Introduction to Linear Mixed-Effect Models

Niels Hagenbuch

March 1, 2010

Linear regression model:

$$
\begin{aligned}
y_{i} & =\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{p} x_{i p}+\varepsilon_{i}, \quad(i=1, \ldots, n \text { observations }) \\
& =\beta_{0}+\sum_{j=1}^{p} \beta_{j} x_{i j}+\varepsilon_{i} \quad(p \text { parameters }) \\
& =\mathbf{x}_{i}^{\top} \boldsymbol{\beta}+\varepsilon_{i}, \quad \text { with } \quad \varepsilon_{i} \sim \mathcal{N}\left\langle 0, \sigma^{2}\right\rangle
\end{aligned}
$$

or in matrix notation:

$$
\underset{(n \times 1)}{\mathbf{y}} \quad=\underset{(n \times p)}{\mathbf{X}} \quad \times \underset{(p \times 1)}{\boldsymbol{\beta}} \quad+\underset{(n \times 1)}{\boldsymbol{\varepsilon}}
$$

R-output of a simple linear regression model (intercept and one covariate x 1):

```
Call:
lm(formula = y1 ~ x1, data = anscombe)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-1.92127 & -0.45577 & -0.04136 & 0.70941 & 1.83882
\end{tabular}
Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{llllll} 
(Intercept) & 3.0001 & 1.1247 & 2.667 & 0.02573 * \\
x 1 & 0.5001 & 0.1179 & 4.241 & 0.00217 **
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.237 on 9 degrees of freedom
Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
F-statistic: 17.99 on 1 and 9 DF, p-value: 0.002170
```

$y=$ intercept + slope $^{*} x$

Figure: Plot of 11 data points and a corresponding fit of a linear regression model according to $y=\beta_{0}+\beta_{1} x+\varepsilon$ (data from anscombe).

Analysis of Variance (ANOVA) model for two (crossed) factors:

$$
y_{i j k}=\mu+\beta_{i 1}+\beta_{j 2}+\varepsilon_{i j k}
$$

with:
μ population mean
$\beta_{i 1}$ main effect of factor level $\beta_{i 1}$
$\beta_{j 2}$ main effect of factor level $\beta_{j 2}$
$\varepsilon_{i j k} \sim \mathcal{N}\left\langle 0, \sigma^{2}\right\rangle$ (error term)

R-output of a ANOVA model:

Analysis of Variance Table

Response: score Df Sum Sq Mean Sq F value $\quad \operatorname{Pr}(>F)$
Rater $23048.781524 .3950 .35052 .072 \mathrm{e}-11$ ***
$\begin{array}{llllll}\text { Manager } & 19 & 51.55 & 2.71 & 0.0896 & 1\end{array}$
Residuals $381150.47 \quad 30.28$

Signif. codes: 0 '***’ 0.001 ‘**’ 0.01 '*’ 0.05 '.' 0.1 ' ' 1

Classical Analysis of Variance (ANOVA)

- Classical ANOVA developed for agricultural experiments
- Control over
- crop varieties
- type of fertilizers used
- amount of fertilizer
- plots, subplots
- greenhouse: light, irrigation, soil type, etc.
- Need for randomization in order to avoid confounding
- Different designs

Classical ANOVA: Randomization

Table 2,03. Orthogonal toxio Square and One of a Set of Five t2 \times ry SQuares

Figure: Fisher, Ronald A ; Yates, Frank: Statistical Tables for Biological, Agricultural and Medical Research. $6^{\text {th }}$ edition, revised and enlarged. Edinburgh/London: Oliver and Boyd, 1963, p. 25.

Classical ANOVA: Randomization

Table 2.2. Youden Square Solution ($b=v=3 \mathrm{I}, r=k=10$)

Figure: Fisher, Ronald A ; Yates, Frank: Statistical Tables for Biological, Agricultural and Medical Research. $6^{\text {th }}$ edition, revised and enlarged. Edinburgh/London: Oliver and Boyd, 1963, p. 28.

Experimental Design: Crossed vs. Nested

- Two factors are said to be crossed if all levels of the first factor appear in combination with all levels of the other factor.
- A crossed design is also called factorial.
- Example: five enzymes are tested in two solutions with different pH (four measurements each).

