
Dr. M. Mächler Computational Statistics FS 2010

Exercise Series 11

1. In this series we are going to explore the dataset vehicle.dat which can be found at
"http://stat.ethz.ch/Teaching/Datasets/NDK/vehicle.dat". The dataset contains 846
observations of 19 variables. The aim is to classify the response (which is named Class) into
four different car types (bus,van,saab,opel) by means of 18 predictors such as compact-
ness, some information about the car axes and certain length ratios of the cars’ silhouettes.
For this, we are going to use CART’s with cost-complexity-optimized size. The optimal tree
size can be found automatically using the methods from the package rpart.

a) First of all, generate a classification tree using the methods from rpart. Set the options
cp = 0 and minsplit = 30 such that the resulting tree becomes too large and overfits
the data. Comment on the tree.
R-Hints:
library(rpart)
tree <- rpart(Class ~ ., data = ?,

control = rpart.control(cp = 0.0, minsplit = 30))

To visualize the tree use:
plot(tree, uniform = TRUE)
text(tree, use.n=TRUE, all=TRUE, cex=0.8, fancy=FALSE, pretty=3)

b) Now it comes to pruning the tree from part a). We let rpart perform a cost-complexity-
analysis to find an optimal cp-value by cross-validating a sequence of subtrees of the
tree in a). Generate a cost-complexity table and explain it. Determine the optimal cp
according to the one standard-error rule. Is this the same model as the one with the
minimal cross-validation error? Visualize the pruned tree with the optimal cp, compare
it to the full tree, and calculate its misclassification rate.
R-Hints:

• To access the cost-complexity table use printcp(tree), to plot classification error
(relative to root tree) vs. the subtree size (dotted line represents one standard error
limit) use plotcp(tree).
• To prune the tree use tree.pruned <- prune.rpart(tree, cp = ?).
• For the misclassification rate look at ?residuals.rpart.

c) To investigate the predictive power, compute the bootstrap generalization error and the
leave-one-out cross-validated performance (based on 0-1 loss) for the cp-optimal tree
from above. Use B = 1000 bootstrap-samples, and set.seed(100) for reproducibility.
Comment on the different values you get.
R-Hint: to predict classes from an rpart object tree use
predict(tree, newdata = ?, type = "class")

d) (optional) Finally, calculate the out-of-bootstrap sample generalization error (cf. Chap-
ter 5.2.5 of the lecture notes). Compare the value you get to the (standard) bootstrap
generalization error and the cross-validation error from c).
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2. a) Let’s consider the general linear regression model:

yi = β0 +
p∑
j=1

βj · xij .

Show that this model is equivalent to the following one:

yi − ȳ =
p∑
j=1

βj · (xij − x̄.j).

Therefore by centering the variables it is always possible to get rid of the intercept β0.
b) Show that the ridge-regression solution defined as

β̃
∗
(s) = arg min

‖β‖2≤s
‖Y −Xβ‖2

is given by
β̂∗(λ) = (XᵀX + λI)−1XᵀY.

where λ is a suitably chosen Lagrange-multiplicator. Therefore the ridge estimator is
still linearly depending on the response Y. Note that for λ > 0 the ridge solution exists
even if XᵀX has not full rank. Therefore ridge regression is practicable also if n� p.

c) The ridge traces β̂∗(λ) can computationally easily be determined by using a singular
value decomposition of the data matrix X = UDV ᵀ where U(n × p) and V (p × p) are
orthogonal and D is diagonal. Show that:

β̂∗(λ) = V (D2 + λI)−1DUᵀY.

d) Show that the ridge regression fit is just a linear combination of shrinked response-
components yi with respect to the orthogonal basis defined by U . More explicitly show
that:

ŷridge (λ) =
p∑
j=1

uj

d2
j

d2
j + λ

uj
ᵀy,

where dj are the diagonal elements of D. In fact one can show that the directions
defined by uj are the so called principal components of the dataset X. The smaller the
corresponding dj-value, the smaller the data variance in direction uj . For directions with
small data variance, the gradient estimation for the minimization problem is difficult,
therefore ridge regression shrinks the corresponding coefficients the most.

e) Ridge regression can also be motivated by Bayesian theory. We assume that

Y|β ∼ N (Xβ, σ2I) and β ∼ N (0, τI).

Show that the ridge estimator β̂∗(λ) is the mean of the posterior distribution. What is
the relationship between λ, τ and σ2?

Preliminary discussion: Friday, May 28, 2010.
Notice: This series is optional. If you need the points from this exercise to get the lecture
attestation, please hand in the solutions no later than Friday, June 4, 2010!


