
Tutorial (Windows Version)
S.f.Statistik, ETHZ February 18, 2009

This tutorial will give you some brief basic knowledge about R.

R is free software (copyright: GNU public license) and is available from http://stat.
ethz.ch/CRAN/. At this URL you find a comprehensive Documentation, Manual, “An
Introduction to R” (about 100 pages pdf) and a shorter introduction Contributed, “R for
Beginners / R pour les dbutants” (31 pages, english/french).

Getting started with R
The computers in the student computer rooms have a dualboot installation (Linux and
Windows). If you are in a Linux System, restart your computer and choose the Windows
system. Log on with your student account and start R with
Start / All Programs / R / R 2.7.2.

Creating and deleting objects
Type in the R-window (*R* is written on the bar below):
> x <- 2 <RETURN>

> x <RETURN>

Result: [1] 2

The assignment operator <- has created an object x. R is vector oriented, so x is a
vector with one element of value 2.

Next try (all commands have to be confirmed by <RETURN>; this is omitted from now
on):
> y <- c(3,5) (c for combine)
> y
Result: [1] 3 5, a vector with two elements.

Warning: Do not use names of R-commands as object names, for example: c, t, T, F,
max,

ls() shows all objects you have already generated. To remove x, use rm(x). In order to
remove all objects in the working environment, use rm(list=ls())

R-demonstrations
Get a list of all demonstrations with demo(). For example, take a look at the graphics
demo of R: demo(graphics).

Working with an .R (script-)file
It is useful to type the commands into a text file of an editor instead of directly typing
them into R. They can then be transferred to R. This procedure enables easy corrections
of typing errors and a reasonable saving and reproduction of the work.
The following instructions are with respect to Tinn-R. Tinn-R is free GNU software. If
you like to install Tinn-R on your own computer, you have to download the software
from http://sourceforge.net/projects/tinn-r/. In the computer rooms, Tinn-R is
already available.
Before using Tinn-R you have to check (or change) the following settings:

1

Menu Bearbeiten / GUI Einstellungen. There you select SDI (instead of MDI). Save the
new settings (click on Save). Leave the new window unchanged, and save the settings as
suggested (My Documents\Rconsole) (click on Save). Then close the Rgui configuration
editor with a click on OK or Cancel (ignoring the warning) und close R (do not save the
workspace).

In order to work with R and Tinn-R, you have to start R (Start / All Programs / R /
R 2.7.2) . Then start Tinn-R (Start / All Programs / Tinn-R / Tinn-R). The starting of
Tinn-R requires time. If you get a warning, then just click OK .

Generate a folder RFiles in your home directory (My Computer\T:), most suitable in the
Windows Explorer with File / New / Folder.

Open a new file in (File / New). Type on the first row z <- c(8, 13, 21) and on the next
row 2 * z. Save the file under the name tutorial.R in the folder RFiles. With the icon top
left (i. e. Send all, Send selection und Send current line) the editor sends the commands
directly to R. Mark the two rows you have just written with the left mouse button. Click
on the icon Send selection. The commands are evaluated in R.

As a matter of course, you can type your commands directly into R. Nevertheless, you
should write all your commands into an *.R-File of the editor due to the fact you can save
the file at the end of your session. When you continue your task the next time, open the
file, mark all the command and send them to R. Now all R-objects are available.

Computing with vectors
Type fib <- c(1,1,2,3,5,z) as third line of tutorial.R (gives the first eight Fibonacci-
numbers). Evaluate the line, and take a look at fib. Type 2*fib+1, fib*fib and log(fib)
as next three lines of tutorial.R. Mark all three lines with the left mouse button and
evaluate the line. This evaluates all marked lines. Check the results. Do you understand
them?

Now create the sequence 2, 4, 6 as object s: s <- 2*(1:3), alternatively s <- seq(2,6,by=2).
Take a look at fib[3], fib[4:7], fib[s], fib[c(3,5)] and fib[-c(3,5)].