Nested ANOVA

| 1 | | 2 | | 3 | | 4 | | 5 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | Sugar
 batches |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | |
| | | | | | | | | | | |

Experimental Design: Crossed vs. Nested

- A factors is said to be nested under (or within) another factor if any given level of the nested factor appears at only one level of the nesting factor.
- Rationale: either given by the experiment (sample from a batch) or to avoid disproportional complexity (three raters evaluate ten managers each [30 interviews instead of 90]).
- A nested design is also called hierarchical.
- Example: From five production batches two samples are taken for quality control (four measurements each).
Two way factorial ANOVA

	1	2	3	4	5
$p H$ level 1	$*$	$*$	$*$	$*$	$*$
	$*$	$*$	$*$	$*$	$*$
	$*$	$*$	$*$	$*$	$*$
	$*$	$*$	$*$	$*$	$*$
$p H$ level 2	$*$	$*$	$*$	$*$	$*$
	$*$	$*$	$*$	$*$	$*$
	$*$	$*$	$*$	$*$	$*$
	$*$	$*$	$*$	$*$	$*$

Nested ANOVA

| 1 | | 2 | | 3 | | 4 | | 5 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | Sugar
 batches |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | |
| | | | | | | | | | | |

Interaction

If the effect of one covariate changes considerably as the value of another covariate changes.

High me B, no interaction

Interaction may be a difference in magnitude of response

Low me B, no interaction

Interaction may be a difference in direction of response

Interaction

The resulting effect is no longer additive and has to be modelled separately:

$$
y_{i j k}=\mu+\beta_{i 1}+\beta_{j 2}+\beta_{i j 3}+\varepsilon_{i j k}
$$

with:
μ population mean
$\beta_{i 1}$ main effect of factor level $\beta_{i 1}$
$\beta_{j 2}$ main effect of factor level $\beta_{j 2}$
$\beta_{i j 3}$ interaction term $\beta_{i 1} \times \beta_{j 2}$

Fixed vs. Random Effects

- So far, covariates were considered fixed.
- Levels were chosen deliberately
- Levels had a specific meaning
- Changing levels leads to fundamental changes in the experiment

Examples:

1. Different crop varieties (oat; oat and rye; oat, rye, barley)
2. Medical test on humans (males; males and females)
3. Life expectancy (german speaking countries; german and french; german, french, italian)

Fixed vs. Random Effects

Random effects take into account that there is further variation:

- subjects tested
- batches or units sampled
- plots used to grow crops

The last example shows the shift in interest: plots can be defined as fixed, then the analysis provides information on the specific plots used.

Or plots are defined as random, considering them as arbitrary source of variability without further significance for the experiment.

Random Effects

Random effects

- assess variability
- reduce threats to validity
- increase generalizability

Random effects allow to generalize

- the results: schools in Markus' nano-introduction
- the research question: can a research method be used "universally"?

Random Effects

When should a factor be considered random?

- Specific levels could be replaced by other levels (e.g. subjects): the chosen levels are arbitrary or substitutable
- The conclusion of the experiment is to be generalized (e.g. other schools)
- Conclusions drawn for each separate level are not of interest: not the specific items are important but the population they are drawn from

Model

Linear mixed-effects model for one fixed and one random factor:

$$
y_{i j}=\mu+\beta_{j}+b_{i}+\varepsilon_{i j}
$$

or in matrix notation:

$$
\mathbf{y}_{\mathbf{i}}=\mathbf{X}_{\mathbf{i}} \boldsymbol{\beta}+\mathbf{Z}_{\mathbf{i}} b_{i}+\varepsilon_{\mathbf{i}}
$$

with:
μ population mean
β_{j} fixed effect, $\quad j=1, \ldots, n_{i}$ (levels of the fixed factor)
b_{i} random effect, $i=1, \ldots, M$ (subjects, batches, etc.)
$b_{i} \sim \mathcal{N}\left\langle 0, \sigma_{b}^{2}\right\rangle$ ("between-variability")
$\varepsilon_{i j} \sim \mathcal{N}\left\langle 0, \sigma^{2}\right\rangle$ (error term or "within-variability")
$b_{i} \perp \varepsilon_{i j}$

Software

The new variance term σ_{b}^{2} needs to be estimated numerically, implemented differently in software packages:

R: lme() from package nlme (Pinheiro/Bates 2000)
lmer() from package lme4 (Bates 2010)
SAS: PROC GLM, NESTED, ANOVA or VARCOMP
SPSS: MIXED

A first example: the Rail dataset

Example for a simple "one factor design" or "one-way classification". The datset is included in the package nlme (R : data(Rail)).

