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These notes in English closely follow Mathematische Statistik, by H.R. Kiinsch
(2005). Mathematische Statistik can be used as supplementary reading material
in German.

Mathematical rigor and clarity often bite each other. At some places, not all
subtleties are fully presented. A snake will indicate this.
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Chapter 1

Introduction

Statistics is about the mathematical modeling of observable phenomena, using
stochastic models, and about analyzing data: estimating parameters of the
model and testing hypotheses. In these notes, we study various estimation and
testing procedures. We consider their theoretical properties and we investigate
various notions of optimality.

1.1 Some notation and model assumptions

The data consist of measurements (observations) x1, ..., Z,, which are regarded
as realizations of random variables X7,...,X,. In most of the notes, the X;
are real-valued: X; € R (for i = 1,...,n), although we will also consider some
extensions to vector-valued observations.

Example 1.1.1 Fizeau and Foucault developed methods for estimating the
speed of light (1849, 1850), which were later improved by Newcomb and Michel-
son. The main idea is to pass light from a rapidly rotating mirror to a fixed
mirror and back to the rotating mirror. An estimate of the velocity of light
is obtained, taking into account the speed of the rotating mirror, the distance
travelled, and the displacement of the light as it returns to the rotating mirror.

Fig. 1

The data are Newcomb’s measurements of the passage time it took light to
travel from his lab, to a mirror on the Washington Monument, and back to his

lab.
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distance: 7.44373 km.

66 measurements on 3 consecutive days

first measurement: 0.000024828 seconds= 24828 nanoseconds
The dataset has the deviations from 24800 nanoseconds.
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One may estimate the speed of light using e.g. the mean, or the median, or
Huber’s estimate (see below). This gives the following results (for the 3 days
separately, and for the three days combined):

Day 1|Day 2 |Day 3| All
Mean |21.75|28.55 [27.85|26.21
Median|25.5 |28 27 27
Huber |25.65|28.40 |27.71|27.28

Table 1

The question which estimate is “the best one” is one of the topics of these notes.

Notation

The collection of observations will be denoted by X = {X;,...,X,}. The
distribution of X, denoted by IP, is generally unknown. A statistical model is
a collection of assumptions about this unknown distribution.

We will usually assume that the observations X, ..., X,, are independent and
identically distributed (i.i.d.). Or, to formulate it differently, Xi,..., X, are
i.i.d. copies from some population random variable, which we denote by X.
The common distribution, that is: the distribution of X, is denoted by P. For
X € R, the distribution function of X is written as

F()=P(X <.
Recall that the distribution function F' determines the distribution P (and vise
versa).

Further model assumptions then concern the modeling of P. We write such
a model as P € P, where P is a given collection of probability measures, the
so-called model class.

The following example will serve to illustrate the concepts that are to follow.

Example 1.1.2 Let X be real-valued. The location model is
P = {P,u,Fo(XS') = FO(_/*L)v /LERa FOEJ:O}a (11)

where Fq is a given collection of distribution functions. Assuming the expec-
tation exist, we center the distributions in Fy to have mean zero. Then P, g,
has mean p. We call i a location parameter. Often, only p is the parameter of
interest, and Fy is a so-called nuisance parameter.
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The class Fy is for example modeled as the class of all symmetric distributions,
that is
Fo :={Fy(x) =1— Fo(—x),Y z}. (1.2)

This is an infinite-dimensional collection: it is not parametrized by a finite
dimensional parameter. We then call Fy an infinite-dimensional parameter.

A finite-dimensional model is for example
Fo:=A{®(-/o): o> 0}, (1.3)
where @ is the standard normal distribution function.

Thus, the location model is
Xi=p+e, i=1,...,n,

with €1,...,€, i.i.d. and, under model (1.2), symmetrically but otherwise un-

known distributed and, under model (1.3), N(0, 0?)-distributed with unknown

variance o2.

1.2 Estimation

A parameter is an aspect of the unknown distribution. An estimator T is some
given function 7'(X) of the observations X. The estimator is constructed to
estimate some unknown parameter, vy say.

In Example 1.1.2, one may consider the following estimators i of u:

e The average

S|

fu =

N
ZXZ».
=1

Note that ji; minimizes over p the squared loss

> (X —w)

=1

It can be shown that fi; is a “good” estimator if the model (1.3) holds. When
(1.3) is not true, in particular when there are outliers (large, “wrong”, obser-
vations) (Ausreisser), then one has to apply a more robust estimator.

e The (sample) median is

)

N X((n+1)/2) when n odd
M2 = {Xms2) + X(nj2+1)}/2 when n is even

where X1y < --- < X(n) are the order statistics. Note that fip is a minimizer
of the absolute loss .

Z | X — .

i=1
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e The Huber estimator is

fig := argmin y_ p(X; — ), (1.4)
i=1
where
() = z? if || <k
PEZ k@] — k) if o > &

with k£ > 0 some given threshold.
e We finally mention the a-trimmed mean, defined, for some 0 < @ < 1, as

n—[naq]

1
g i = ——— X
M  %lna] >, Xu
i=[na]+1

Note To avoid misunderstanding, we note that e.g. in (1.4), p is used as variable
over which is minimized, whereas in (1.1), p is a parameter. These are actually
distinct concepts, but it is a general convention to abuse notation and employ
the same symbol u. When further developing the theory (see Chapter 6) we
shall often introduce a new symbol for the variable, e.g., (1.4) is written as

n
i3 1= arg mcian(Xi — o).

i=1
An example of a nonparametric estimator is the empirical distribution function
. 1
F. (1) = —#{X; <., 1 <i<n}.
n

This is an estimator of the theoretical distribution function

F():=P(X <.

Any reasonable estimator is constructed according the so-called a plug-in princi-
ple (Einsetzprinzip). That is, the parameter of interest vy is written as v = Q(F),
with @) some given map. The empirical distribution F, is then “plugged in”, to
obtain the estimator T := Q(E},). (We note however that problems can arise,

e.g. Q(F,) may not be well-defined ....).

Examples are the above estimators iy, ..., fi4 of the location parameter p. We
define the maps

Q1(F) = /xdF(ac)
(the mean, or point of gravity, of F), and

Qa(F) = F~'(1/2)
(the median of F'), and

Q3(F) := arg min/p(- — p)dF,
m
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and finally

F~1(1-a)
Qu(F) = — / 2dF(z).

- 1 -2« F—l(a)

Then [i; corresponds to Qk(ﬁn), kE =1,...,4. If the model (1.2) is correct,

A

{1, ..., 14 are all estimators of u. If the model is incorrect, each Qg (F,) is still
an estimator of Qi (F') (assuming the latter exists), but the Q(F') may all be
different aspects of F.

1.3 Comparison of estimators: risk functions

A risk function R(-,-) measures the loss due to the error of an estimator. The
risk depends on the unknown distribution, e.g. in the location model, on p
and/or Fy. Examples are

" EH’7FO |//’\L - /"L|p
R(p, Fo, ft) = § Pyp, (| = pl > a) -
Here p > 1 and a > 0 are chosen by the researcher.

If v is an equivariant estimator, the above risks no longer depend on . An
estimator i := i(X1,...,X,) is called equivariant if

aXy+e ..., Xp+e)=p(X1,...,.Xpn) +e Ve

Then, writing
Pr, :=Po,r,

(and likewise for the expectation Ep,), we have for all ¢ > 0
Py (i — 1 < 1) = Py < 1),
that is, the distribution of i — p does not depend on p. We then write

A . EF0|/l|p
R(p, Fo, f1r) := R(Fo, 1) = { Pg,(|it] > a) -

1.4 Comparison of estimators: sensitivity

We can compare estimators with respect to their sensitivity to large errors in
the data. Suppose the estimator ji = fi,, is defined for each n, and is symmetric
in Xl,...,Xn.

Influence of a single additional observation
The influence function is

l(l‘) = /anrl(Xla ... ,Xn,l') — ﬂn(Xla ce ,Xn), z € R.
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Break down point
Let for m <n,

e(m):= sup |a(z],..., 20, X;m+1, - Xn)l-
Ty Ty,

If €(m) := oo, we say that with m outliers the estimator can break down. The
break down point is defined as

e :=min{m : e(m) = oco}/n.

1.5 Confidence intervals

Consider the location model (Example 1.1.2).

Definition A subset I = I(X) C R, depending (only) on the data X =
(Xq,...,X,), is called a confidence set (Vertrauensbereich) for u, at level 1—a,
if

]PMFO(,U,EI) >1—a, VueR, Fye Fo.

A confidence interval is of the form

1= [p, i,

where the boundaries p = p(X) and fi = i(X) depend (only) on the data X.

1.5.1 Equivalence confidence sets and tests

Let for each po € R, ¢(X, po) € {0,1} be a test at level a for the hypothesis

H,, : p=po.
Thus, we reject H,, if and only if ¢(X, o) = 1, and

P m (60X, p0) = 1) < a.

Then
I(X) = {1 : (X, 1) = 0}

is a (1 — a)-confidence set for p.

Conversely, if I(X) is a (1 — a)-confidence set for u, then, for all g, the test
d(X, o) defined as

o0 ) = {1 0 # 100

is a test at level o of H,.
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1.6 Intermezzo: quantile functions

Let F be a distribution function. Then F' is cadlag (continue & droite, limite a
gauche). Define the quantile functions

qip(u) :=sup{z: F(z) <u},
and

¢be(u) .= inf{z : F(z) > u} = F1(u).

It holds that
and, for all h > 0,

Hence

1.7 How to construct tests and confidence sets

Consider a model class

P:={Fy: 006}
Moreover, consider a space I', and a map

g:0 =T, g0 :=r.
We think of v as the parameter of interest (as in the plug-in principle, with
v =Q(Fy) = g(9)).

For instance, in Example 1.1.2, the parameter space is © := {0 = (u, Fp), p €
R, Fy € Fo}, and, when p is the parameter of interest, g(u, Fy) = p.

To test
H’Vo : Fy = 707

we look for a pivot (Tir-Angel). This is a function Z(X,~) depending on the
data X and on the parameter -, such that for all § € ©, the distribution

Py(Z(X,9(0)) <) = G(")

does not depend on 6. We note that to find a pivot is unfortunately not always
possible. However, if we do have a pivot Z(X,~) with distribution G, we can
compute its quantile functions

_ G (& e @

and the test o
¢(X7r70) = { ! ( ’70) ¢ [qL7QR] .
0 else



1.7. HOW TO CONSTRUCT TESTS AND CONFIDENCE SETS 15

Then the test has level « for testing H.,,, with vo = g(6p):

]P90 (¢<X79(90)) = 1) = P90 (Z(ng(e())) > QR> + P@o(Z(X)vg(HO)) < QL)

=1—G(QR)+G(QL)§1—(1—%)+%=a-

As example, consider again the location model (Example 1.1.2). Let
O = {gz(luaFO)v /,LGR, FO G.FO},

with Fp a subset of the collection of symmetric distributions (see (1.2)). Let f
be an equivariant estimator, so that the distribution of i — p does not depend
on .

o If 7y := {Fy} is a single distribution (i.e., the distribution Fj is known), we
take Z (X, ) := i — u as pivot. By the equivariance, this pivot has distribution
G depending only on Fj.

o If o := {Fy(:) = ®(-/o) : o > 0}, we choose i := X,, where X,, = > "I | X;/n

is the sample mean. As pivot, we take

20X, = Y20,

where S2 = Y | (X; — X)?/(n — 1) is the sample variance. Then G is the

Student distribution with n — 1 degrees of freedom.

o If Fy := {Fp symmetric and continuous at x = 0}, we let the pivot be the
sign test statistic:

n
Z(X, 1) =Y UX; > pu}.
i=1
Then G is the Binomial(n, p) distribution, with parameter p = 1/2.

Let Z,(X1,...,X,,7) be some function of the data and the parameter of in-
terest, defined for each sample size n. We call Z,, (X1, ..., X,,7) an asymptotic
pivot if for all 8 € O,

lim IP@(ZTL(XL s 7Xn77) < ) = G()a

n—oo
at all continuity points of G, where the limit G does not depend on 6.

In the location model, suppose X1, ..., X, are the first n of an infinite sequence
of i.i.d. random variables, and that

Fo:={Fy: /xng(x) =0, /deFo(m) < 00}

Then
Zn(Xla . '7XTL):U’) =
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is an asymptotic pivot, with limiting distribution G = ®.

Comparison of confidence intervals and tests

When comparing confidence intervals, the aim is usually to take the one with
smallest length on average (keeping the level at 1 — «). In the case of tests,
we look for the one with maximal power. In the location model, this leads to
studying

Epm [A(X) = p(X))]

for (1 — a)-confidence sets [u, 1], or to studying the power of test ¢(X, po) at

level a. Recall that the power is P, g, (¢(X, po) = 1) for values p # pio.

1.8 An illustration: the two-sample problem

Consider the following data, concerning weight gain/loss. The control group x
had their usual diet, and the treatment group y obtained a special diet, designed
for preventing weight gain. The study was carried out to test whether the diet
works.

control treatment
group  group rank(x) rank(y)

X y
5 6 7 8
0 -5 2
16 -6 10 1
2 1 5 4
9 4 9 6
_ —+
32 0
Table 2

Let n (m) be the sample size of the control group = (treatment group y). The
mean in group x (y) is denoted by Z (y). The sums of squares are SS, :=
S (zi— )% and SS9, := >y — 7). So in this study, one hasn =m =5
and the values T = 6.4, y = 0, S5, = 161.2 and SS, = 114. The ranks, rank(z)
and rank(y), are the rank-numbers when putting all n +m data together (e.g.,
y3 = —6 is the smallest observation and hence rank(yz) = 1).

We assume that the data are realizations of two independent samples, say
X = (X1,...,Xp) and Y = (Y1,...,Y,,), where Xy,...,X,, are ii.d. with
distribution function Fx, and Yi,...,Y,, are i.i.d. with distribution function
Fy. The distribution functions Fx and Fy may be in whole or in part un-
known. The testing problem is:

Hy: Fx = Fy

against a one- or two-sided alternative.
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1.8.1 Assuming normality

The classical two-sample student test is based on the assumption that the data
come from a normal distribution. Moreover, it is assumed that the variance of
Fx and Fy are equal. Thus,

(Fx,Fy)E
{szq><'_“>, Fy:q><'_(“+7)>: ueR, U>O,’y€F}.
g g

Here, I' D {0} is the range of shifts in mean one considers, e.g. I' = R for
two-sided situations, and I' = (—o0, 0] for a one-sided situation. The testing
problem reduces to

H(): "}/ZO.

We now look for a pivot Z(X,Y,~). Define the sample means

and the pooled sample variance
1 n ~ m B
2 2 2
= E X, —X g Y, —-Y)"».
S m+n—2{i:1( ) +j:1(] )}

Note that X has expectation y and variance 02 /n, and Y has expectation p+ 1y
and variance 02/m. So Y — X has expectation v and variance

o? o2 9 (N+m
—+—=0 .
n m nm

The normality assumption implies that

n-—+m

Y — X is ./\/'(7, o? ( ))—distributed.

nm

Y - X -
\/ nm < 7) is N'(0,1)—distributed.
n+m o

To arrive at a pivot, we now plug in the estimate S for the unknown o:

nm [V —-X-—
Z(X,Y,fy)::1/n+m< < 7).

Indeed, Z(X,Y,7) has a distribution G which does not depend on unknown
parameters. The distribution G is Student(n+m —2) (the Student-distribution
with n+m—2 degrees of freedom). As test statistic for Hy : v = 0, we therefore
take

Hence

T = 7Stdent .— 7(X Y, 0).
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The one-sided test at level «, for Hy : v =0 against Hy : v <0, is

L 1 T< _tn+m—2(1 — Oé)
¢X,Y) = {0 T > —thimoa(l—a)’

where, for v > 0, t,(1 — a) = —t,(«) is the (1 — a)-quantile of the Student(v)-
distribution.

Let us apply this test to the data given in Table 2. We take a = 0.05. The
observed values are 7 = 6.4, j = 0 and s?> = 34.4. The test statistic takes the
value —1.725 which is bigger than the 5% quantile ¢g(0.05) = —1.9. Hence, we
cannot reject Hy. The p-value of the observed value of T is

p—value :=IP,—o(T < —1.725) = 0.06.

