ N〈 0, σ2

b2 〉, εij ∼ N〈 0, σ2 〉, bi ⊥ bj(i), bi, bj(i) ⊥ εij

R: lme(fixed = score ~ 1, random = ~ 1 | Rater/Manager, data = manager2)

lmer(score ~ 1 + (1|Rater) + (1|Manager), data = manager2)
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7. Two random factors, with replications, crossed design, no interaction (no dataset examined)

Model: yijk = µ+ bi1 + bj2 + εijk, i = 1, . . . , ni, j = 1, . . . , nj , k = 1, . . . , nk (replications)

bi1 random effect 1, bj2 random effect 2

Assumptions: bi1 ∼ N〈 0, σ2
b1 〉, bj2 ∼ N〈 0, σ2

b2 〉, εij ∼ N〈 0, σ2 〉, bi1 ⊥ bj2, bi1, bj2 ⊥ εijk

R: lme() does not support crossed designs

lmer(score ~ 1 + (1|b1) + (1|b2), data = ...)

8. Two random factors, with replications, crossed design, with interaction (no dataset examined)

Model: yijk = µ+ b1i + b2j + bij3 + εijk, i = 1, . . . , ni, j = 1, . . . , nj , k = 1, . . . , nk (replications)

bi1 random effect 1, bj2 random effect 2, bij3 interaction term (random)

Assumptions: bi1 ∼ N〈 0, σ2
b1 〉, bj2 ∼ N〈 0, σ2

b2 〉, b3ij ∼ N〈 0, σ2
b3 〉, εijk ∼ N〈 0, σ2 〉,

bi1 ⊥ bj2, bij3, bj2 ⊥ bij3, bi1, bj2, bij3 ⊥ εijk

R: lme() does not support crossed designs

lmer(score ~ 1 + (1|b1) + (1|b2) + (1|b1:b2), data = ...)

9. Two random factors, with replications, nested design (dataset: Pastes, package: lme4a)

Experiment: From ten independent batch deliveries of a chemical paste, three casks (samples) were taken in order
to perform a quality check. From each sample two measurements were taken.

Interest: Expected strength of paste, variability between batches, variability between samples, variability within
samples (error).

Model: yijk = µ+ bi + bj(i) + εijk, i = 1, . . . , 10, j = 1, 2, 3, k = 1, 2 (replications)

bi batch (random), bj(i) sample within batch

Assumptions: bi ∼ N〈 0, σ2
b1 〉, bj(i) ∼ N〈 0, σ2

b2 〉, εijk ∼ N〈 0, σ2 〉, bi ⊥ bj(i), bi, bj(i) ⊥ εijk

R: lmer(strength ~ 1 + (1|batch) + (1|sample), data = Pastes)

lme(fixed = strength ~ 1, random = ~ 1 | batch/sample, data = Pastes)

Three factor or split-plot designs

10. Two fixed / one random factor, 3 × 4 full factorial design with interaction of the fixed factors, one
fixed factor nested within the random factor, no replication (dataset: Oats, package: lme)

Experiment: Three different oat varieties were randomly assigned to three plots, which were further subdivided
into four subplots for the application of four different concentrations of nitrogen fertilizer. There were six of
these “blocks”, and the yield of oat was measured at the end of the experiment.

Interest: Expected yield of the different oat varieties depending on fertilizer-concentration, variability between
blocks, variability between varieties, error.

Model: yijk = µ+ βj1 + βk2 + βjk3 + bi + bk(i) + εijk, i = 1, . . . , 6, j = 1, . . . , 4, k = 1, 2, 3

β1 nitrogen-conc. (= subplot) (fix), β2 crop variety (= plot) (fix),

β3 interaction nitrogen × variety (fix), bi block (random), bk(i) variety within block (random)

Assumptions: bi ∼ N〈 0, σ2
b1 〉, bk(i) ∼ N〈 0, σ2

b2 〉, εijk ∼ N〈 0, σ2 〉, bi ⊥ bk(i), bi, bk(i) ⊥ εijk

R: lme(fixed = yield ~ ordered(nitro) * Variety, random = ~ 1 | Block/Variety, data = Oats)

lmer(yield ~ ordered(nitro) * Variety + (1|Block) + (1|Block/Variety), data = Oats)
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