Data:
rail 6 levels (six rails chosen at random)
travel 3 measurements per rail of travel time of a ultrasonic wave

Interest:

1. Average travel time of an ultrasonic sound wave in a rail (= expected travel time)
2. Variation in travel time among rails (= between-rail variability, $\hat{\sigma}_{b}^{2}$)
3. Variation in the three measurements of travel time for a single rail ($=$ within-rail variability, $\hat{\sigma}^{2}$)

A first example: the Rail dataset

Figure: Plot of the 6×3 data points, grouped by Rail (lines) in ascending order of the mean travel time per rail. The three measurements are depicted as dots. Overall the between-rail variability is much larger than the within-rail variability.

A first example: the rail dataset

Model:

$$
y_{i j}=\mu+b_{i}+\varepsilon_{i j}
$$

with
$y_{i j}$ response variable: travel time of rail i at $j^{\text {th }}$ measurement
μ mean travel time across all 6 rails ($=$ estimate of the population mean of all rails) (fixed effect)
b_{i} random effect of rail i (= deviation from μ)
$\varepsilon_{i j}$ error term

Assumptions:

1. $b_{i} \sim \mathcal{N}\left\langle 0, \sigma_{b}^{2}\right\rangle$ ("between-rail variability")
2. $\varepsilon_{i j} \sim \mathcal{N}\left\langle 0, \sigma^{2}\right\rangle$ (error term or "within-rail variability")
3. $b_{i} \perp \varepsilon_{i j}$

A first example: the Rail dataset

Implementation in R:

$$
\text { lme(fixed= travel } \sim 1, \text { random }=\sim 1 \text { | Rail, data=Rail) }
$$

or

$$
\text { lmer(travel ~ } 1+(1 \mid \text { Rail }), \text { data=Rail) }
$$

Both calls model a single fixed effect for all rails ($=$ intercept or μ or estimate of the population mean), and a random effect for each rail (grouping variable is Rail).

A first example: the Rail dataset

```
Output (lmer):
Linear mixed model fit by REML
Formula: travel ~ 1 + (1 | Rail)
    Data: rail
    REML
122.2
Random effects:
    Groups Name Variance Std.Dev.
    Rail (Intercept) 615.311 24.8055
    Residual 16.167 4.0208
Number of obs: 18, groups: Rail, 6
Fixed effects:
            Estimate Std. Error t value
(Intercept) 66.50 10.17 6.538
```

where

$$
\begin{array}{rlrl}
\hat{\mu} & =\text { (Intercept): } 66.50 & \\
\hat{\sigma}_{b} & =\text { Rail: } 24.8055 & & \text { (between-rail variability) } \\
\hat{\sigma} & =\text { Residual: } 4.0208 & & \text { (within-rail variability) }
\end{array}
$$

A simple model

Ignore grouping: $\quad y_{i j}=\mu+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim \mathcal{N}\left\langle 0, \sigma^{2}\right\rangle$
Call:
$\operatorname{lm}($ formula $=$ travel ~ 1, data $=$ rail $)$
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $66.500 \quad 5.573 \quad 11.931 .10 \mathrm{e}-09$ ***
Residual standard error: 23.65 on 17 degrees of freedom
where

$$
\begin{aligned}
& \hat{\mu}=\text { (Intercept) }: 66.50 \\
& \hat{\sigma}=\text { Residual standard error: } 23.65
\end{aligned}
$$

are the direct estimators from the data:

```
> mean(rail$travel)
[1] 66.5
> sd(rail$travel)
[1] 23.64505
```


Is it a good model?

Normal Q-Q Plot

Figure: Normal-Plot of the residuals $\left(r_{i}=y_{i}-\hat{y}_{i}\right)$ for the linear regression model. There is a repetitive pattern of deviation from the standard normal due to ignored grouping effect (Rail).