So the p-value is in this case only a little larger than the level o = 0.05.

1.8.2 A nonparametric test

In this subsection, we suppose that F'x and Fy are continuous, but otherwise
unknown. The model class for both F'x and Fy is thus

F :={all continuous distributions}.

The continuity assumption ensures that all observations are distinct, that is,
there are no ties. We can then put them in strictly increasing order. Let
N =n+m and Zy,...,ZyN be the pooled sample

Zi =X, 1=1,...,n, Zyy;:=Y;, j=1,...,m.

Define
R; :=rank(Z;), i=1,...,N.

and let
Z(l) < e Z(N)

be the order statistics of the pooled sample (so that Z; = Z(g,y (i =1,...,n)).
The Wilcoxon test statistic is

n
T = TWilcoxon — 2 :Rz
=1

One may check that this test statistic T can alternatively be written as

n(n+1).

T=#{Y;<Xi}+—

For example, for the data in Table 2, the observed value of T is 34, and

n(n+1)

= 15.
5 )

#{yj < JIZ} = 19,
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Large values of T' mean that the X; are generally larger than the Y;, and hence
indicate evidence against Hy.

To check whether or not the observed value of the test statistic is compatible
with the null-hypothesis, we need to know its null-distribution, that is, the
distribution under Hy. Under Hy : Fx = Fy, the vector of ranks (Ry,..., R,)
has the same distribution as n random draws without replacement from the
numbers {1,..., N}. That is, if we let

r = (T17...,7'n,rn+1a"'7rN>

denote a permutation of {1,..., N}, then

IPHO <(R1,...,Rn,Rn+1,...RN) = I') = —

(see Theorem 1.8.1), and hence

Py (1 =)= T 220

This can also be written as

1 n
Pry(T=1) = n#{r < <rpn<rpp1 <---<ry: Y ri=th
i=1

(n)

So clearly, the null-distribution of 1" does not depend on Fx or Fy. It does
however depend on the sample sizes n and m. It is tabulated for n and m
small or moderately large. For large n and m, a normal approximation of the
null-distribution can be used.

Theorem 1.8.1 formally derives the null-distribution of the test, and actually
proves that the order statistics and the ranks are independent. The latter result
will be of interest in Example 2.10.4.

For two random variables X and Y, use the notation

XQY

when X and Y have the same distribution.

Theorem 1.8.1 Let Zq,...,Zn be i.i.d. with continuous distribution F on
R. Then (Zy, ..., Zn)) and R := (Ry,..., Ry) are independent, and for all
permutations r := (r1,...,rn),

1

P(R=r)= NI

Proof. Let Zg, := Z;), and Q := (Q1,...,Qn). Then

R=r & Q=r':=q,
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1

where r~! is the inverse permutation of r.! For all permutations q and all

measurable maps f,

P21y Z) 2 f( 2 Zay).

Therefore, for all measurable sets A ¢ R, and all permutations q,

]P((Zl,...,ZN)eA, Zl<...<ZN>

:]P<(Zq1...,ZqN)eA, Zg, <...<ZqN>.

Because there are N! permutations, we see that for any q,

]P<(Z(1),...,Z(n)) € A> :N!IP<(Zq1...,ZqN) €A Z,<...< ZqN)

= N!IP((Z(D,...,Z(N)) €A R= I'),
where r = q~!. Thus we have shown that for all measurable A, and for all r,
1
]P((Z(l), . Z(N)) €A R= I') = ]V!]P((Z(l)’ ceey Z(n)) € A). (1.5)
Take A = RY to find that (1.5) implies
1
Plug this back into (1.5) to see that we have the product structure
]P((Z(l), e 7Z(N)) €A R= I‘> = ]P((Z(l), RN Z(n)) S A)]P(R = I'>,

which holds for all measurable A. In other words, (Z(),..., Z(y)) and R are
independent. U

1.8.3 Comparison of Student’s test and Wilcoxon’s test

Because Wilcoxon’s test is ony based on the ranks, and does not rely on the
assumption of normality, it lies at hand that, when the data are in fact normally
distributed, Wilcoxon’s test will have less power than Student’s test. The loss

Here is an example, with N = 3:
(21722723) = ( 5 ) 6 ) 4)

(ri,r2,m3)=(2,3,1)
(q1>Q27q3):(3’ 17 2)
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of power is however small. Let us formulate this more precisely, in terms of
the relative efficiency of the two tests. Let the significance « be fixed, and
let B be the required power. Let n and m be equal, N = 2n be the total
sample size, and [N Student (I Wilcoxon) he the number of observations needed to
reach power  using Student’s (Wilcoxon’s) test. Consider shift alternatives,
ie. Fy(-) = Fx(- — ), (with, in our example, v < 0). One can show that
[ Student /prWileoxon g approximately .95 when the normal model is correct. For
a large class of distributions, the ratio NStudent JINWileoxon ranges from .85 to oo,
that is, when using Wilcoxon one generally has very limited loss of efficiency as
compared to Student, and one may in fact have a substantial gain of efficiency.

1.9 How to construct estimators

Consider i.i.d. observations Xi,...,X,,, copies of a random variable X with
distribution P € {Fy : 6 € ©}. The parameter of interest is denoted by

v=g() €T

1.9.1 Plug-in estimators

For real-valued observations, one can define the distribution function
F()=PX <)

An estimator of I is the empirical distribution function
1 n
Fo() = nZ}l{Xi <-}h
1=

Note that when knowing only F),, one can reconstruct the order statistics
Xy < ... < X(»), but not the original data Xi,...,X,. Now, the order
at which the data are given carries no information about the distribution P. In
other words, a “reasonable”? estimator T'= T'(X1, ..., X,,) depends only on the
sample (X1,...,X,) via the order statistics (X(1),... X)) (i.e., shuffling the
data should have no influence on the value of T'). Because these order statistics
can be determined from the empirical distribution F,, we conclude that any
“reasonable” estimator T' can be written as a function of Fn:

T= Q(Fn)a
for some map Q.

Similarly, the distribution function Fy := Pyp(X < -) completely characterizes
the distribution P. Hence, a parameter is a function of Fy:

v = g(0) = Q(Fp).

ZWhat is “reasonable” has to be considered with some care. There are in fact “reasonable”
statistical procedures that do treat the {X;} in an asymmetric way. An example is splitting
the sample into a training and test set (for model validation).
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If the mapping @ is defined at all Fy as well as at E,, we call Q(Fn) a plug-in
estimator of Q(Fp).

The idea is not restricted to the one-dimensional setting. For arbitrary obser-
vation space X, we define the empirical measure

1 n
P,==% ox,.
n n; X;

where §, is a point-mass at z. The empirical measure puts mass 1/n at each
observation. This is indeed an extension of X = R to general X', as the empirical
distribution function E), jumps at each observation, with jump height equal to
the number of times the value was observed (i.e. jump height 1/n if all X; are
distinct). So, as in the real-valued case, if the map @ is defined at all Py as well
as at P,, we call Q(P,) a plug-in estimator of Q(Py).

We stress that typically, the representation v = ¢(#) as function @ of P is not
unique, i.e., that there are various choices of (). Each such choice generally
leads to a different estimator. Moreover, the assumption that () is defined at
P, is often violated. One can sometimes modify the map @ to a map @, that,
in some sense, approximates Q) for n large. The modified plug-in estimator then
takes the form Q,(P,).

1.9.2 The method of moments

Let X € R and suppose (say) that the parameter of interest is € itself, and
that © C RP. Let p1(0), ..., up(0) denote the first p moments of X (assumed
to exist), i.e.,

1;(0) = EgX? :/a:deg(x), j=1...,p.

Also assume that the map
m: 0 — RP

defined by
m(0) = [u1(0), -, up(0)],
has an inverse
mil(ﬂlu cee aﬂp)a
for all [p1, ..., pup] € M (say). We estimate the p; by their sample counterparts

ol . :
fij 3=n;X¢j=/$den($), j=1,...,p.

When [fi1, ..., fip] € M we can plug them in to obtain the estimator

Example
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Let X have the negative binomial distribution with known parameter & and
unknown success parameter 6 € (0,1):

k+x—1
T

Py(X =x) = ( >9k(1—9)$,$€{0,1,...}.

This is the distribution of the number of failures till the k™ success, where at
each trial, the probability of success is 0, and where the trials are independent.
It holds that

7 =m(6).
Hence
-1 . k
m~(p) = e
and the method of moments estimator is
k nk number of successes

é:

X+k S X +nk ~  number of trails

Example

Suppose X has density
po(z) = 0(1+2)" 09 2 >0,

with respect to Lebesgue measure, and with § € © C (0,00). Then, for § > 1

1

FEpX = —— :=m(0

with inverse 14

-1 K
m=(u) =

7

The method of moments estimator would thus be
. 14+ X
h— 1t
X

However, the mean FEyX does not exist for # < 1, so when © contains values
f < 1, the method of moments is perhaps not a good idea. We will see that the
maximum likelihood estimator does not suffer from this problem.

1.9.3 Likelihood methods

Suppose that P := {P : § € O} is dominated by a o-finite measure v. We

write the densities as
_ dPy

dy,&e@.

Do -

Definition The likelihood function (of the data X = (X1,..., X)) is

Lx () := [ [ po(X3).
=1
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The MLE (mazimum likelihood estimator) is

0= Lx(19).
arg max Lx (V)

Note We use the symbol 9 for the variable in the likelihood function, and the
slightly different symbol 6 for the parameter we want to estimate. It is however
a common convention to use the same symbol for both (as already noted in the
earlier section on estimation). However, as we will see below, different symbols
are needed for the development of the theory.

Note Alternatively, we may write the MLE as the maximizer of the log-likelihood
n
0= log Lx (V) = 1 X;).
arg maxlog Lx (J) = arg max ; g po(X;)

The log-likelihood is generally mathematically more tractable. For example,
if the densities are differentiable, one can typically obtain the maximum by
setting the derivatives to zero, and it is easier to differentiate a sum than a
product.

Note The likelihood function may have local maxima. Moreover, the MLE is
not always unique, or may not exist (for example, the likelihood function may
be unbounded).

We will now show that maximum likelihood is a plug-in method. First, as noted
above, the MLE maximizes the log-likelihood. We may of course normalize the
log-likelihood by 1/n:

. 1 &
6 = N X,).
argrlgleagn; og py(X;)

Replacing the average Y, log py(X;)/n by its theoretical counterpart gives

Eyl X
arg max Ey og py(X)

which is indeed equal to the parameter # we are trying to estimate: by the
inequality logx <2z —1, x > 0,

py(X) py(X) _
Eglogpe(X) < Ee(pg(X) — 1) = 0.

(Note that using different symbols ¢ and € is indeed crucial here.) Chapter 6
will put this is a wider perspective.

Example

We turn back to the previous example. Suppose X has density

po(z) = 0(1+ )"0z >0,
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with respect to Lebesgue measure, and with §# € © = (0,00). Then

log py(x) =log ¥ — (1 + V) log(1 + ),

d 1
S ogpy(x) = 5 — log(1+ ),

We put the derivative of the log-likelihood to zero and solve:

oS log(1 4 X)) =0
0 =1

1
{32 log(1 + Xi)}/n’

(One may check that this is indeed the maximum.)

= 0=

Example

Let X € R and § = (u,0?), with 4 € R a location parameter, ¢ > 0 a scale
parameter. We assume that the distribution function Fy of X is

Fy(-) = Fo <—0M>’

where Fj is a given distribution function, with density fy w.r.t. Lebesgue mea-
sure. The density of X is thus

po(-) = %fo <0M)

Case 1 If Fy = ® (the standard normal distribution), then

so that

Do (CL’) = W €xXp |:_ 20_2
The MLE of p resp. o2 is

i=1

Case 2 The (standardized) double exponential or Laplace distribution has den-
sity

SO
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The MLE of p resp. o is now

2 n
[t = sample median, ¢ = £ Z | X — o]
nia

Example

Here is a famous example, from Kiefer and Wolfowitz (1956), where the like-
lihood is unbounded, and hence the MLE does not exist. It concerns the case
of a mixture of two normals: each observation, is either AV(u, 1)-distributed or
N (u, 0?)-distributed, each with probability 1/2 (say). The unknown parameter
is 0 = (u,0?), and X has density

po() = 36(x — ) + 5o 6((z ~ /o), ¥ € R,

w.r.t. Lebesgue measure. Then

1 1

(o) =TT (3606 - 1) + ool = /) )
i=1

Taking i = X7 yields

n

Ex(X0,%) = = (5 T (5008 = X0+ 50(0 = X0/9) ).

i=2
Now, since for all z # 0

1
lim —¢(2/5) = 0
5%1645(2/0) ,

we have

n

: 1 1 5 Wy |
%lfoli_2<2¢(Xi = X1) + o= o((Xi - Xl)/O’)) = H F9(Xi = X1) > 0.

It follows that
lim Lx (X1,6°%) = oo.
510

Asymptotic tests and confidence intervals based on the likelihood

Suppose that © is an open subset of RP. Define the log-likelihood ratio
Z(X,0) := 2{10g Lx (6) — log LX(H)}.

Note that Z(X,0) > 0, as f maximizes the (log)-likelihood. We will see in
Chapter 6 that, under some regularity conditions,

2(X.,0) 25 32, v 0.
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D e
Here, “ =% ” means convergence in distribution under Py, and Xf, denotes the

Chi-squared distribution with p degrees of freedom.
Thus, Z(X,0) is an asymptotic pivot. For the null-hypotheses
H() 1 0= 90,

a test at asymptotic level v is: reject Hy if Z(X, 6p) > x3(1—a), where x3(1—a)
is the (1 —a)-quantile of the y2-distribution. An asymptotic (1 —a)-confidence
set for 6 is

{00 Z(X.6) < 31 - a)}

= {0 : 2log Lx (0) < 2log Lx (0) + x2(1 — a)}.

Example

Here is a toy example. Let X have the N (u, ) istribution, with © € R un-
known. The MLE of pu is the sample average i = X. It holds that

log Lx (1) = & log(2m) - %Z(X - X

and

2 iog L () ~log Lx(1) } = (X —

The random variable V(X —p) is N(0, 1)-distributed under IP,,. So its square,
n(X — p)?, has a x3-distribution. Thus, in this case the above test (confidence
interval) is exact.
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Chapter 2

Decision theory

Notation

In this chapter, we denote the observable random variable (the data) by X € X,
and its distribution by P € P. The probability model is P := {P : § € O},
with # an unknown parameter. In particular cases, we apply the results with
X being replaced by a vector X = (Xy,...,X,), with X1,..., X, ii.d. with
distribution P € {Py : §# € ©} (so that X has distribution IP := [, P €
[Py =TI, Py: 6€0}).

2.1 Decisions and their risk

Let A be the action space.

e A =R corresponds to estimating a real-valued parameter.
e A =1{0,1} corresponds to testing a hypothesis.

e A =10,1] corresponds to randomized tests.

e A = {intervals} corresponds to confidence intervals.

Given the observation X, we decide to take a certain action in A. Thus, an
action is a map d : X — A, with d(X) being the decision taken.

A loss function (Verlustfunktion) is a map
L:OxA—-R,

with L(6, a) being the loss when the parameter value is 6 and one takes action
a.

The risk of decision d(X) is defined as

R(0,d) == EyL(0,d(X)), 0 € ©.

29
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Example 2.1.1 In the case of estimating a parameter of interest g(0) € R, the
action space is A = R (or a subset thereof). Important loss functions are then

L(0,a) == w(®)|g(0) — al",

where w(+) are given non-negative weights and r > 0 is a given power. The risk
is then
R(0,d) = w(0)Eg|g(0) — d(X)]".

A special case is taking w = 1 and r = 2. Then
R(6,d) = Eolg(6) — d(X)[”
is called the mean square error.
Example 2.1.2 Consider testing the hypothesis
Hy: 0 €06
against the alternative
Hy: 0 €0y.

Here, ©g and O, are given subsets of © with ©3 N ©; = (). As action space, we
take A = {0,1}, and as loss

1 iffeByanda=1
L(@,a)—{c f6e® anda=0 .
0 otherwise

Here ¢ > 0 is some given constant. Then

Pyd(X)=1) ifde0Bg
R(0,d) = { cPy(d(X)=0) ifh e,
0 otherwise

Thus, the risks correspond to the error probabilities (type I and type II errors).