Create a vector x with 8 elements, some of which are positive, some negative. Check x > 0
and fib[x > 0].

Matrices: creation and computation
Create two vectors x <- 1:4 and y <- 5:8 and the matrices mat1 <- cbind(x,y) and
mat2 <- rbind(x,y,x+y) (cbind means column-bind, rbind means row-bind). Take a
look at the whole matrices mat1 and mat2 and try mat2[3,2], mat2[2,] und mat2[,1].

Computation with matrices using +, * etc. follows the same rules as computation with
vectors, namely elementwise. For the matrix product, use %*%, e.g. mat2 %*% mat1.

Data Frames
A data frame is a generalized matrix. The main difference between data frames and
matrices is that matrices need all elements to be of the same type (e.g. numeric, character),
while data frames allow every column to have another type.

2

Reading and looking at datasets
ASCII-data is most easily read by read.table, which generates a data frame. read.table
works also for datasets from the web. Try:
no2 <- read.table(”http://stat.ethz.ch/Teaching/Datasets/no2Basel.dat”,

header=TRUE)
You may examine the created object directly by no2. Single variables are accessible by
no2[,”NO2”]. You may take a look at the original file, in particular its first line, to
understand why R knows the name of the variable. This can be done by calling the above
URL from a web browser, e.g., Firefox or Mozilla. The parameter header=TRUE of
read.table tells R that the variable names are in the first line. no2 is still small enough,
but in general it is useful to use str first, which displays the structure and type of an
object, but not every single element: str(no2). summary(no2) displays information
about the columns of no2. summary extracts the most important information from lots
of R-objects, e.g., the results of statistical tests or regression fits.

An alternative to read.table is the command scan, which reads vectors and lists. A list
is a more general structure which may contain elements of different types and sizes, e.g.
vectors of varying lengths, data frames, sublists, etc.

Graphics
Draw a histogram of the NO2-values of the no2-data.
par(mfrow = c(1,2)) # Number of pictures one below the other [1] or side by side [2]

important to save paper!
hist(no2[,”NO2”]) # draw histogram.
Now compute the regression line of the NO2-content against temperature and show it
graphically next to the histogram:
lm.T <- lm(NO2 ∼ Temp, data = no2) # fits regression.
plot(NO2 ∼ Temp, data = no2)
abline(lm.T, col = 4, lty = 2) # col: colour; lty=2: dashed line
summary(lm.T) # regression summary (details later)

title(”Titel xy”) adds a title to your graphic and dev.print() prints the graphic.

Note that there is a distinction between “high-level”- (such as plot, hist) and “low-level”-
graphics commands (such as abline). The former make up a new graphic, while the latter
add something to existing graphics.

Getting R-help
If you want to know the details about commands, you can use the R-online help. For ex-
ample, help(plot) explains the plot-command. You can execute the example at the end of
the help page by example(plot). Note that it is a good idea to execute par(ask=TRUE)
first, to give you time to observe the graphics. You may check help(par) to understand
this.

An alternative to the help-command: help.start() starts the html-help of R in a web
browser.

If you look for help about some topic without knowing the command names, e.g., about
histograms, help.search(”histogram”) delivers a list of commands which correspond
to the keyword. In parantheses you find the name of the package to which the command

3

belongs. Most commands used by us in the beginning are contained in the package “base”,
which is automatically loaded. Other packages must be loaded by library(Libname),
before their commands and help pages are accessible.

Ending R
You can save your work by saving the file of commands tutorial.R (see above; of course it is
useful to use new files for new projects, e.g., exercise1.R, exercise2.R, . . .). The commands
have to be evaluated again to restore your work. R-objects may be saved also by save
and write or by creating a new output file and use of the copy, cut and paste facilities of
Emacs (see above, or via Edit in the menu bar).

The command q() terminates the R-session. Answer n to the question
Save workspace image? [y/n/c] or use q(”no”).

More to come
R can be used to create complex programs and functions. You may take a look at
help(for) for control commands or at help(function) for creating functions.

4