Add the grouping factor

$$
\text { Include grouping: } \quad y_{i j}=\beta_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim \mathcal{N}\left\langle 0, \sigma^{2}\right\rangle
$$

Call:
$\operatorname{lm}($ formula $=$ travel \sim Rail -1 , data $=$ rail $)$
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

Rail1	54.000	2.321	23.26	$2.37 \mathrm{e}-11$	$* * *$
Rail2	31.667	2.321	13.64	$1.15 \mathrm{e}-08$	$* * *$
Rail3	84.667	2.321	36.47	$1.16 \mathrm{e}-13$	$* * *$
Rail4	96.000	2.321	41.35	$2.59 \mathrm{e}-14$	$* * *$
Rail5	50.000	2.321	21.54	$5.86 \mathrm{e}-11$	$* * *$
Rail6	82.667	2.321	35.61	$1.54 \mathrm{e}-13$	$* * *$

Residual standard error: 4.021 on 12 degrees of freedom
Multiple R-squared: 0.9978, Adjusted R-squared: 0.9967
F-statistic: 916.6 on 6 and 12 DF , p-value: $2.971 \mathrm{e}-15$
where the $\hat{\beta}_{i}$ are listed as Rail1, . . , Rail6 and $\hat{\sigma}$ is 4.021 .

- model fit is better (residual plots not shown)
- $\hat{\sigma}$ (variability within the rails) decreased from 23.65 to 4.021
- model does not provide an estimate for the variability between rails.

Developing the random-effects model

Reparameterization of the linear model

$$
y_{i j}=\beta_{i}+\varepsilon_{i j}
$$

to

$$
y_{i j}=\bar{\beta}+\left(\beta_{i}-\bar{\beta}\right)+\varepsilon_{i j}, \quad \bar{\beta}=\frac{1}{M} \sum_{i=1}^{M} \beta_{i}
$$

leads to

$$
y_{i j}=\mu+b_{i}+\varepsilon_{i j}
$$

where
$\bar{\beta}$ is replaced by μ, the mean travel time across the population of rails being sampled (fixed effect)
$\left(\beta_{i}-\bar{\beta}\right)$ is replaced by b_{i}, random variables representing the deviation from the population mean of the mean travel time for the $i^{t h}$ rail; the distribution of the b_{i} has to be estimated
$\varepsilon_{i j}$ random variable representing the deviation in travel time for observation j on rail i from the mean travel time for rail i

Two factors: 1 fix / 1 random - the Machines dataset

Example for a "replicated, randomized block design" with an interaction term. The dataset is included in the package nlme (R : data(Machines)).

Data:
score Productivity score achieved on a machine (measured 3 times)
Machine Type of machine used (3 levels)
Worker Subject used in the experiment (6 levels)

Interest:

1. Expected productivity score of the three different machines
2. Is there an interdependence of worker and machine?
3. Variation among workers ($=$ between-worker variability, $\hat{\sigma}_{b}^{2}$)
4. Variation within a worker ($=$ within-worker variability, $\hat{\sigma}^{2}$)

Two factors: 1 fix / 1 random - the Machines dataset

Figure: Plot of the $6 \times 3 \times 3$ data points, grouped by Worker (lines) in ascending order of the mean score per worker. The measurements for the three different machines (A, B, C) are depicted in different colors, the three replications as dots. Overall the between-worker variability is not that large, while there is considerable variability between machines.

Is there an interaction between worker and machines?

Figure: As can be seen, worker 6 scored differently on machine B compared to the others.

Two factors: 1 fix / 1 random - the Machines dataset

Model:

$$
y_{i j k}=\mu+\beta_{j}+b_{i}+b_{i j}+\varepsilon_{i j k}
$$

with
$y_{i j k}$ response variable: productivity score of worker i on machine j at $k^{\text {th }}$ measurement
μ mean score across all 6 workers (fixed effect)
β_{j} mean productivity score for each machine (fixed effect)
b_{i} random effect of worker ($=$ deviation from β_{j})
$b_{i j}$ interaction term worker \times machine (random due to worker)
$\varepsilon_{i j k}$ error term
Assumptions:

1. $b_{i} \sim \mathcal{N}\left\langle 0, \sigma_{1}^{2}\right\rangle \quad$ ("between-worker variability")
2. $b_{i j} \sim \mathcal{N}\left\langle 0, \sigma_{2}^{2}\right\rangle$ (interaction)
3. $\varepsilon_{i j k} \sim \mathcal{N}\left\langle 0, \sigma^{2}\right\rangle$ (error term or "within-worker variability")
4. $b_{i} \perp b_{i j}, \quad b_{i}, b_{i j} \perp \varepsilon_{i j}$

Two factors: 1 fix / 1 random - the Machines dataset

Output (lmer):

```
Linear mixed model fit by REML
Formula: score ~ Machine + (1 | Worker) + (1 | Worker:Machine)
    Data: machine
    REML
215.7
Random effects:
    Groups Name Variance Std.Dev.
    Worker:Machine (Intercept) 13.90945 3.72954
    Worker (Intercept) 22.85851 4.78106
    Residual 0.92463 0.96158
Number of obs: 54, groups: Worker:Machine, 18; Worker, 6
Fixed effects:
            Estimate Std. Error t value
(Intercept) 52.356 2.486 21.062
MachineB 7.967 2.177 3.660
MachineC 13.917 2.177 6.393
Correlation of Fixed Effects:
    (Intr) MachnB
MachineB -0.438
MachineC -0.438 0.500
```


Two factors: 1 fix / 1 random - the Machines dataset

Output (lmer):

```
Random effects:
    Groups Name Variance Std.Dev.
    Worker:Machine (Intercept) 13.90945 3.72954
    Worker (Intercept) 22.85851 4.78106
    Residual 0.92463 0.96158
Number of obs: 54, groups: Worker:Machine, 18; Worker, 6
Fixed effects:
            Estimate Std. Error t value
(Intercept) 52.356 2.486 21.062
MachineB 
MachineC 13.917 2.177 6.393
```

where $\quad \hat{\beta}_{j}=$ Estimates under Fixed effects:
$\hat{\sigma}_{1}=$ Worker 4.78106 (between-worker variability)
$\hat{\sigma}_{2}=$ Worker:Machine 3.72954 (interaction term)
$\hat{\sigma}=$ Residual: 0.96158 (within-worker variability)

Two factors: both random - the manager1 dataset

Example for a model with two random effects in a crossed design. (The dataset manager1 is constructed.)

Background A behavioural researcher has devised a method for evaluating "managerial style" by observing the ordinary workday interactions of managers and rating certain kinds of occurrences. Because the evaluation method is to be applied in the field by many different evaluators, it is important to find out whether ratings vary much or little from one trained evaluator to another.

Interest: Variation among raters (= between-rater variability) with the main question: "can the test be generalized"?

Design: Each rater evaluated all 20 managers (crossed design).

Data: score Score on an observational rating scale (measured once)
Rater (3 levels)
Manager Subject evaluated in the experiment (20 levels)

Two factors: both random - the manager1 dataset

Figure: Boxplots of the 20 manager ratings separated by the three raters. The raters seem to evaluate the managers differently.

Two factors: both random - the manager1 dataset

Model:

$$
y_{i j}=\mu+b_{i 1}+b_{j 2}+\varepsilon_{i j}
$$

with

$$
\begin{array}{ll}
y_{i j} & \text { response variable: score given by rater } \mathrm{i} \text { for manager } \mathrm{j} \\
\mu & \text { mean score across all } 20 \text { managers (}=\text { estimate of the } \\
\text { population mean of all managers) (fixed effect) } \\
b_{i 1} & \text { random effect of rater } \mathrm{i}(=\text { deviation from } \mu) \\
b_{j 2} & \text { random effect of manager } \mathrm{j}(=\text { deviation from } \mu) \\
\varepsilon_{i j} & \text { error term }
\end{array}
$$

Assumptions:

1. $b_{i 1} \sim \mathcal{N}\left\langle 0, \sigma_{1}^{2}\right\rangle$ ("between-rater variability")
2. $b_{j 2} \sim \mathcal{N}\left\langle 0, \sigma_{2}^{2}\right\rangle$ ("between-manager variability")
3. $\varepsilon_{i j} \sim \mathcal{N}\left\langle 0, \sigma^{2}\right\rangle$ (error term or "within-rater variability")
4. $b_{i 1} \perp b_{j 2}, \quad b_{i 1}, b_{j 2} \perp \varepsilon_{i j}$