Note

The best decision d is the one with the smallest risk R(f,d). However, 6 is not
known. Thus, if we compare two decision functions d; and do, we may run into
problems because the risks are not comparable: R(f,d;) may be smaller than
R(6,d>) for some values of 0, and larger than R(6, d2) for other values of 6.

Example 2.1.3 Let X € R and let g(0) = E9X := u. We take quadratic loss
L(0,a) := |p— al?.
Assume that varg(X) = 1 for all §. Consider the collection of decisions
dA(X) := AX,
where 0 < A\ < 1. Then

R(0,dy) = var(AX) + biasj(\X)
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=X+ (A —1)%%
The “optimal” choice for A would be
2

I

Aopt (= ——=
opt 1+/1127

because this value minimizes R(6, dy). However, Aqp¢ depends on the unknown
M, 50 dy,,, (X) is not an estimator.

Various optimality concepts
We will consider three optimality concepts: admissibility (zuldssigkeit), mini-
mazx and Bayes.

2.2 Admissibility

Definition A decision d’ is called strictly better than d if
R(9,d") < R(0,d), V 0,
and
360: R(O,d) < R(0,d).
When there exists a d' that is strictly better than d, then d is called inadmissible.

Example 2.2.1 Let, forn > 2, Xy,..., X, beiid., with g(0) := Ep(X;) := u,
and var(X;) = 1 (for all 4). Take quadratic loss L(6,a) := |u — a|*>. Consider
d(X1,...,Xp) = X, and d(X1,...,X,) := X1. Then, V 0,

mmw:%R@@:L

so that d is inadmissible.

Note

We note that to show that a decision d is inadmissible, it suffices to find a
strictly better d’. On the other hand, to show that d is admissible, one has to
verify that there is no strictly better d’. So in principle, one then has to take
all possible d’ into account.

Example 2.2.2 Let L(0,a) := |g(#) —a|" and d(X) := g(6p), where 6 is some
fixed given value.

Lemma Assume that Py, dominates Py L for all . Then d is admissible.

Proof.

Let P and @ be probability measures on the same measurable space. Then P dominates
Q if for all measurable B, P(B) = 0 implies Q(B) = 0 (Q is absolut stetig beziiglich P).
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Suppose that d’ is better than d. Then we have
Egy|g(60) — d'(X)|" < 0.
This implies that
d'(X) = g(6y), Py,—almost surely. (2.1)

Since by (2.1),
Py, (d'(X) # g(00)) =0

the assumption that Py, dominates Fp, V 6, implies now

Py(d'(X) # g(6o)) =0, ¥ 6.

That is, for all 6, d'(X) = g(6p), Ps-almost surely, and hence, for all 6, R(6,d') =
R(,d). So d' is not strictly better than d. We conclude that d is admissible. O

Example 2.2.3 We consider testing
Hy: 0=20,
against the alternative
Hy: 0=04.
We let A =[0,1] and let d := ¢ be a randomized test. As risk, we take

R(©,9) "{1—E9¢<X), o—0,

We let po (p1) be the density of Py, (Pp,) with respect to some dominating
measure v (for example v = Py + Py, ). A Neyman Pearson test is

1 ifp1/po>c
onp =4 q ifpi/po=c .
0 ifpi/po <c

Here 0 < ¢ <1, and 0 < ¢ < oo are given constants. To check whether ¢np is
admissible, we first recall the Neyman Pearson Lemma.

Neyman Pearson Lemma Let ¢ be some test. We have

R(01, onp) — R(61, ) < c[R(bo, ) — R(bo, dnp))-

Proof.
R(01,¢np) — R(01,0) = /(Cf) — ONP)PI

= / (¢ — onp)p1 + / (¢ — onP)p1 + / (¢ — énP)PL
p1/po>c p1/Po=c

p1/po<c

< c/pl/p0>c(¢ — énp)po + C/pl/poc(d5 — énp)po + c/ (6 — dxp)po

p1/po<c
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= c[R(0o, ¢) — R(bo, onp)]-
O
Lemma A Neyman Pearson test is admissible if and only if one of the following
two cases hold:
i) its power is strictly less than 1,

or
ii) it has minimal level among all tests with power 1.

Proof. Suppose R(0y,¢) < R(6p,éxp). Then from the Neyman Pearson
Lemma, we know that either R(61,¢) > R(01,¢np) (i-e., then ¢ is not bet-
ter then ¢np), or ¢ = 0. But when ¢ = 0, it holds that R(6;, ¢np) = 0, i.e. then
¢np has power one.

Similarly, suppose that R(61,¢) < R(01, ¢xp). Then it follows from the Neyman
Pearson Lemma that R(6y, ®) > R(0y, ¢np), because we assume ¢ < 0o.

2.3 Minimaxity

Definition A decision d is called minimax if

sup R(0,d) = infsup R(0,d).
0 A

Thus, the minimax criterion concerns the best decision in the worst possible
case.

Lemma A Neyman Pearson test ¢np is minimax, if and only if R(0y, ¢np) =
R(61, onp)-

Proof. Let ¢ be a test, and write for j = 0, 1,
rj = R(0;, onp), 75 = R(0;, ).

Suppose that rg = r; and that ¢np is not minimax. Then, for some test ¢,

/

maxr;

< maxrj.
J J

This implies that both
7"6 <70, 7“,1 <7

and by the Neyman Pearson Lemma, this is not possible.

Let S = {(R(0o, ¢), R(61,9)) : ¢: X — [0,1]}. Note that S is convex. Thus, if
ro < r1, we can find a test ¢ with ro < r(; <7 and r} < r1. So then ¢xp is not
minimax. Similarly if rg > ry.
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2.4 Bayes decisions

Suppose the parameter space © is a measurable space. We can then equip it
with a probability measure II. We call II the a prior: distribution.

Definition The Bayes risk (with respect to the probability measure 11) is

r(I1, d) = / R, d)dII(9).
©
A decision d is called Bayes (with respect to I1) if
r(IL,d) = ig,fr(l_[, d).

If 1T has density w := dII/du with respect to some dominating measure p, we
may write

r(Il,d) = /@R(Q?,d)w(ﬁ)d,u(ﬁ) = Tw(d).

Thus, the Bayes risk may be thought of as taking a weighted average of the
risks. For example, one may want to assign more weight to “important”

of 6.

values

Example 2.4.1 Consider again the testing problem
Hy: 0=20

against the alternative
Hi: 0=0,.

Let L(6p,a) :=a and L(01,a) :=1—a, w(fp) =: wp and w(f;) =: w1 = 1 — wy.
Then
(@) == woR(bo, ) + w1 R(01, ¢).

We take 0 < wg=1—wq < 1.
Lemma Bayes test is

1 if p1/po > wo/wy
¢Bayes = q ifpl/po = ’UJ()/’lUl .
0 if p1/po < wo/wy

Proof.
rul$) = wo / épo + wn(l - /¢p1>

= /¢(wopo —wip1) + wi.

So we choose ¢ € [0,1] to minimize ¢(wopy — wip1). This is done by taking

1 if wopg — wip1 <0
¢ =19 q if wopg—wip1 =0 ,
0 if wopo — wipr > 0
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where for ¢ we may take any value between 0 and 1. O

Note that
2rw(¢Bayes) =1- / |w1p1 - w0p0|-

In particular, when wy = w; = 1/2,

2Tw(¢Bayes) =1- / ’pl - P0|/27

i.e., the risk is large if the two densities are close to each other.

2.5 Intermezzo: conditional distributions

Recall the definition of conditional probabilities: for two sets A and B, with
P(B) # 0, the conditional probability of A given B is defined as

P(A|B) = P(;l(;)B)
It follows that B
.mBAw:mAwH{g,

and that, for a partition {B;}?

P(A) =) P(AB))P(B)).

J
Consider now two random vectors X € R” and Y € R™. Let fxy(-,-), be the

density of (X,Y) with respect to Lebesgue measure (assumed to exist). The
marginal density of X is

Ix () —/fx,y(-,y)dy,

and the marginal density of YV is
#v () = [ Fxy (i,

Definition The conditional density of X given Y =y is

fetaly) = P o e

2{B,} is a partition if B; N By = () for all j # k and P(U;B;) = 1.
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Thus, we have

fr(y)

n+m
Fx(@) (z,y) e R"™,

fy(ylz) = fx(xly)

and

fe(@) = [ Ixl) @iy, o€ R
Definition The conditional expectation of g(X,Y) given Y =y is

Elg(X, V)Y =] = / fx(@ly)g(z, v)de.

Note thus that
Elg1(X)g2 (Y)Y = y| = g2(y) E[g1 (X)|[Y = y].

Notation We define the random variable E[g(X,Y)|Y] as
Elg(X,Y)[Y]:=h(Y),
where h(y) is the function h(y) := E[g(X,Y)|Y = y].

Lemma 2.5.1 (Iterated expectations lemma) It holds that

E[[E[goc Ym] — Bg(X,Y).

Proof. Define
h(y) == E[g(X, Y)Y =y].

Then
E(Y) = / h(y) fy (y)dy = / Eg(X, Y)Y = 4] fv(y)dy

— / / o, y) Fxy (@, y)dady = Eg(X,Y).

2.6 Bayes methods

Let X have distribution P € P :={Py: 0 € ©}. Suppose P is dominated by a
(o-finite) measure v, and let pg = dPy/dv denote the densities. Let II be an a
priori distribution on O, with density w := dII/du. We now think of py as the
density of X given the value of 8. We write it as

po(x) = p(x|0), = € X.
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Moreover, we define

o) 5= [ o100 @)du(o)
Definition The a posteriori density of 0 is

w(¥|z) :p(m|19)z;<(f)), Ve, zrelX.

Lemma 2.6.1 Given the data X = x, consider 8 as a random wvariable with
density w(d|x). Let

lw,0) = E[LO,0)|X = o] = | LO.a)u(dfo)du(0),
S}
and
d(x) := argminl(z, a).
Then d is Bayes decision dpayes-
Proof.
rald) = | RO, yw(0)du(v)
e

:/@[/)(L(ﬁ,d’(x))p(:ﬁh?)du(zv)]w(ﬁ)dﬂ(ﬁ)
:/XU@ L(19,d’(x))w(ﬁ\x)du(ﬁ)}p(«T)dV(x)
- |t d@ppie)iviz)

> /X Iz, d(x))p(z)dv(z)
= 1y (d).

Example 2.6.1 For the testing problem
HO 0= 90
against the alternative

Hy: 0 = 61, with loss function

L(6g,a) :=a, L(01,a) :=1—a, a € {0,1},
we have

Iz, ¢) = pwopo(z)/p(x) + (1 — @)wipi(x)/p(z).
Thus,

q if wipr = woepo .

1 if wipr > wopo
argminli(-, ¢) =
¢ 0 if wip1 < wopo
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In the next example, we shall use:

Lemma. Let Z be a real-valued random variable. Then

argmin E(Z — a)? = EZ.
a€R

Proof.
E(Z —a)* = var(Z) + (a — EZ)?.

O

Example 2.6.2 Consider the case A =R and © CR . Let L(6,a) := |0 — a|?.
Then
dBayes(X) = E(0|X).

Example 2.6.3 Consider again the case © C R, and A = O, and now with
loss function L(6,a) :=1{|0 — a| > ¢} for a given constant ¢ > 0. Then

l(z,a) =1I(]0 —a| > | X =2x) = / w(¥|x)dd.
[9—a|>c
We note that for ¢ — 0

1 —l(z,a) T(§—a|<c|X =) _ _
2% 2 ~ wiale) _p(”ﬂa)p(w)'

g
—

)
=

Thus, for ¢ small, Bayes rule is approximately do(z) := arg max,ceo p(z|a)w(a).
The estimator dyp(X) is called the maximum a posteriori estimator. If w is the
uniform density on © (which only exists if © is bounded), then do(X) is the
maximum likelihood estimator.

Example 2.6.4 Suppose that given 6, X has Poisson distribution with pa-
rameter 0, and that 6 has the Gamma(k, \)-distribution. The density of 0 is
then

w(9) = N9 te ™ /T (k),

where

F(k:):/ e *2F 1z,
0

The Gamma(k, A) distribution has mean

Jor :/ Jw(@)dd =~
; X

The a posteriori density is then

w(?)

w(vle) = plefd) oS

gV Negh=le=A0 /1 (k)
z! p(z)
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= e_ﬁ(H’\)ﬁHx_lc(fc, k, ),

where c(z, k, A) is such that

/w(ﬁ]w)dﬁ =1.

We recognize w(¥|z) as the density of the Gamma(k + z,1 + \)-distribution.

Bayes estimator with quadratic loss is thus
E+X
EOX)=——.

(91X) 14+ A

The maximum a posteriori estimator is

E+X -1
14+

Example 2.6.5 Suppose given 6, X has the Binomial(n, #)-distribution, and
that 6 is uniformly distributed on [0, 1]. Then

wlile) = ()01 = 0 (o)

This is the density of the Beta(z+1, n—x+1)-distribution. Thus, with quadratic

loss, Bayes estimator is
X+1

n+2°

E(0|X) =

More generally, suppose that X is binomial(n, §) and that 6 has the Beta(r, s)-
prior

L(r+s)

w(9) = Lot

I'(r)L(s)

Here r and s are given positive numbers. The prior expectation is

91— 9) T 0< 9 < 1.

,
r+s

E0 =

Bayes estimator under quadratic loss is the posterior expectation

X+r

BOX) = s

2.7 Discussion of Bayesian approach

A main objection against the Bayesian approach is that it is generally subjective.
The final estimator depends strongly on the choice of the prior distribution. On
the other hand, Bayesian methods are very powerful and often quite natural.
The prior may be inspired by or estimated from previous data sets, in which
case the above subjectivity problem becomes less pregnant. Furthermore, in
complicated models with many unknown parameters, Bayesian methods are a
welcome tool for developing sensible algorithms.
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Credibility sets. A (frequentist) confidence set for a parameter of interest can
be hard to find, and is also less easy to explain to “non-experts”. The Bayesian
version of a confidence set is called a credibility set, which generally is seen as
an intuitively much clearer concept. For example, in the case of a real-valued
parameter 0, a (1 — «)-credibility interval is defined as

I:=1[0.(X),0r(X)],

where the endpoints éL and éR are chosen in such a way that

Or(X)
/ w(¥X)dd = (1 — ).
0r,(X)

Thus, it is the set which has posterior probability (1 —«). A (1 — a)-credibility

set is generally not a (1 — a)-confidence set, i.e., from a frequentist point of
view, its properties are not always clear.

Pragmatic point of view. The Bayesian approach is fruitful for the construc-
tion of estimators. One can then proceed by studying the frequentist properties
of the Bayesian procedure. For example, in the Binomial(n,f)-model with a
uniform prior on 6, the Bayes estimator is

X +1
n+2°

éBayes (X) -

Given this estimator, one can “forget” we obtained it by Bayesian arguments,
and study for example its (frequentist) mean square error.

Complexity regularization. Here is a “toy” example, where a Bayesian
method helps constructing a useful procedure. Let X1,..., X, be independent
random variables, where X; is N (0;,1)- distributed. The n parameters 6; are
all unknown. Thus, there are as many observations as unknowns, a situation
where complexity regularization is needed. Complexity regularization means
that in principle, one allows for any parameter value, but that one pays a
price for choosing “complex” values. What “complexity” means depends on the
situation at hand. We consider in this example the situation where complexity
is the opposite of sparsity, where the sparseness of a vector 9 is defined as its
number of non-zero entries. Consider the estimator

) = i Xi —9i)* +2 i
0 argmﬁlrl;( ¥;)° + )\Z;iﬂ,

where A > 0 is a regularization parameter. Note that when A = 0, one has
0; = X; for all i, whereas on the other extreme, when A = oo, one has 6= 0.
The larger A\, the more sparse the estimator will be. In fact, it is easy to verify
that fori=1,...,n,

0 X < A

. Xi— A X;> A
o
X+ X< =)
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This is called the soft thresholding estimator. The procedure corresponds to
Bayesian maximum a posteriori estimation, with double-exponential prior. In-
deed, suppose that the prior is 64, ...,#6, i.i.d. with density

w(z) = 7_\1/§exp [— \/?Z'], z € R,

where 7 > 0 is the prior scale parameter ( 72 is the variance of this distribution).
Given X1,...,X,, the posterior distribution of the vector 6 is then

w(¥X1,...,X,) x

ZE 0] .y x|V ]

—n/2 o
(2) exp 5

Thus, 6 with regularization parameter A = 21/2/7 is the maximum a posteriori
estimator.

Bayesian methods as theoretical tool. In Chapter 5 we will illustrate the
fact that Bayesian methods can be exploited as a tool for proving for example
frequentist lower bounds. We will see for instance that the Bayesian estimator
with constant risk is also the minimax estimator. The idea in such results is to
look for “worst possible priors”.

2.8 Integrating parameters out

Striving at flexible prior distributions one can model them depending on another
“hyper-parameter”, say 7, i.e., in formula

w(¥) == w(V|1).

Keeping 7 fixed and integrating ¢ out, the density of X is then

Belr) = / Pl 9)w(O]7)dpu(9).

One can proceed by estimating 7, using for instance maximum likelihood (this
is generally computationally quite hard), or the methods of moments. One then
obtains a prior w(¥|7) with estimated parameter 7. The prior is thus based on
the data. The whole procedure is called empirical Bayes.

Example 2.8.1 Suppose X7, ..., X, are independent and X; has a Poisson(6;)-
distribution, ¢« = 1,...,n. Assume moreover that #;,...,0, are ii.d. with
Gamma(k, \)-distribution, i.e., each has prior density

w(z|k, ) = e M 2F7INE/D(E), 2 > 0.

Both k£ and A are considered as hyper-parameters. Then the density of X1,..., X,
is

n o n i \F
f)(xl,...,xn|k,)\)oc/<eZiﬁﬁiHﬁfle)‘ZiﬂmHﬁf_lF(k)) ddy -+ - d,,.
=1 =1
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]
i=1

where p := A/(1 + A). Thus, under p(-|k, A), the observations X1,..., X, are
independent and X; has a negative binomial distribution with parameters k& and
p (check the formula for the negative binomial distribution, see e.g. the first
example in Subsection 1.9.2). The mean and variance of the negative binomial
distribution can be calculated directly or looked up in a textbook. We then
find (fori=1,...,n),
E(Xlk, ) = =P _ K
D A

and

E(1—p) k(14X
var(X;|k, A) = e =z

We use the method of moments to estimate k£ and A. Let X,, be the sample

mean and S2 := Y"1 | (X; — X)?/(n — 1) be the sample variance. We solve

k_x, FOEN o
A A2
This yields
. _
k= X"_ , A= X”_ .

For given k and )\, the Bayes estimator of 6; is given in Example 2.6.4. We now
insert the estimated values of k and A to get an empirical Bayes estimator

~ )(Z + ]27
0; = =
1+ A
The MLE of 6; is X; itself (i = 1,...,n). We see that the empirical Bayes
estimator uses all observations to estimate a particular #;. The empirical Bayes
estimator 6; is a convex combination (1 — a)X; + aX,, of X; and X,,, with

a = X, /5?2 generally close to one if the pooled sample has mean and variance
approximately equal, i.e., if the pooled sample is “Poisson-like”.

= X;(1—-X,/S?)+ X2/82, i=1,...,n.

2.9 Intermezzo: some distribution theory

2.9.1 The multinomial distribution

In a survey, people were asked their opinion about some political issue. Let X
be the number of yes-answers, Y be the number of no and Z be the number
of perhaps. The total number of people in the survey isn = X +Y 4+ Z. We
consider the votes as a sample with replacement, with p; = P(yes), po = P(no),
and p3 = P(perhaps), p1 + p2 + p3 = 1. Then

PX=xY=y Z=2)= <x Z Z>p‘fpgp§, (x,y,2) €{0,...,n}, z+y+z =n.
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n n!
ryz) alylzl

It is called a multinomial coefficient.

Here

Lemma The marginal distribution of X is the Binomial(n, py )-distribution.

Proof. For z € {0,...,n}, we have
n—r
PX=z)=) PX=zY=yZ=n-z-y)
y=0
n—x
_ n r Y n—r—y
= < )p1p2(1 —p1 —p2)
TYn—x—y
y=0
n ~— [n—=z n
(M (", )= = (M)t
x = Y x

O

Definition We say that the random vector (Ni, ..., Ni) has the multinomial
distribution with parameters n and p1,...,pr (with Z§:1 pj = 1), if for all
(n1y...,nk) €10,...,n}*, with ny +--- +ny = n, it holds that

n
P<N1:n1;-~-7Nk:nk):< >p71L1___ka.

n o n!

Example 2.9.1 Let X;,..., X, be i.i.d. copies of a random variable X € R
with distribution F', and let —cc = ag < a1 < -+ < ap_1 < ap = oo. Define,
forj=1,...,k,

Here

pj = P(X & (aj_l,aj]) = F(aj) — F(aj_l),

N; X j—1, Uy - -
i L Sjj Lol Fn(aj) — Fa(aj-1).

Then (Ni, ..., Ni) has the Multinomial(n, p1, ..., py)-distribution.

2.9.2 The Poisson distribution

Definition A random variable X € {0,1,...} has the Poisson distribution with
parameter A > 0, if for all x € {0,1,...}

)\Z’

P(X =z)=e =

z!’
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Lemma Suppose X and Y are independent, and that X has the Poisson())-
distribution, and Y the Poisson(u)-distribution. Then Z := X +Y has the
Poisson(A + p)-distribution.

Proof. For all z € {0,1,...}, we have
z
P(Z=2 =Y P(X=u1Y =z-1)
=0

z z

)\$ zZ—x
- P —zma) =Y e e
_IZ:%P(X_JC)P(Y_Z m)_;)e e u(z_x)!
= ef(/\JrN)l Z z NP = e*(A+“)M'
2! —\z 1

O

Lemma Let Xi,..., X, be independent, and (for i = 1,...,n), let X; have
the Poisson(\;)-distribution. Define Z =% " | X;. Let z € {0,1,...}. Then

the conditional distribution of (Xi,...,X,) given Z = z is the multinomial
distribution with parameters z and py,...,pn, where
Aj

pjzzn )\'7.7‘:17"‘777/-

1=1""

Proof. First note that Z is Poisson(\;)-distributed, with Ay = > A

Thus, for all (x1,...,2,) € {0,1,...,2}" satisfying Y " | x; = z, we have

PXy=z1,....,Xp =)
P(Z=z2)

P(Xi=a1,....,. Xp=a,|Z =2) =

TS (7MA /)

B e M AL /2!

()

2.9.3 The distribution of the maximum of two random variables

Let X7 and X5 be independent and both have distribution F. Suppose that F
has density f w.r.t. Lebesgue measure. Let

Z := max{X7, Xo}.

Lemma The distribution function of Z is F%. Moreover, Z has density

fz(2) =2F(2)f(2), z € R.
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Proof. We have for all z,
P(Z < z) = P(max{X1, X2} < z)
= P(X; < 2, X5 < 2) = F2(2).
If F has density f, then (Lebesgue)-almost everywhere,

d
— " F(2).
f2) = 2 F(2)
So the derivative of F? exists almost everywhere, and

dizFQ(z) =2F(2)f(2).

Let X := (X3, X2). The conditional density of X given Z = z has density

g}xi)) itz =zand x9 <z
Ix (w1, 22]|2) = gl(f(lz)) ifry <zand oy =2 -
0 else

The conditional distribution function of X; given Z = z is

F(z1)

Fy, (12) = { e B
1 =

)

Note thus that this distribution has a jump of size 1/2 at z.

2.10 Sufficiency

Let S : X — Y be some given map. We consider the statistic S = S(X).
Throughout, by the phrase for all possible s, we mean for all s for which con-
ditional distributions given S = s are defined (in other words: for all s in the
support of the distribution of S, which may depend on ).

Definition We call S sufficient for 8 € © if for all 8, and all possible s, the
conditional distribution
Py(X €-[S(X) =)

does not depend on 6.

Example 2.10.1 Let X;,...,X,, bei.i.d., and have the Bernoulli distribution

with probability § € (0,1) of success: (for i =1,...,n)
Py(X;=1)=1—-Py(X; =0)=90.

Take S =>"7" | X;. Then S is sufficient for 6: for all possible s,

1 n
Po(X1=z1,...,Xp =2,]S = 5) = —, inzs.

) =
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Example 2.10.2 Let X := (Xq,...,X,,), with X1,..., X,, i.i.d. and Poisson(0)-
distributed. Take S =>"" | X;. Then S has the Poisson(nf)-distribution. For
all possible s, the conditional distribution of X given S = s is the multinomial

distribution with parameters s and (p1,...,p,) = (%, e %)

s 1\ &
]PQ(Xllea"',Xn::En|S:S):(xl $><7’L> ’ Z$i:8'
" i=1

This distribution does not depend on 8, so S is sufficient for 6.

Example 2.10.3 Let X; and X5 be independent, and both have the exponen-
tial distribution with parameter # > 0. The density of e.g., X; is then

fx, (z;0) =07 2 >0.
Let S = X1 + X5. Verify that S has density
fs(s:0) = s0%7% s> 0.

(This is the Gamma(2, §)-distribution.) For all possible s, the conditional den-
sity of (X1, X2) given S = s is thus

1
fxix, (1,228 = 5) = | + 29 = s.

Hence, S is sufficient for 6.

Example 2.10.4 Let X4,...,X,, be an i.i.d. sample from a continuous dis-
tribution F. Then S := (X(y),..., X(y)) is sufficient for F: for all possible
s=(81,...,5n) (51 <...<sp),and for (xq,...,2q,) =5,

]P@((Xl,...,Xn) = ([El,...,l'n)

1
(X(1)77X(n)> = S) = —.

Example 2.10.5 Let X; and X be independent, and both uniformly dis-
tributed on the interval [0, 6], with > 0. Define Z := X + X».

Lemma The random variable Z has density

[ z/8? if0<z<4
fZ(Zve)_{(Qe_z)/HQ if 0 <z<20 '

Proof. First, assume 6 = 1. Then the distribution function of Z is

22/2 0<z2<1
FZ(Z){1—(2—z)2/2 1<2<2°

So the density is then

z 0<2<1
fZ(Z)_{z—z 1<z<2
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For general 6, the result follows from the uniform case by the transformation
Z — 07, which maps fz into fz(-/0)/0. O

The conditional density of (X7, X2) given Z = z € (0,26) is now

1
> N0<z<4p

fXX(an,xQ!Z—z;g)_{z <z< .

. s 0<z<206

This depends on 0, so Z is not sufficient for 6.
Consider now S := max{Xj, Xo}. The conditional density of (Xi, X2) given
S=s5€(0,0)is
1
Ix1x, (21,228 = 5) = 25 0<z1<s, zg=so0orz; =358, 0 <z <s.
s

This does not depend on 6, so S is sufficient for 6.

Knowing the sufficient statistic S one can forget about the original data X
without loosing information. Indeed, the following lemma says that any deci-
sion based on the original data X can be replaced by a randomized one which
depends only on S and which has the same risk.

Lemma 2.10.1 Suppose S is sufficient for 0. Let d : X — A be some decision.
Then there is a randomized decision §(S) that only depends on S, such that

R(6,5(S)) = R(0,d), V 0.

Proof. Let X} be a random variable with distribution P(X € :|S = s). Then,
by construction, for all possible s, the conditional distribution, given S = s,
of X7 and X are equal. It follows that X and X§g have the same distribution.
Formally, let us write @y for the distribution of S. Then

Py(Xie )= /P(X; €S = s)dQy(s)

— /P(X €S =15)dQy(s) = Py(X € ).

The result of the lemma follows by taking d(s) := d(XY). .

2.10.1 Rao-Blackwell

The result of Rao-Blackwell says that in the case of convex loss a decision
based on the original data X can be replaced by a decision based only on S
with smaller, or not worse, risk. Randomization is not needed here.

Lemma 2.10.2 (Rao Blackwell) Suppose that S is sufficient for 6. Suppose
moreover that the action space A C RP is convex, and that for each 6, the
map a — L(0,a) is convex. Let d : X — A be a decision, and define d'(s) :=
E(d(X)|S = s) (assumed to exist). Then

R(0,d) < R(9,d), V 0.
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Proof. Jensen’s inequality says that for a convex function g,

E(g9(X)) = g(EX).

(o)) 2ofus(ans )

= L(0,d'(s)).

Hence, V 0,

By the iterated expectations lemma, we arrive at

R(6,d) = EgL(6,d(X))

= EoF <L (9, d(X)> ‘s) > EyL(6,d(S5)).

2.10.2 Factorization Theorem of Neyman

Theorem 2.10.1 (Factorization Theorem of Neyman) Suppose {Py : 6 € O}
is dominated by a o-finite measure v. Let pg := dPy/dv denote the densities.
Then S is sufficient for 0 if and only if one can write pg in the form

po(x) = go(S(x))h(x), ¥ z, 0

for some functions gg(-) > 0 and h(-) > 0.

Proof in the discrete case. Suppose X takes only the values a1,a9,...V 6
(so we may take v to be the counting measure). Let QQp be the distribution of

S:
Qo(s) ==Y Py(X =a;).

j: S(aj)=s
The conditional distribution of X given S is
Py(X =x)

Py(X =z|S=5s)= Q05

, S(z) =s.
(=) If S is sufficient for 6, the above does not depend on 6, but is only a
function of x, say h(x). So we may write for S(x) = s,
Pp(X =) = Pp(X = z|S = 5)Qo(S = ) = h(x)ge(s),
with gg(s) = Qp(S = s).

(<) Inserting pg(z) = go(S(x))h(z), we find

Qo(s) =go(s) Y hlay),

j: S(aj)=s
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This gives in the formula for Py(X = z|S = s),

Py(X =z|S=5s)=

which does not depend on 6. O

Remark The proof for the general case is along the same lines, but does have
some subtle elements!

Corollary 2.10.1 The likelihood is Lx(6) = pe(X) = go(S)h(X). Hence, the
mazximum likelihood estimator 6 = argmaxy Lx(0) = argmaxg gg(S) depends
only on the sufficient statistic S.

Corollary 2.10.2 The Bayes decision is

dBayes(X) = arg miil (X, a),

where
l(x,a) = E(L(0,a)|X =x) = /L(ﬂ, a)w(V|x)du(d)
— [ L0,0)90(S(@))w(@)du (D)) ().
So

diayes(X) = argmin / L(9, a)gs (S)w(0)du (),
which only depends on the sufficient statistic S.

Example 2.10.6 Let Xi,...,X,, be i.i.d., and uniformly distributed on the
interval [0, 6]. Then the density of X = (X1,...,X,) is

1
po(x1,...,xpn) = e—nl{() < min{zy,...,z,} < max{xi,...,z,} <0}

=go(S(x1,...,2n))h(x1,...,2y),
with

go(s) := einl{s < 6},

and
hz1, ..., 2n) = {0 < min{z,...,z,}}.

Thus, S = max{Xy,...,X,} is sufficient for 6.
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2.10.3 Exponential families

Definition A k-dimensional exponential family is a family of distributions { Py :
0 € O}, dominated by some o-finite measure v, with densities pg = dPy/dv of
the form

k
po() = exp [Z ¢ (0T () — d(0) | ().
j=1

Note In case of a k-dimensional exponential family, the k-dimensional statistic
S(X) = (T1(X),...,Tx(X)) is sufficient for 6.

Note If X,..., X, is an i.i.d. sample from a k-dimensional exponential family,
then the distribution of X = (X7,..., X,,) is also in a k-dimensional exponential
family. The density of X is then (for x := (z1,...,2,)),

n

n k
po(s) = [ [ polai) = expl3 " ney (07,0 = nd(0)] [ ] (o).

i=1

where, for j =1,...,k,
n

— 1
Tyx) = - > Ty(a).
i=1
Hence S(X) = (T1(X), ..., Ti(X)) is then sufficient for 6.
Note The functions {7} and {c¢;} are not uniquely defined.

Example 2.10.7 If X is Poisson(#)-distributed, we have

90"

po(x) =€ ea
1
= explzlog 6 — 0] —.
x!

Hence, we may take T'(z) = z, ¢(f) =log6, and d(6) = 6.
Example 2.10.8 If X has the Binomial(n, 6)-distribution, we have

mie) = (1)ora - o

()t

_ (Z) exp [w log(%) +nlog(l — 9)] .