Two factors: both random - the manager1 dataset

Output (lmer):

```
Linear mixed model fit by REML
Formula: score ~ 1 + (1 | Rater) + (1 | Manager)
    Data: manager1
Random effects:
\begin{tabular}{llrl} 
Groups & Name & Variance & Std.Dev. \\
Manager & (Intercept) & 0.000 & 0.0000 \\
Rater & (Intercept) & 79.561 & 8.9197 \\
Residual & & 23.323 & 4.8293
\end{tabular}
Number of obs: 60, groups: Manager, 20; Rater, 3
Fixed effects:
\begin{tabular}{crrr} 
& Estimate Std. Error t value \\
(Intercept) & 25.756 & 5.187 & 4.965
\end{tabular}
```

where

$$
\begin{aligned}
\hat{\mu} & =\text { (Intercept) } 25.756 \\
\hat{\sigma}_{1} & =\text { Rater } 8.9197 \quad \text { (between-rater variability) } \\
\hat{\sigma}_{2} & =\text { Manager } 0.0000 \quad \text { (between-manager variability) } \\
\hat{\sigma} & =\text { Residual: } 4.8293
\end{aligned}
$$

Note: $\hat{\sigma}_{2}=0$ indicates that the "between-manager" variability is not sufficient to warrant incorporating Manager as a random effect into the model.

Two factors: both random - the pastes dataset

Example for a model with two random effects in a nested design. (The dataset pastes is included in the package lme4a (R : data(Pastes)).

Data:
strength Concentration of a chemical product (measured 2 times)
batch Batch from which the quality control samples were drawn (10 levels)
sample Samples taken in order to measure the strength (3 levels)
Design: The samples are nested within the batches they are drawn from.
Interest:

1. Expected strength of paste
2. Variation among batches ($=$ between-batch variability, $\hat{\sigma}_{b 1}^{2}$)
3. Variation among samples ($=$ between-samples variability, $\hat{\sigma}_{b 2}^{2}$)
4. Variation within a sample ($=$ within-sample variability, $\hat{\sigma}^{2}$)

Two factors: both random - the pastes dataset

Figure: Strength of paste preparations according to batch and sample within the batch. There is large variability between the samples, the batches do not differ that much.

Two factors: both random - the pastes dataset

Model:

$$
y_{i j k}=\mu+b_{i}+b_{j(i)}+\varepsilon_{i j k}
$$

with
> $y_{i j k}$ response variable: strength of paste ($k^{t h}$ measurement) in sample j taken from batch i
> μ mean score across all 10 batches ($=$ estimate of the population mean of all batches) (fixed effect)
> b_{i} random effect of batch i (= deviation from μ)
> $b_{j(i)}$ random effect of sample j taken from batch i (= deviation from μ)
> $\varepsilon_{i j k}$ error term

Assumptions:

1. $b_{i} \sim \mathcal{N}\left\langle 0, \sigma_{1}^{2}\right\rangle \quad$ ("between-batch variability")
2. $b_{j(i)} \sim \mathcal{N}\left\langle 0, \sigma_{2}^{2}\right\rangle$ ("between-sample variability")
3. $\varepsilon_{i j k} \sim \mathcal{N}\left\langle 0, \sigma^{2}\right\rangle$ (error term or "within-sample variability")
4. $b_{i} \perp b_{j(i)}, \quad b_{1}, b_{j(i)} \perp \varepsilon_{i j k}$

Two factors: both random - the pastes dataset

Output (lmer):
Linear mixed model fit by REML
Formula: strength $\sim 1+(1 \mid$ batch $)+(1 \mid$ sample $)$
Data: Pastes
REML
247

Random effects:

Groups	Name	Variance	Std.Dev.
sample	(Intercept)	8.4337	2.9041
batch	(Intercept)	1.6573	1.2874
Residual		0.6780	0.8234