So we can take T'(z) = z, ¢(d) = log(#/(1 — 0)), and d(f) = —nlog(1l — ).
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Example 2.10.9 If X has the Negative Binomial(k, )-distribution we have

Iz +k)

po(w) = T(k)a! 65(1 - 9)”

I(xz+k)
So we may take T'(z) = x, ¢() = log(1 — 6) and d(f) = —klog(h).
Example 2.10.10 Let X have the Gammal(k, #)-distribution (with & known).
Then

gk
pe(x) — efﬁxxkflﬂ
1
= T exp|—0x + klog0].

So we can take T'(z) =z, ¢(d) = —0, and d(0) = —klog¥.

Example 2.10.11 Let X have the Gammal(k, \)-distribution, and let 6 =
(k,A). Then
e ko1 A
po(x) = e Mz Ol
= exp[—Ar + (k — 1)logz + klog A — logI'(k)].

So we can take Th(z) = z, Ta(z) = logz, c(f) = =\, c2(f) = (kK — 1), and
d(0) = —klog A + log I'(k).

Example 2.10.12 Let X be N (1, 0?)-distributed, and let § = (i1, ). Then

po(x) = ! exp [—W]

2mo 202

1 T z? u?

= — - — - — -1 .

V2 P {02 202 202 B U]

So we can take Ti(z) = =, To(x) = 22, c1(0) = p/o?, c2(0) = —1/(20?), and
4(6) = 42/ (20) + log(0).

2.10.4 Canonical form of an exponential family

In this subsection, we assume regularity conditions, such as existence of deriva-
tives, and inverses, and permission to interchange differentiation and integra-
tion.

Let © C R* andlet {Py: 6 € ©} be a family of probability measures dominated
by a o-finite measure v. Define the densities

_ 45
Po =0
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Definition We call {Py: 0 € ©} an exponential family in canonical form, if

k
po(z) = exp [Z 0,T;(z) — d(e)] h(z).
j=1

Note that d(€) is the normalizing constant

d(8) = log ( / exp [f: GjTj(x)]h(m)du(x)) .
j=1

We let

| 5 a0y d(0)
d(9) = —-d(6) = :
00 o d

30, 4(0)

denote the vector of first derivatives, and

Lo o2 [ 9%d(6)
400) = Fgg7 10) = (aejaej,>

denote the k£ x k matrix of second derivatives. Further, we write

Tl(X) E9T1(X)
T(X):= ( : ) , BgT(X) = ( : ) :
Tk(X) EoTi(X)

and we write the k x k covariance matrix of T'(X) as

Covp(T(X)) := (COVG(TJ- (X), Ty (X))) .

Lemma We have (under regularity)

EyT(X) = d(6), Cove(T(X)) = d(h).

Proof. By the definition of d(f), we find
. P .
d(9) = %log exp |0 T(z)|h(zx)dv(x)

[ exp |:9TT(:E):| T(x)h(z)dv(z)

[ exp [HTT(x)] h(z)dv(z)

= /exp |:9TT(x) — d(G)] T(z)h(x)dv(x)
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_ / po(@)T(2)dv(x) = EgT(X),

and
fexp 07T (@) 7T (@) )

46) = [ exp [GTT(x)] h(z)dv(z)

i ( [exp [eTT(g;)]T(g;)h(z)dy(x)> ( [exp [GTT(x)]T(x)h(:c)dy(x)>T
< [exp [GTT(JC)} h(x)du(a:)) 2

_ / exp [GTT(x) _ d(G)]T(az)T(a:)Th(x)du(x)

_ < / exp [GTT(:U) - d(a)] T(w)h(:f:)dV(x)>
.

X < / exp [eTT(x) — d(e)] T(x)h(x)du(x))

:/m@ﬁuﬁmfw@>

_ </p9(x)T(x)dy(a:)> (/pe(x)T(x)du(a:))T

= ByT(X)T(X)" — (EQT(X)> (EeT(X)>T

= Covy(T(X)).
O

Let us now simplify to the one-dimensional case, that is © C R. Consider an
exponential family, not necessarily in canonical form:

po(x) = exple(0)T'(x) — d(0)]h(x).
We can put this in canonical form by reparametrizing
0 — c(0) == (say),

to get
Dy (z) = exp[yT'(2) — do(7)]h(x),

where

It follows that

ByT(X) = do(y) = 2 00)) _ ‘?(0; (2.2)
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and
. _ _ d(c () de ()l ()
vero(T(X)) = o) = G NE ™~ e 1P
_de)  do)Ee) 1 . d(h) .
TEOF T EOP | FOP (d(‘))‘c‘(mc(g)) 2

For an arbitrary (but regular) family of densities {pp : 0 € O}, with (again for
simplicity) © C R, we define the score function

d
sg(x) := 0 log pg(x),

and the Fisher information for estimating
1(0) := varg(sp(X))
(see also Chapter 3 and 6).
Lemma We have (under reqularity)
Epsg(X) =0,

and
1(0) = —Epso(X),

where $p(z) = Lsp(x).

Proof. The results follow from the fact that densities integrate to one, assuming
that we may interchange derivatives and integrals:

Epso(X) = / 59 (2o () (2)

:/C“()gdzg)e(x)pg(x)du(x) :/Wpe(w)d’/(ﬂf)

- /;;pg(x)du(x) = d% /pe(iﬂ)dV(x) = %1 =0,

and
. o [Ppe(X)/d6*  (dps(X)/d6N*
o) =020 - (007 |
B d’pe(X)/d6*] 2
— B [pe o } Eys3(X).
Now, Eys3(X) equals vargsg(X), since Epsp(X) = 0. Moreover,
2 2 2 2 2
Ey [W] = / %pg(x)dy(x) = % /pg(ac)dy(x) = %1 =0.
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In the special case that {FPy : § € O} is a one-dimensional exponential family,
the densities are of the form

po(x) = explc(8)T (z) — d(0)]|h(z).

Hence '
sp(z) = ¢(0)T(x) — d(6).
The equality Epsg(X) = 0 implies that
d(o

EGT(X> = %7

which re-establishes (2.2). One moreover has
$o(x) = &(0)T(x) — d(6).
Hence, the inequality varg(sg(X)) = —FEpse(X) implies
[¢(0)Pvare(T(X)) = —&(0) EgT (X) + d(6)

The Fisher information for estimating v = ¢(#) is

Io(v) = do(7)

More generally, the Fisher information for estimating a differentiable function
g(0) of the parameter 6, is equal to I(0)/[g(0)]>.

Example

Let X € {0,1} have the Bernoulli-distribution with success parameter 6 € (0,1):

po(x) = 07(1 —0)' " = exp [m 1og<£9> + log(1 — 9)], z € {0,1}.

We reparametrize:

yi=e(0) = log(f@)

which is called the log-odds ratio. Inverting gives

and hence

d(f) = —log(l—0) = log(l + e”) = do(7).
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Thus

and
e ey e

D =5 - L+en)?  (1+e)2

The score function is

so(z) = d% {:c log<1€9> +log(1 — 9)}

T _ 1
61—-6) 1-6°

The Fisher information for estimating the success parameter 6 is

_ ovarg(X) 1
Eos(X) = [9(19—9)}2 T o1-0)

whereas the Fisher information for estimating the log-odds ratio ~ is

Io(v) = 0(1 - 0).

2.10.5 Minimal sufficiency

Definition We say that two likelihoods Ly (0) and L,/(0) are proportional at
(z, "), if
L;(0) = Ly (0)c(z,2'),V 0,

for some constant c(x,z').
A statistic S is called minimal sufficient if S(z) = S(2') for all x and 2’ for

which the likelihoods are proportional.

Example 2.10.13 Let X; ..., X,, be independent and N (6, 1)-distributed. Then
S =31, X, is sufficient for §. We moreover have

2 n 2
log L(6) = S(x)8 — "= _ 22150 10000y 2.

So

log Lx(0) — log Ly (0) = (S(x) — S(x'))0 — D1 g — i ()’

which equals,
log c(x,x"), V 0,

for some function ¢, if and only if S(x) = S(x’). So S is minimal sufficient.
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Example 2.10.14 Let X1, ..., X, beindependent and Laplace-distributed with
location parameter 8. Then

log Ly(6) = —(log 2)/2 = V2> |2 — 6],

=1

SO
n

log Lx(8) —log L (0) = —V2 ) _(|2; — 0] — |2} — 0])
i=1
which equals
log c(x,x’), V 0,

for some function c, if and only if (z(y), ..., 7(n)) = (x’(l), .. ,x’(n)). So the order
statistics X(1, ..., X(,) are minimal sufficient.
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Chapter 3

Unbiased estimators

3.1 What is an unbiased estimator?

Let X € X denote the observations. The distribution P of X is assumed to
be a member of a given class {Py : 6 € O} of distributions. The parameter of
interest in this chapter is v := g(#), with g : © — R (for simplicity, we initially
assume 7 to be one-dimensional).

Let T': X — R be an estimator of g(0).
Definition The bias of T = T(X) is

biasy(T) := EgT — g(0).
The estimator T is called unbiased if

biasg(T) =0, V 6.

Thus, unbiasedness means that there is no systematic error: EypT = g(#). We
require this for all 6.

Example 3.1.1 Let X ~ Binomial(n, ), 0 < < 1. We have

ET(X) =Y <”> 05 (1 — 0)"*T(k) := q(0).

k=0 k

Note that ¢() is a polynomial in € of degree at most n. So only parameters
g(0) which are polynomials of degree at most n can be estimated unbiasedly. It
means that there exists no unbiased estimator of, for example, v/6 or 8/(1 —6).

Example 3.1.2 Let X ~ Poisson(#). Then
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Note that p(6) is a power series in #. Thus only parameters g(f) which are a
power series in 6 times e~ can be estimated unbiasedly. An example is the
probability of early failure

g(0) :==e"% = Py(X =0).
An unbiased estimator of e~ is for instance
T(X)=NX =0}.

As another example, suppose the parameter of interest is

An unbiased estimator is

+1 if X is even
T(X) =
(X) {—1 if X is odd

This estimator does not make sense at all!

Example 3.1.3 Let Xi,..., X, beiid. N(u,0?), and let § = (u,02) € R x
R, . Then

§2 = 3 (X - X)?

n—14%
i=1

is an unbiased estimator of 2. But S is not an unbiased estimator of o. In

fact, one can show that there does not exist any unbiased estimator of ¢!

We conclude that requiring unbiasedness can have disadvantages: unbiased es-
timators do not always exist, and if they do, they can be nonsensical. Moreover,
the property of unbiasedness is not preserved under taking nonlinear transfor-
mations.

3.2 UMVU estimators

Lemma 3.2.1 We have the following equality for the mean square error:

Ey|T — g(0)|* = biasi(T) + varg(T).

In other words, the mean square error consists of two components, the (squared)
bias and the variance. This is called the bias-variance decomposition. As we
will see, it is often the case that an attempt to decrease the bias results in an
increase of the variance (and vise versa).

Example 3.2.1 Let Xi,..., X, be ii.d. N'(u,o?)-distributed. Both y and o2
are unknown parameters: 6 := (u, 0?).
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Case i Suppose the mean p is our parameter of interest. Consider the estimator
T := AX, where 0 < XA < 1. Then the bias is decreasing in A, but the variance
is increasing in A:

Eo|T — p? = (1 — A\)2u? + A\20%/n.

The right hand side can be minimized as a function of A. The minimum is

attained at )
7

Aopt i= /.
P 52 I 4 2

However, Aqpt X is not an estimator as it depends on the unknown parameters.

Case ii Suppose o2 is the parameter of interest. Let S? be the sample variance:

It is known that S? is unbiased. But does it also have small mean square error?
Let us compare it with the estimator

i=1
To compute the mean square errors of these two estimators, we first recall that

Z?=1(Xi — X)Q

o2

2
~ Xn—lv

a x2-distribution with n — 1 degrees of freedom. The y?-distribution is a special
case of the Gamma-distribution, namely

2 n—11
=T (—,2).
Xn—1 ( 9 ’2>

Thus !
Ey (Zn:(X, - X)2/02> =n—1, var <Zn:(XZ - )_()2/02> =2(n—-1).
i=1 i=1

It follows that

4 4
2 212 _ 2y_ 9 _ 20
Ey|S* — 07|° = var(S*) = (n—1)22(n_1)_n—1’
and )
Epo?="""42
n
(A2 L 5
biasg(6°) = ——07,
n

'If Y has a I'(k, \)-distribution, then EY = k/X and var(Y) = k/\2.
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so that
4 4 4
~2 2|2 . 2022 ) o o o*(2n—1)
Ey|6° — 07| = biasy(67) + varg(6°) = 3 + EQ(n —-1)= —
Conclusion: the mean square error of 42 is smaller than the mean square error

of 52

Generally, it is not possible to construct an estimator that possesses the best
among all of all desirable properties. We therefore fix one property: unbi-
asedness (despite its disadvantages), and look for good estimators among the
unbiased ones.

Definition An unbiased estimator T*is called UMVU (Uniform Minimum
Variance Unbiased) if for any other unbiased estimator T,

varg(T*) < varg(T), V 6.

Suppose that T' is unbiased, and that S is sufficient. Let
T := E(T|S).

The distribution of T" given .S does not depend on 6, so T* is also an estimator.
Moreover, it is unbiased:

EgT" = Ey(E(TS)) = EgT = g(0).

By conditioning on S, “superfluous” variance in the sample is killed. Indeed,
the following lemma (which is a general property of conditional distributions)
shows that T™ cannot have larger variance than T

varg(T™) < varg(T'), ¥ 0.
Lemma 3.2.2 LetY and Z be two random wvariables. Then

var(Y) = var(E(Y|Z)) + Evar(Y|Z).

Proof. It holds that
2 2
var(E(Y|2)) = E[E(Y|Z)] - [E(E(Y|Z))]

= E[E(Y|2)]” - [EY)?,
and
Evar(Y|Z) = E [E(YQ\Z) - [E(Y\Z)]Z]

= EY? - E[E(Y|2)]2.

Hence, when adding up, the term E[E(Y|Z)]? cancels out, and what is left over

is exactly the variance
var(Y) = EY? — [EY]%
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3.2.1 Complete statistics

The question arises: can we construct an unbiased estimator with even smaller
variance than 7% = E(T|S)? Note that 7" depends on X only via S = S(X),
i.e., it depends only on the sufficient statistic. In our search for UMVU estima-
tors, we may restrict our attention to estimators depending only on S. Thus, if
there is only one unbiased estimator depending only on .S, it has to be UMVU.

Definition A statistic S is called complete if we have the following implication:
E@h(S) =0V0= h(S) =0, Pp—a.s.,V 0.

Here, h is a function of S not depending on 6.

Lemma 3.2.3 (Lehmann-Scheffé) Let T be an unbiased estimator of g(f),
with, for all 8, finite variance. Moreover, let S be sufficient and complete.

Then T* := E(T|S) is UMVU.
Proof. We already noted that 7% = T%(S) is unbiased and that varg(T*) <
varg(T) V 6. If T'(S) is another unbiased estimator of g(f), we have
Eo(T(S) —T'(S)) =0,V 0.
Because S is complete, this implies
T =T, Py—a.s.
O

To check whether a statistic is complete, one often needs somewhat sophisti-
cated tools from analysis/integration theory. In the next two examples, we only
sketch the proofs of completeness.

Example 3.2.2 Let Xi,..., X, be ii.d. Poisson(f)-distributed. We want to
estimate g(#) := e, the probability of early failure. An unbiased estimator is

T(Xl, e ,Xn) = 1{X1 == 0}

A sufficient statistic is
n

S = ZX’

=1

We now check whether S is complete. Its distribution is the Poisson(n#)-
distribution. We therefore have for any function A,

S k
Eph($) =Y e (”If!) h(k).
k=0

The equation
Egh(S)=0V0,
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thus implies

i (ne)kh(k) —0Vo.

|
k=0

x>

Let f be a function with Taylor expansion at zero. Then
iz
fla) =2 77 P00

The left hand side can only be zero for all z if f = 0, in which case also
f%®)(0) = 0 for all k. Thus (h(k) takes the role of f%)(0) and nf the role of z),
we conclude that h(k) = 0 for all k, i.e., that S is complete.

So we know from the Lehmann-Scheffé Lemma that T* := E(T'|S) is UMVU.
Now,
P(T=1S=s)=P(X;=0|S=5s)

e eV (n —1)8]°/s! _ (n - 1)5_

e="9(ng)s/s! n
e <n - 1)5
n

Example 3.2.3 Let Xq,..., X, beii.d. Uniform[0, §]-distributed, and g(#) :=
0. We know that S := max{Xy,..., X, } is sufficient. The distribution function
of S is

Hence

is UMVU.

Fs(s) = Py(max{X1,..., X} < s) = (g)” 0<s<8.

Its density is thus
ns

fs(s) = =45

Hence, for any (measurable) function h,

, 0<s<6.

nsn—l

0
E@h(S):/O h(s) o ds.

If
Egh(S) =0V 9,

it must hold that ;
/ h(s)s" lds =0V 6.
0

Differentiating w.r.t. 6 gives

h(6)" =0V 0,
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which implies A = 0. So .S is complete.

It remains to find a statistic T that depends only on S and that is unbiased.

We have ; )
e
EgS:/ sns ds = n 0.
0 9” n -+ 1

So S itself is not unbiased, it is too small. But this can be easily repaired: take

n+1
n

Then, by the Lehmann-Scheffé Lemma, 7% is UMVU.

T = S.

In the case of an exponential family, completeness holds for a sufficient statistic
if the parameter space is “of the same dimension” as the sufficient statistic.
This is stated more formally in the following lemma. We omit the proof.

Lemma 3.2.4 Let for 0 € O,

po(x) = exp[ c;(0)Tj(x) — d(0)| h(z).
j=1

Consider the set
C:={(c1(0),...,c1(#): 0 €O CRF

Suppose that C is truly k-dimensional (that is, not of dimension smaller than
k), i.e., it contains an open ball in RX. (Or an open cube H?:l(aj7bj)') Then
S :=(Th,...,Ty) is complete.

Example 3.2.4 Let X1,...,X,, beii.d. with I'(k, A)-distribution. Both & and
A are assumed to be unknown, so that 6 := (k, \). We moreover let © := Ri.
The density f of the I'(k, A)-distribution is

Ak
fz) = ——e 21 2> 0.

I'(k)
Hence, . .
po(x) = exp [—)\ Z x4+ (k—1) Zlog x; — d(G)} h(z),
i=1 i=1
where
d(k,\) = —nklog A + nlogI'(k),
and

hMz)=Wz; >0,i=1,...,n}.
It follows that

n n
(Z Xi, ) log Xz->
i=1 i=1

is sufficient and complete.
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Example 3.2.5 Consider two independent samples from normal distributions:
X1,... X, iid. N(u,o?)-distributed and Y3, ..., Y, beiid. N (v, 72)-distributed.

Case i If 0 = (p,v,02,7%) € R? x Ri, one can easily check that

n n m m
VDD R DR
i=1 i=1 =1 j=1

is sufficient and complete.

Case ii If 1, 0 and 72 are unknown, and v = u, then S of course remains
sufficient. One can however show that S is not complete. Difficult question:
does a sufficient and complete statistic exist?

3.3 The Cramer-Rao lower bound

Let {Py : 0 € ©} be a collection of distributions on X, dominated by a o-finite
measure v. We denote the densities by

dP,
Py = —9, fe0O.
dv

In this section, we assume that © is a one-dimensional open interval (the ex-
tension to a higher-dimensional parameter space will be handled in the next
section).

We will impose the following two conditions:

Condition I The set
A:={x: py(x) >0}
does not depend on 0.

Condition I (Differentiability in Ly) For all 6 and for a function sg : X — R
satisfying
I(6) := Eysp(X)? < o0,

it holds that

Definition If I and II hold, we call sy the score function, and 1(6) the Fisher
information.

Lemma 3.3.1 Assume conditions I and II. Then

E@S@(X) = O,V 0.
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Proof. Under Py, we only need to consider values = with pg(x) > 0, that is,
we may freely divide by py, without worrying about dividing by zero.

Observe that

Porn(X) —po(X)\ _
E9< oth o (%) ’ )—/A(pem—pe)dl/—(),

since densities integrate to 1, and both pgp and pg vanish outside A. Thus,

| Egso(X)|? = ‘Ee (p9+h(h)2(;(1;9()() - Se(X)>

2
< Ey <p0+h(h);2(;(];9(X) - sa(X)> — 0.

2

Note Thus I(0) = varg(sg(X)).

Remark If py(x) is differentiable for all z, we can take (under regularity con-
ditions)

log pg(x) =

89(1') = @ p9($)7

where p
po(z) == @pe(x)-

Remark Suppose Xi,..., X, are i.i.d. with density pg, and sg = py/pp exists.
The joint density is

po(x) = [ [ po (),
i=1

so that (under conditions I and II) the score function for n observations is
n
sp(x) = Zse(xi).
i=1
The Fisher information for n observations is thus
n
I(0) = varg(sy(X)) = > _ varg(sg(X;)) = nI(0).
i=1

Theorem 3.3.1 (The Cramer-Rao lower bound) Suppose conditions I and II
are met, and that T is an unbiased estimator of g(0) with finite variance. Then
g(0) has a derivative, §(0) := dg(0)/df, equal to

g(0) = cov(T, sp(X)).

Moreover,
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Proof. We first show differentiability of g. As T' is unbiased, we have
90 +h)—g0) _ EpnT(X) - EyT(X)
h h
Po+h(X) — po(X)
hpe(X)

— 89(X)> + EQT(X)S@(X)

= % /T(p0+h — pp)dv = EyT(X)
Po+h(X) — pa(X)
hpe(X)
— (700 go ) (225 00)) 4 BT () s0(0)
5 ByT(X)sp(X),

as, by the Cauchy-Schwarz inequality

(10 ) ("5 )

2
< vary(T)Ey (p‘”h(h);z(;{])’@()() - se(X)> —0.

= EgT(X)(

2

Thus,
g(@) = E@T(X)S@(X) = COV@(T, S@(X)).

The last inequality holds because Eysg(X) = 0. By Cauchy-Schwarz,
[9(0)) = |cove(T, s9(X))I?
< varg(T)varg(sg(X)) = varg(T)1(0).

O

Definition We call [§(6))?/1(6), 6 € ©, the Cramer Rao lower bound (CRLB)
(for estimating g(6)).

Example 3.3.1 Let Xi,..., X, be iid. Exponential(f), # > 0. The density
of a single observation is then

po(z) =070 x> 0.
Let g(0) :=1/0, and T := X. Then T is unbiased, and vary(T) = 1/(nf?). We
now compute the CRLB. With g(6) = 1/6, one has () = —1/62. Moreover,
log pg(z) = log 6 — O,
S0)
89(1') = 1/9 -,
and hence

I1(0) = varg(X) = 9—12

The CRLB for n observations is thus
G2 _ 1
nl(0) nb?
In other words, T" reaches the CRLB.
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Example 3.3.2 Suppose Xj,..., X, are i.i.d. Poisson(f), § > 0. Then
logpg(z) = —0 + xlog 6 — log x!,

S0 -
- _14+=
sp(x) + 7

and hence

1(6) = var9<)§> ) 1

One easily checks that X reaches the CRLB for estimating .
Let now g(f) := e~?. The UMVU estimator of g(6) is

T:.= (1 — > .
n

To compute its variance, we first compute

00 2k k
EoT? = Z 1-— 1 (n6) e
n k!

k=0

— o0 ki;o % ((n —n1)29> ;
(n — 1)20] ~ exp [(1 - 2n)9]'

n n

= e ™ exp [

Thus,
varg(T) = EgT? — [EgT)? = EoT? — ™%

_ e—20 (ee/n - 1)

{ > e ¥ /n

~ e 2 /n for n large
As g(0) = —e~%, the CRLB is
[9(0))* _ e
nl(6) n
We conclude that T’ does not reach the CRLB, but the gap is small for n large.

For the next result, we:

Recall Let X and Y be two real-valued random variables. The correlation

between X and Y is
cov(X,Y)

var(X )var(Y)

p(X,Y) =

We have
|p(X,Y)|=1<« dconstants a,b: Y =aX +b (as.).

The next lemma shows that the CRLB can only be reached within exponential
families, thus is only tight in a rather limited context.
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Lemma 3.3.2 Assume conditions I and II, with sy = pg/ps. Suppose T is
unbiased for g(0), and that T reaches the Cramer-Rao lower bound. Then {Py :
0 € ©} forms a one-dimensional exponential family: there exist functions c(0),

d(0), and h(x) such that for all 0,
po(z) = exp[c(0)T(X) — d(0)]h(x), z € X.

Moreover, ¢(6) and d(0) are differentiable, say with derivatives ¢(0) and d(6)
respectively. We furthermore have the equality

g(6) = d(6)/(6), V¥ 0.

Proof. By Theorem 3.3, when T reaches the CRLB, we must have

B |cov (T, se(X))|2
varg(T) = varg(sg(X))

i.e., then the correlation between T and sy(X ) is 1. Thus, there exist constants
a(f) and b(#) (depending on #), such that

s0(X) = a()T(X) — b(6). (3.1)

But, as sy = pg/pg = dlogpg/df, we can take primitives:
log py(z) = e(0)T () — d(6) + h(x),

where ¢(0) = a(f), d(0) = b(#) and h(z) is constant in 6. Hence,
po(x) = exple(0)T (x) — d(0)]h(x),

with h(z) = exp[h(z)].

Moreover, the equation (3.1) tells us that
Epsg(X) = a(0)ET — b(0) = a(6)g(0) — b(0).

Because Eygsg(X) = 0, this implies that g(8) = b(0)/a(6). O

3.4 Higher-dimensional extensions

Expectations and covariances of random vectors

Let X € RP be a p-dimensional random vector. Then EFX is a p-dimensional
vector, and
Y= Cov(X):= EXXT — (EX)(EX)T
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is a p X p matrix containing all variances (on the diagonal) and covariances
(off-diagonal). Note that X is positive semi-definite: for any vector a € RP, we
have

var(al X) = a’Sa > 0.

Some matrix algebra

Let V' be a symmetric matrix. If V is positive (semi-)definite, we write this
as V. > 0 (V > 0). One then has that V = W2, where W is also positive
(semi-)definite.

Auxiliary lemma. Suppose V> 0. Then

ja”c|”
max =

T =c'vle.
acRr a' Va

Proof. Write V = W2, and b := Wa, d :== W~lc. Then a’Va = bTb = ||b||?
and a’c = b"'d. By Cauchy-Schwarz
|bTd|?

a2 — T g — Ty—1
max B || =d"d=c"V " c.

O

We will now present the CRLB in higher dimensions. To simplify the exposition,
we will not carefully formulate the regularity conditions, that is, we assume
derivatives to exist and that we can interchange differentiation and integration
at suitable places.

Consider a parameter space © C RP. Let
g:0 =R,

be a given function. Denote the vector of partial derivatives as

dg(0)/061
g(0) = :
99(0)/00,
The score vector is defined as
Glogpg/ 00,
so() = :
0log pg /00,

The Fisher information matrix is

1(0) = Egsg(X)st (X) = Covg(sg(X)).
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Theorem 3.4.1 Let T be an unbiased estimator of g(0). Then, under reqular-
ity conditions,
varg(T) > §(0)"1(6) " 9(6).

Proof. As in the one-dimensional case, one can show that, for j =1,...,p,
Gj(0) = covg(T, 5,;(X)).
Hence, for all a € RP,
T g(0)? = [cove(T, a" s4(X))[?

< varg(T)varg(a® sg(X))
= varg(T)a’ I(6)a.
Combining this with the auxiliary lemma gives

aTa(0)12
varg(T) > max ’aT?gz;L =g(0)T1(0)" 4(6).

O

Corollary 3.4.1 As a consequence, one obtains a lower bound for unbiased
estimators of higher-dimensional parameters of interest. As example, let g(6) =
0= (6,... ,HP)T, and suppose that T € RP is an unbiased estimator of 0. Then,
for all a € RP, aTT is an unbiased estimator of a*6. Since a’' 0 has derivative
a, the CRLB gives

varg(aT) > a*1(0)ta.

But
varg(a’ T') = a’ Covy(T)a.

So for all a,
aTCovg(T)a > a* 1(0) La,

in other words, Covg(T) > I(6)71, that is, Covy(T) — I(6)~! is positive semi-
definite.

3.5 Uniformly most powerful tests

3.5.1 An example

Let X1,..., X, beii.d. copies of a Bernoulli random variable X € {0, 1} with
success parameter 6 € (0, 1):

Py (X =1)=1-Py(X =0) =90.
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We consider three testing problems. The chosen level in all three problems is
a = 0.05.

Problem 1

We want to test, at level «, the hypothesis
Hy: 0=1/2:= 06,

against the alternative
Hy: 0=1/4:=0;.

Let T := > | X; be the number of successes (T' is a sufficient statistic), and
consider the randomized test

1 T <ty
¢>(T)1:{q T =t ,
0 if T >ty

where ¢ € (0,1), and where ¢y is the critical value of the test. The constants g
and typ € {0,...,n} are chosen in such a way that the probability of rejecting
Hy when it is in fact true, is equal to «a:

Py, (Hp rejected) = Py, (T < to— 1) + qPy, (T = tp) := «.
Thus, we take ¢y in such a way that
Po(T <ty—1) < a, Pp(T <to) > a,
(i.e., to — 1 = ¢4 () with g4 the quantile function defined in Section 1.6) and

Oz—P90<T§t0 —1)
Py, (T = to) ’

q:

Because ¢ = ¢np is the Neyman Pearson test, it is the most powerful test (at
level «) (see the Neyman Pearson Lemma in Section 2.2). The power of the
test is 5(61), where

8(6) = Ey(T).
Numerical Example

Let n = 7. Then

Py, (T =0) = (1/2)7 = 0.0078,

7
Pp(T=1) = () (1/2) = 0.0546,
Py (T < 1) = 0.0624 > a,

so we choose tg = 1. Moreover

_0.05-0.0078 _ 422
B 0.0546 546
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The power is now

B(61) = Fo, (T = 0) + P, (T = 1)
= (3/4)7 + % (I) <3/4>6<1/4> =0.1335 + %0.3114.

Problem 2

Consider now testing

HO : 90 = 1/2,
against
Hi: 6< 1/2

In Problem 1, the construction of the test ¢ is independent of the value 6; < 6.
So ¢ is most powerful for all 6; < 6. We say that ¢ is uniformly most powerful
(German: gleichmdssig mdachtigst) for the alternative Hy : 6 < 6y.

Problem 3

We now want to test
Hy:0>1/2,

against the alternative
Hy:0<1)/2.

Recall the function
B(0) := Ego(T).
The level of ¢ is defined as
sup S3(6).

0>1/2

We have
B(0) = Py(T <to— 1)+ qPy(T = to)

= (1—q)Py(T < to — 1) + qPy(T < to).

Observe that if 01 < 6y, small values of T" are more likely under Py, than under
Py, :

o+

Pgl(TSt) >P90(T§t), Vte {0,1,...,n}.

Thus, () is a decreasing function of 6. It follows that the level of ¢ is

sup B(0) = B(1/2) = .

0>1/2

Hence, ¢ is uniformly most powerful for Hy: 6 > 1/2 against Hy : 0 < 1/2.
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3.5.2 UMP tests and exponential families

Let P := {Py : 0 € ©} be a family of probability measures. Let Oy C O,
©1 C ©, and ©g N O1 = (. Based on observations X, with distribution P € P,
we consider the general testing problem, at level «, for

Hy: 0¢ @0,
against
Hy: 0€06,.

We say that a test ¢ has level « if

sup Epop(X) < a.
(AN

Definition A test ¢ is called Uniformly Most Powerful (UMP ) if
e ¢ has level a,
e for all tests ¢ with level v, it holds that Ey¢'(X) < Eppp(X) V 0 € ©1.

We now simplify the situation to the case where © is an interval in R, and to
the testing problem

Hy: 0 < 0y,
against
Hyi: 0> 0,.

We also suppose that P is dominated by a o-finite measure v.

Theorem 3.5.1 Suppose that P is a one-dimensional exponential family

i)

5, (&) = pe(x) = exple(0)T () — d(0)]h(2).