Number of obs: 60, groups: sample, 30 ; batch, 10
Fixed effects:
Estimate Std. Error t value
$\begin{array}{llll}\text { (Intercept) } 60.0533 & 0.6769 & 88.72\end{array}$
where

$$
\begin{aligned}
\hat{\mu} & =\text { (Intercept) } 60.0533 \\
\hat{\sigma}_{1} & =\text { batch } 1.2874 \quad \text { (between-batch variability) } \\
\hat{\sigma}_{2} & =\text { sample } 2.9041 \quad \text { (between-sample variability) } \\
\hat{\sigma} & =\text { Residual: } 0.8234
\end{aligned}
$$

A complex model - the oats dataset

Example for a "split-plot experiment" with two fixed and one random effect, an interaction between the fixed effects and a fixed factor nested within a random factor. (The dataset oates is included in the package lme4a (R: data(Pastes)).

Data:
yield yield of oats (measured once)
nitro Nitrogen-fertilizer concentration used (4 levels)
Variety Different crop varieties (3 levels)
Block Large field that was splitted into 12 subplots for all possible combinations of crop varieties and nitrogen fertilizer (6 levels)
Design:

- Next to the fixed and random effects there was an interest whether crop variety and fertilizer concentration interact.
- The division of the block into plots and subplots was modelled with a nested design.

A complex model - the oats dataset

Interest:

1. Expected yield of the different oat varieties depending on fertilizer concentration
2. Variation among blocks (= between-block variability, $\hat{\sigma}_{1}^{2}$)
3. Variation among crop varieties (= between-variety variability, $\hat{\sigma}_{2}^{2}$)
4. General variation $\left(\hat{\sigma}^{2}\right)$

A complex model - the oats dataset

Model:

$$
y_{i j k}=\mu+\beta_{j 1}+\beta_{k 2}+\beta_{j k 3}+b_{i}+b_{k(i)}+\varepsilon_{i j k}
$$

with

$$
\begin{aligned}
y_{i j k} & \begin{array}{l}
\text { response variable: yield of crop variety } \mathrm{k} \text { in block } \mathrm{i} \text {, treated } \\
\\
\\
\text { with nitrogen-level } \mathrm{j}
\end{array} \\
\mu & \text { mean score across all } 6 \text { blocks }(=\text { estimate of the population } \\
& \text { mean of all blocks) (fixed effect) } \\
\beta_{1} & \text { nitrogen-concentration (fixed effect) } \\
\beta_{2} & \text { crop variety (fixed effect) } \\
\beta_{3} & \text { interaction nitrogen-conc. } \times \text { crop variety (fixed effect) } \\
b_{i} & \text { random effect of block } \mathrm{i}(=\text { deviation from } \mu) \\
b_{k(i)} & \text { random effect of variety within block }(=\text { deviation from } \mu) \\
\varepsilon_{i j k} & \text { error term }
\end{aligned}
$$

Assumptions:

1. $b_{i} \sim \mathcal{N}\left\langle 0, \sigma_{1}^{2}\right\rangle \quad$ ("between-block variability")
2. $b_{k(i)} \sim \mathcal{N}\left\langle 0, \sigma_{2}^{2}\right\rangle$ ("between-variety variability")
3. $\varepsilon_{i j k} \sim \mathcal{N}\left\langle 0, \sigma^{2}\right\rangle$ (error term)
4. $b_{i} \perp b_{k(i)}, \quad b_{1}, b_{k(i)} \perp \varepsilon_{i j k}$

A complex model - the oats dataset

Output (lmer):

Linear mixed model fit by REML
Formula: yield ~ ordered(nitro) * Variety + (1 | Block) + (1 | Block/Variety)
Data: Oats
REML
533.2

Random effects:

Groups	Name	Variance	Std.Dev.
Variety: Block	(Intercept)	106.06	10.299
Block	(Intercept)	107.24	10.356
Block	(Intercept)	107.24	10.356
Residual		177.08	13.307
Number of obs:	72, groups: Variety:Block, 18; Block, 6		

where $\quad \hat{\sigma}_{1}=$ Block $10.356 \quad$ (between-batch variability)
$\hat{\sigma}_{2}=$ Variety:Block 10.299 (between-variety variability)
$\hat{\sigma}=$ Residual: 13.307
β_{i} fixed effects omitted