Assume moreover that c¢(0) is a strictly increasing function of 0. Then a UMP
test ¢ is

1 if T(z) > to
o(T(x) =1 q ifT(x)=to ,
0 ifT(z) < to

where q and ty are chosen in such a way that Eg,¢(T) = a.

Proof. The Neyman Pearson test for Hy : 6 = 0y against Hy : 6 = 0y is

1 if pg, (7)/pay () > co
énp(w) = < qo  if pe, () /pe, (7) = co
0 if pg, (x)/pe,(x) < co

where go and ¢ are chosen in such a way that Eg,¢np(X) = . We have

" 8 = exp| (e(61) — e(60))T(X) — (d(61) — d(60)) .
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Hence
>

v

~—

Do, (x
P, (x)

c & T(x)
< <

t,

where t is some constant (depending on ¢, 0y and 6;). Therefore, ¢ = ¢np. It
follows that ¢ is most powerful for Hy : 6 = 6y against Hy : 6 = 1. Because ¢
does not depend on 6y, it is therefore UMP for Hy : 6 = 6y against Hy : 6 > 6.

We will now prove that 5(0) := Ep¢(T) is increasing in 6. Let

Po(t) = exple(0)t — d(0)]

be the density of T' with respect to dominating measure . For ¢ > 6
Dot

Bt — exp | (c(0) — c(0))e - (a9) — (0D,

which is increasing in ¢. Moreover, we have

/ﬁﬁdﬂZ/ﬁgdﬂ: 1.

Therefore, there must be a point sy where the two densities cross:

—~
=

Po(l

o (t) >1 fort> sg '

{pﬂ(t) <1 fort<sg
[

Do

—~
=

But then

B(9) — B(9) = / S(O)Bo(t) — po(0)]dr(2)

= [ otola() ~ pa®lar(v) + [ o0lpa(e) ~ poteaott

t>s0
> (s0) | [pol®) - pu(t)do(t) = 0.
So indeed $(0) is increasing in 6.
But then
sup 3(0) = B(6o) = .
6<6o

Hence, ¢ has level . Because any other test ¢’ with level @ must have
Ey,¢'(X) < a, we conclude that ¢ is UMP.

O

Example 3.5.1 Let X1, ..., X, beani.i.d. sample from the A'(jg, 0?)-distribution,
with po known, and 02 > 0 unknown. We want to test

.2 2
Hy:0° < o,

against
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.42 2
H1.0' >O-0.

The density of the sample is

1
Po2(T1,...,Ty) = €xp [%2 Z;(ﬂﬂi — po)® — glOg(2W02) :
1=
Thus, we may take
1
2y _
C<J ) - _ﬁv

and

T(X) = 3 (X — ).

i=1
The function ¢(0?) is strictly increasing in 0. So we let ¢ be the test which
rejects Hy for large values of T'(X).

Example 3.5.2 Let X,..., X, be ani.i.d. sample from the Bernoulli(#)-distribution,
0 <6 <1 Then

9 n
po(z1,...,2Tn) = exp [log(l_e> sz + nlog(l—0)].
i=1

(9) = 1og<1f9>,

which is strictly increasing in §. Then T'(X) = > | X;.

We can take

Right-sided alternative

Hy: 60 <0,
against
Hy: 0>060.
The UMP test is
1 T>ip
or(T) == {QR T=tg .
0 T <tp

The function Sr(0) := Egpr(T) is strictly increasing in 6.

Left-sided alternative

Hy: 0>0,
against
Hi: 0<6y.

The UMP test is
or(T) :

1 T <ty
{qL T:tL .

0 T >t
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The function 81 (6) := Ep¢r(T) is strictly decreasing in 6.

Two-sided alternative

H() : 9 == 90 5
against
Hl : 0 75 9() .

The test ¢r is most powerful for 8 > 0y, whereas ¢, is most powerful for 6 < 6.
Hence, a UMP test does not exist for the two-sided alternative.

3.5.3 Unbiased tests

Consider again the general case: P := {Fy : 0 € O} is a family of probability
measures, the spaces ©g, and O are disjoint subspaces of O, and the testing
problem is

Hy: 0 € 0O,
against
Hi: 0€0,.

The significance level is o (a0 < 1).

As we have seen in Example 3.5.2, uniformly most powerful tests do not always
exist. We therefore restrict attention to a smaller class of tests, and look for
uniformly most powerful tests in the smaller class.

DefinitionA test ¢ is called unbiased (German unverfalscht) if for all 6 € ©g
and all ¥ € ©1,

Egp(X) < Eyp(X).

Definition A test ¢ is called Uniformly Most Powerful Unbiased (UMPU ) if
® ¢ has level o,
e ¢ is unbiased,
o for all unbiased tests ¢’ with level o, one has Egd'(X) < Egp(X) V 0 € O;.

We return to the special case where © C R is an interval. We consider testing
Hy: 60 =0,

against
Hy: 0+#6.

The following theorem presents the UMPU test. We omit the proof (see e.g.
Lehmann ...).

Theorem 3.5.2 Suppose P is a one-dimensional exponential family:

dP,

—,, (@) = po(z) = explc(0)T' () — d(0)]h(),
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with ¢(0) strictly increasing in 0. Then a UMPU test is

1 ifT(x) <tp orT(x) >1gr

_Ju T =t
W)= g if Tw) =t ’
0 if tr, <T(l’) <tgr

where the constants tg , tr, qr and qr, are chosen in such a way that

9 pex)|  —o.

E X) =
9o¢( ) Oé, dG 9:90

Note Let ¢r a right-sided test as defined Theorem 3.5.1 with level at most
a and ¢r be the similarly defined left-sided test. Then Sr(0) = Epor(T) is
strictly increasing, and (1 (0) = Eg¢r(T) is strictly decreasing. The two-sided
test ¢ of Theorem 3.5.2 is a superposition of two one-sided tests. Writing

B(6) = Egp(T),
the one-sided tests are constructed in such a way that
B(0) = Br(0) + BL(0).

Moreover, (#) should be minimal at § = 6y, whence the requirement that its
derivative at 6y should vanish. Let us see what this derivative looks like. With
the notation used in the proof of Theorem 3.5.1, for a test ¢ depending only on
the sufficient statistic T,

_ / &(1) exple(8)t — d(9)]di(t).
Hence, assuming we can take the differentiation inside the integral,
—Em / 3(t) exple(0)t — d(0)]((0)t — d(8))dp (#)

= ¢(0)cove(o(T), T).

Example 3.5.3 Let X1,..., X, beani.i.d. sample from the (11, 03)-distribution,
with p € R unknown, and with o2 known. We consider testing

HO t K= Mo,
against
Hy: op# po.

A sufficient statistic is T := )1 | X;. We have, for t; < tp,

Eud(T) =P, (T > tg) + P, (T < t1)

T—nu tp—nu T—np tp—nu
=P > P <
,u( \/’EO'O \/ﬁdo > + M( \/ﬁO'O \/770'0
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tp —np tr, —nu
=1-® o
< Voo ) i ( Vo )’
where ® is the standard normal distribution function. To avoid confusion with
the test ¢, we denote the standard normal density in this example by ®. Thus,

d . on . (tg—nu n . (tr—nu
dp nolT) = \/7700(1)< Voo >_\/ﬁffo¢< Vnog >’

So putting

d
L BT —0,
dp”" ( )u:uo
gives
- (tr —npo . (tr, —npo
BT — g L TR0
( Vnoo > < Vnoo )
or

(tr —npo)® = (tr, — npo)®.
We take the solution (tr — nug) = —(tg — nup), (because the solution
(tr, — npg) = (tr — nuo) leads to a test that always rejects, and hence does
not have level «, as o < 1). Plugging this solution back in gives

_ 1o trR— N0 _tr—npo
BrooT) =1 Q)< Vo >+q}< Vnoo >

+(o(45))

The requirement E,,¢(T") = o gives us

tr — npo
o L _"F0) —1 /2
( V/nog > /2

and hence

tp — Ny = \/ﬁdoq)_l(l — a/2), tr, — npg = —\/500‘1)_1(1 — a/2).

3.5.4 Conditional tests

We now study the case where © is an interval in R2. We let § = (3,7), and we
assume that v is the parameter of interest. We aim at testing

Hp: v <0,
against the alternative
Hy: v> .

We assume moreover that we are dealing with an exponential family in canonical
form:

po() = exp[BT1(z) + 7To(x) — d(O)]h(x).
Then we can restrict ourselves to tests ¢(71") depending only on the sufficient
statistic T' = (T, Tb).
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Lemma 3.5.1 Suppose that {5 : (8,v) € ©} contains an open interval. Let

1 if T > t[)(Tl)
o(Th,T2) = § a(Th) if To = to(Th) ,
0 if T < to(Tl)

where the constants to(Ty) and q(Ty) are allowed to depend on Ty, and are
chosen in such a way that
Tl) =a.

E., (qu, T)

Then ¢ is UMPU.

Sketch of proof.

Let pg(t1,t2) be the density of (17, Ts) with respect to dominating measure :

Po(t1, t2) := exp[Bt + vta — d(0)]h(t1, t2).

We assume (ty,t2) = v1(t1)v2(t2) is a product measure. The conditional den-
sity of T given 17 = t7 is then

exp|ft1 + yt2 — d(0)]h(t1, t2)
exp[ﬁtl + 82 — d(g)ﬁl(tl, Sz)dDQ(Sg)

Po(talt1) = T

= exp[vt2 — d(v[t1)]h(t1, t2),
where
d(v|t1) :=log </ eXp[’}/SQ]]TL(tl, 52)d172(82)>.
52
In other words, the conditional distribution of T5 given T7 = t;
- does not depend on f3,

- is a one-parameter exponential family in canonical form.
This implies that given T7 = t1, ¢ is UMPU.

Result 1 The test ¢ has level o, i.e.

sup Eg,)¢(T) = E(g0)0(T) = o, V .
Y<Y0

Proof of Result 1.

Sup Ep@(T) = Eg ) O(T) = Eg ) Eq (6(T)[T1) = .
Y70

Conversely,

sup Eg)¢(T) = sup Eg ) Ey(¢(T)|T1) < o
7<% 7<% _J—’

Result 2 The test ¢ is unbiased.
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Proof of Result 2. If v > v, it holds that E,(¢(7T")|T1) > «, as the conditional
test is unbiased. Thus, also, for all 5,

Epn¢(T) = Eg ) Ey(6(T)|Th) = a,
i.e., ¢ is unbiased.

Result 3 Let ¢’ be a test with level

o 1= sup sup E(ﬁﬁ)qb'(T) < a,
B 1<

and suppose moreover that ¢’ is unbiased, i.e., that

E (T) < inf inf E '(T).
SUp sup B @' (T) < tnf inf B¢ (1)

Then, conditionally on Ty, ¢' has level o.

Proof of Result 3. As

o = sup sup Eg )¢ (T)
B <

we know that

E(B»’YO)¢,<T) < o/, 4 5
Conversely, the unbiasedness implies that for all v > ~,

Eg ¢ (T) > o',V .
A continuity argument therefore gives

Epn0d'(T) =a', ¥ §.
In other words, we have

Egq)(¢'(T) — ') =0,¥ B.

But then also

E(IB:’YO)E’YO <(¢/(T) - O‘/)

which we can write as

Tl) :07 VB,

Eg0)h(T1) =0,V B.

The assumption that {5 : (5,7) € ©} contains an open interval implies that
T) is complete for (3,70). So we must have

h(Tl) = 0, P(B,"/o)_a's'7 v ﬁ,
or, by the definition of h,
E70(¢/(T)|T1) = 0/, P(B’%) — a.s., A ,8

So conditionally on T}, the test ¢’ has level /.
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Result 4 Let ¢’ be a test as given in Result 3. Then ¢’ can not be more powerful
than ¢ at any (B8,7), with v > 9.

Proof of Result 4. By the Neyman Pearson lemma, conditionally on 77, we
have

EL(¢'(T)|T1) < Ey(¢(T)|T1), ¥ v > 0.
Thus also
Epy @' (T) < Egpo(T), ¥ B, v> 0.
0

Example 3.5.4 Consider two independent samples X = (Xi,...,X,) and
Y = (\1,...,Y,,), where X;,...,X,, are i.i.d. Poisson(\)-distributed, and
Yi,...,Y,, are i.i.d. Poisson(u)-distributed. We aim at testing

Ho: A<y,
against the alternative
Hy: A>p.

Define
B = log(p), v = log(\/p).

The testing problem is equivalent to
Ho @ v <0,

against the alternative
Hy v >,

where g := 0.

The density is
p@(xla s Tns Yl - 7ym)

= exp [log()\) Z x; + log(u) Z Yj — nA — m,u] H % H il
2 ! !

j=1 i=

= exp [log(u)(z zit Y y;) +log(\p) Y xi—nA — mu] h(x,y)
i=1 j=1 i=1

= exp[BT1(x,y) +v12(x) — d(0)]h(x,y),

where
n m
T(X,Y) =) Xi+> Y,
i=1 j=1

and

To(X) ==Y X,
=1



84 CHAPTER 3. UNBIASED ESTIMATORS

and

Xy:

n
1=

1 ﬁ 1
;! i y

The conditional distribution of T5 given 77 = t; is the Binomial(#1, p)-distribution,
with

1 (N

nA e’

n)\+mu: 1+e7

p:

Thus, conditionally on T = t;, using the observation T3 from the Binomial(¢;, p)-
distribution, we test

Ho : p < po,
against the alternative
Hy = p> po,
where pg :=n/(n + m). This test is UMPU for the unconditional problem.



Chapter 4

Equivariant statistics

As we have seen in the previous chapter, it can be useful to restrict attention
to a collection of statistics satisfying certain desirable properties. In Chapter
3, we restricted ourselves to unbiased estimators. In this chapter, equivariance
will be the key concept.

The data consists of i.i.d. real-valued random variables X1,...,X,,. We write
X = (Xi,...,Xy). The density w.r.t. some dominating measure v, of a
single observation is denoted by pg. The density of X is py(x) = [], po(xi),
X = (21,...,2Tpn).

Location model
Then 0 € R is a location parameter, and we assume

X,=0+¢,1=1,...,n.

We are interested in estimating 6. Both the parameter space ©, as well as the
action space A, are the real line R.

Location-scale model
Here 0 = (u,0), with u € R a location parameter and o > 0 a scale parameter.
We assume

Xi=p+oe, i=1,...,n.

The parameter space © and action space A are both R x (0, 00).
4.1 Equivariance in the location model

Definition A statistic T = T(X) is called location equivariant if for all con-
stants ¢ € R and all x = (z1,...,Ty),

T(x1+c¢....,2n+c¢)=T(x1,...,25) + ¢

85
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Examples
X

Definition A loss function L(0,a) is called location invariant if for all c € R,

L(0+c,a+c) = L(0,a), (0,a) € R*.

In this section we abbreviate location equivariance (invariance) to simply equiv-
ariance (invariance), and we assume throughout that the loss L(6,a) is invari-
ant.

Corollary If T is equivariant (and L(0,a) is invariant), then
R(9,T) = ByL(0, T(X)) = E,L(0, T(X) - 0)

= EpL(0,T(X — 0)) = EgLo[T(e)],

where Lola] := L(0,a) and ¢ := (€1,...,€,). Because the distribution of € does
not depend on 0, we conclude that the risk does not depend on 0. We may
therefore omit the subscript 0 in the last expression:

R(0,T) = ELy[T(g)].
Since for 0 = 0, we have the equality X = ¢ we may alternatively write

R(0,T) = EyLo[T(X)] = R(0,T).

Definition An equivariant statistic T is called uniform minimum risk equivari-
ant (UMRE) if
RO, T)= min R(0,d), V6,
d equivariant
or equivalently,
R(0,7)=  min  R(0,d).

d equivariant

Lemma 4.1.1 Let Y; == X; — X, i =1,...,n, and Y := (Y1,...,Y,). We
have
T equivariant < T'(X) =T(Y) + X,,.

Proof.

(=) Trivial.

(<) Replacing X by X + ¢ leaves Y unchanged (i.e. Y is invariant). So
TX4+¢)=TY)+ X, +c=T(X) +c O
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Theorem 4.1.1 LetY; .= X;,— X,,,i=1,...,n, Y :=(Y1,....Y,), and define

v).

T7*(Y) := argmin F <L0 [v+ €]
v

Moreover, let
T"(X) :=T*(Y) + X,.

Then T* is UMRE.

Proof. First, note that the distribution of Y does not depend on 8, so that T
is indeed a statistic. It is also equivariant, by the previous lemma.

Let T be an equivariant statistic. Then T'(X) =T(Y) + X,,. So

Hence
R(0,T)=FELyT(Y)+ e, =F [E (LO [T(Y) + €]

v)|

Y> = E<L0 [T*(Y) + €]

But

E (Lo T(Y) + ca]

Y).

Y> > min E <L0 [v+ €]
v

Hence,

R(0,T)>E [E <L0 [T*(Y) + €n]

Yﬂ = R(0,T%).

Corollary 4.1.1 If we take quadratic loss
L(#,a) == (a —0)?,

we get Lo[a] = a2, and so, for Y = X — X,,,

T*(Y) = arg minE((v + €,)?
v

¥)
— —B(e]Y),

and hence

T"(X) = X;, — E(en|Y).
This estimator is called the Pitman estimator.
To investigate the case of quadratic risk further, we:

Note If (X, Z) has density f(z,z) w.r.t. Lebesgue measure, then the density
of Y =X -Z71is

fr(y) = / fly + 2, 2)de.
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Lemma 4.1.2 Consider quadratic loss. Let po be the density of e = (€1,...,€)
w.r.t. Lebesgue measure. Then a UMRE statistic is

T*(X) = fzpo(Xl —z,..., Xy — 2)dz
N fpo(Xl—Z,...,Xn—Z)dZ )

Proof. Let Y = X — X,,. The random vector Y has density

fY(y17 e 7yn—170) = /pO(yl + 2y Yn—1 —f—Z,Z)dZ.

So the density of €, given Y =y = (y1,...,Yn—1,0) is

b (u) = Po(Y1 + Uy Yn1 + U, 1)
o Jpoyi +2,... yn—1 + 2,2)dz

It follows that

_ fup()(yl +u7 vy Yn—1 +U, u)du

Eenly) = .
(n’ ) fpo(yl—{—z,...,yn,l—l—z,z)dz
Thus
BenY) = Jupo(Y1 +u, ..., Y1+ u,u)du
" Jpo(Yi+2z,....Y 1 +2,2)dz
B Jupo(X1 — Xn +u,..., Xpn1 — Xy +u,u)du
Jpo(X1i—Xp+2,..., X1 — X + 2,2)d2
_x fzpo(Xl — 2z, Xpo1— 2, X — 2)dz
" IPO(XI+Z7"'7Xn—1+zaXn+z)dZ'
Finally, recall that T%(X) = X,, — E(e,|Y). O

Example 4.1.1 Suppose X1, ..., X, are ii.d. Uniform[f—1/2,0+1/2], 0 € R.
Then

po(z) = |z < 1/2}.

We have

112%>%|xi—z| <1/2 & zp) —1/2< 2z <2y +1/2.

So
Po(®1 = 2,..., o — 2) = Hz(m) — 1/2 < 2 <zq) +1/2}

Thus, writing
T = X(n) - 1/2, T = X(l) + 1/2,

the UMRE estimator 7™ is

T T Xy + X,
e ([ () -
Ty Ty 2 2
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We now consider more general invariant statistics Y.

Definition A map Y : R” — R" is called maximal invariant if
Yx)=YX) & Jc: x=x'"+ec

(The constant ¢ may depend on x and x'.)

Example The map Y (x) := x — z,, is maximal invariant:
(«) is clear
(=) if x —z, =x' — 2}, we have x = x' + (z,, — 2,).

More generally:
Example Let d(X) be equivariant. Then Y := X — d(X) is maximal invariant.
Theorem 4.1.2 Suppose that d(X) is equivariant. Let Y := X — d(X), and

Y).

T*(Y) := arg min E<Lo[v + d(e)]

Then
T5(X) :=T*(Y) + d(X)

s UMRE.

Proof. Let T be an equivariant estimator. Then

T(X) = T(X — d(X)) + d(X)

=T(Y) + d(X).
Hence
E(Lg [T(e)] Y> = E(Lg [T(Y) + d(g)] Y)
> min E <L0 [v+ d(e)] Y> .
Now, use the iterated expectation lemma. O

Special case
For quadratic loss (Lo[a] = a?), the definition of T*(Y) in the above theorem
is

T*(Y) = —E(d(e)|Y) = —Eo(d(X)[X — d(X)),

so that
T*(X) = d(X) — Eo(d(X)[X — d(X)).

So for a equivariant estimator 7T, we have
T is UMRE & Eo(T(X)|X —T(X)) =0.

From the right hand side, we conclude that E¢T = 0 and hence Ey(T) = 6
V 6. Thus, in the case of quadratic loss, an UMRE estimator is unbiased.
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Conversely, suppose we have an equivariant and unbiased estimator 7". If T'(X)
and X — T'(X) are independent, it follows that

Eo(T(X)|X — T(X)) = EyT(X) = 0.

So then T is UMRE.
To check independence, Basu’s lemma can be useful.

Basu’s lemma Let X have distribution Py, 6 € ©. Suppose T is sufficient
and complete, and that Y = Y (X) has a distribution that does not depend on
0. Then, for all 8, T and Y are independent under Py.

Proof. Let A be some measurable set, and
hMT):=P(Y € AIT) — P(Y € A).

Notice that indeed, P(Y € A|T) does not depend on 6 because T is sufficient.
Because

Egh(T) =0, V 6,

we conclude from the completness of T that
h(T) =0, Pp—as., V0,
in other words,
PY e AIT)=P(Y € A), Pyj—as., V6.

Since A was arbitrary, we thus have that the conditional distribution of Y given
T is equal to the unconditional distribution:

P(Y €|T)=P(Y € ), Py—as., V0,

that is, for all #, T and Y are independent under Fy. O

Basu’s lemma is intriguing: it proves a probabilistic property (independence)
via statistical concepts.

Example 4.1.2 Let X1,..., X, beindependent N'(#, 02), with o2 known. Then
T := X is sufficient and complete, and moreover, the distribution of Y := X—X
does not depend on 6. So by Basu’s lemma, X and X — X are independent.
Hence, X is UMRE.

Remark Indeed, Basu’s lemma is peculiar: X and X — X of course remain
independent if the mean 6 is known and/or the variance o2 is unknown!

Remark As a by-product, one concludes the independence of X and the sample
variance S% = Y7 | (X; — X)?/(n — 1), because S? is a function of X — X.
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4.2 Equivariance in the location-scale model

Location-scale model
We assume
Xi=p+oe, i=1,...,n.

The unknown parameter is § = (u,0), with g € R a location parameter and
o > 0 a scale parameter. The parameter space © and action space A are both
R x Ry (Rt := (0,00)). The distribution of € = (ey,...,€y,) is assumed to be
known.

Definition A statistic T = T(X) = (T1(X),T2(X)) is called location-scale
equivariant if for all constants b € R, c € Ry, and all x = (x1,...,2y,),

T+ cry,....,b+cxy) =b+ T (z1,...,20)

and
To(b+ cx1,...,b+ cxy) = cTa(xq, ..., Ty).

Definition A loss function L(u,0,a1,a2) is called location-scale invariant if for
all (u,a1,b) € R3, (0,az2,c) € R3

L(b+ cp,co,b+ cay,caz) = L(p, 0,a1,a2).

In this section we abbreviate location-scale equivariance (invariance) to simply
equivariance (invariance), and we assume throughout that the loss L(6,a) is
invariant.

Corollary If T is equivariant (and L(0,a) is invariant), then

T1(X) —p TQ(X)>

g o

R(0,T) = EgL(u, 0, Ty(X), T2(X)) = EyL (0, 1,

= EyL(0,1,T1(¢), Ta(e)) = EgLo(T (¢)),

where Lo(a1,a2) := L(0,1,a1,a2). We conclude that the risk does not depend
on 0. We may therefore omit the subscript 0 in the last expression:

R(0,T) = ELo(T(e)).

Definition An equivariant statistic T is called uniform minimum risk equivari-
ant (UMRE) if
R(6,T)= min R(0,d), V6,

d equivariant

or equivalently,

R(O,I,Tl,TQ) = min R(O,l,dl,dg).

d equivariant
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Theorem 4.2.1 Suppose that d(X) is equivariant. Let

_ X —di(X)
Y = 7d2(X) ,
and
T* (Y) = arg aleRI?zizgleR+ ) |:LU (dl (6) + dg (€)a1, dg (6)&2) Y:| .
Then
x) o (D) +BX)THY)
- do(X)T5(Y)
1s UMRE.

Proof. We have
X =di(X)  e—die)

Y="0X) ~ &)

So
e=di(e) +da(e)Y.

Let T be an equivariant estimator. Then
ELg (Tl (€), T (6))
= FELy <T1 (di(e) +da(e)Y), To(d1(e) + dg(&?)Y))
— BLo((6) + T (Y). o TAY) )
=FF [LO <d1 (e) + da(e)Th(Y), d2(€)T2(Y)> ‘Y]
>E min  E [Lo (dl(s) + dy()ar, dg(e)@) M

a1€R, a2€R4

— EE [Lo (dl(s) + dy(e)T(Y), dQ(g)T;(Y)> M .

Special case
For quadratice loss (Lo(a1,a2) := a?), the definition of T*(Y) in the above
theorem is

Y]

Lemma 4.2.1 Suppose that d is equivariant, and sufficient and complete. Then

Edl (E)dQ (E)
Ed3(e)

1 09) = e iy (0 + o)

a1 €

We then have:

T*(X) = dy (X) — da(X)

is UMRE.



4.2. EQUIVARIANCE IN THE LOCATION-SCALE MODEL 93

Proof. By Basu’s lemma, d and Y are independent. Hence

E [<d1 (6) + dg(e)a1>2 Y] _ E(dl(s) + dg(s)al)Q.
e arg min (dl(e) + dg(é—)al) t_ —%.

Example 4.2.1 Let Xi,..., X, be iid. and N(u,o?)-distributed. Define
dl(X) = X, dg(X) = S,

where 52 is the sample variance

1 _
52 .= — D (X - X)2

=1

It is easy to see that d is equivariant. We moreover know from Example 2.10.12
that d is sufficient, and an application of Lemma 3.2.4 shows that d is also
complete. We furthermore have

Edl(é‘) =Fke=0,

and, from the last remark in Section 4.1 (a consequence of Basu’s lemma), we
know that di(X) = X and do(X) = S are independent. So

Ed1 (E)dg(E) = Ed1(€)Ed2(€) =0.

It follows that T*(X) = X is UMRE.
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Chapter 5

Proving admissibility and
minimaxity

Bayes estimators are quite useful, also for obdurate frequentists. They can be
used to construct estimators that are minimax (admissible), or for verification
of minimaxity (admissibility).

Let us first recall the definitions. Let X € X have distribution Py, # € O. Let
T = T(X) be a statistic (estimator, decision), L(6,a) be a loss function, and
R(0,T) := EgL(0,T(X)) be the risk of T

o T is minimaz if V T supy R(6,T) < supg R(0,T").
o T is inadmissible it 3T": {V 8 R(0,T") < R(0,T) and 30 R(0,T") < R(0,T)}.
o T is Bayes (for the prior density w on ©) if V 1", r,(T) < 7, (T").

Recall also that Bayes risk for w is

rw(T) = /R(ﬂ,T)w(ﬁ)du(ﬁ).

Whenever we say that a statistic T is Bayes, without referring to an explicit
prior on ©, we mean that there exists a prior for which 7T is Bayes. Of course,
if the risk R(0,T') = R(T') does not depend on 6, then Bayes risk of T" does not
depend on the prior.

Especially in cases where one wants to use the uniform distribution as prior,
but cannot do so because © is not bounded, the notion extended Bayes is useful.

Definition A statistic T is called extended Bayes if there exists a sequence
of prior densities {wm}20_y (w.r.t. dominating measures that are allowed to
depend on m), such that ry, (T) — infpr 7y (T') — 0 as m — co.

95
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5.1 Minimaxity

Lemma 5.1.1 Suppose T is a statistic with risk R(6,T) = R(T") not depending
on 0. Then

(i) T admissible = T minimaz,

(ii) T Bayes = T minimar,

and in fact more generally,

(i1i) T extended Bayes = T minimaz.

Proof.

(i) T is admissible, so for all 7", either there is a § with R(6,7") > R(T), or
R(0,T") > R(T) for all . Hence supy R(6,T") > R(T).

(ii) Since Bayes implies extended Bayes, this follows from (iii). We nevertheless
present a separate proof, as it is somewhat simpler than (iii).

Note first that for any 77,

rulT') = / R(9,T")w(9)du(9) < / sup R(9.Tyw(0)d(6)  (5.1)

=sup R(9,T"),
0

that is, Bayes risk is always bounded by the supremum risk. Suppose now that
T’ is a statistic with supy R(6,T") < R(T). Then

ro(T) < S%p R, T") < R(T) = ry(T),

which is in contradiction with the assumption that T is Bayes.
(iii) Suppose for simplicity that a Bayes decision T, for the prior w,, exists, for
all m, i.e.

Twm (Tm) = igpllfrwm (T, m=1,2,....

By assumption, for all ¢ > 0, there exists an m sufficiently large, such that

R(T) = 14, (T) < 1w, (Trn) + € < 1y, (T") + € <sup R(O, T") + ¢,
0

because, as we have seen in (5.1), the Bayes risk is bounded by supremum risk.
Since € can be chosen arbitrary small, this proves (iii). O

Example 5.1.1 Consider a Binomial(n, ) random variable X. Let the prior
on 6 € (0,1) be the Beta(r, s) distribution. Then Bayes estimator for quadratic

loss is
X+r

n+r+s

Its risk is
R(0,T) = Ey(T — 6)*
= varg(T) + biasj(T)
nf(1 —0) nd +r (n+r+s)0]>

:(n+r+s)2 n+r+s n+r+s
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[(r +5)® —n]6% + [n — 2r(r + )]0 +
(n+r+s)? :

This can only be constant in @ if the coefficients in front of 62 and 6 are zero:
(r+s)?-n=0,n-2r(r+s)=0.
Solving for r and s gives
r=s=+n/2.

Plugging these values back in the estimator T gives

X +/n/2
T_7n+\/ﬁ

is minimax. The minimax risk is

1
RO = mr e

We can compare this with the supremum risk of the unbiased estimator X /n:

1-— 1
sup R(0, X /n) = supu = —.
0 0 n

So for large n, this does not differ much from the minimax risk.
Example 5.1.2 We consider again the Pitman estimator (see Lemma 4.1.2)

_ Jzpo(X1—z,..., X, — 2)dz

T = .
I po(X1—2z,...,X, — 2)dz

Lemma 5.1.2 7% is extended Bayes (for quadratic loss).

Proof. Let w,, be (the density of) the uniform distribution on the interval
[—m,m]:
Wm = 1[,m’m]/2m.

The posterior density is then

po(-%' - ﬁ)l[—m,m} (19)
J2 s po(z = 0)dy

W (V]z) =

Bayes estimator is thus

B f:nm Ipo(xz — 9)dv
N finm po(x —9)dv

T

We now compute R(0,T,,) = Eg(T}, — 6)2. Let

[P 2po(x — 2)dz
Top(x) =2 .
Ha) f;po(x —2)dz
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Then for all z, T, p(x) — T'(x) as a = —oo and b — co. One can easily verify
that also
lim  EoT2,(X) — EgT?(X).
a——00, b—oo ’
(Note that, for any prior w, EqT?(X) is the Bayes risk 7, (7T) since the risk
R(0,T) = EgT?(X) does not depend on 6.) Moreover

J2z = O)po(X — 2)dz _ I opo(X — 6 — v)dv
ffpo(x — z)dz f;:e po(X — 0 —v)dv

Top(X)—0=

It follows that
Ey(Typ(X) — 0)* = Eg 3_9,b—0(X)-

)

Hence,

R(0,Ty) = ET? (X).

m—6,m—60

The Bayes risk is
Twy, (Tm) = Egew,, R(0, T) = o EoTZ,,—p m—p(X)d0.
m J_.,

Hence, for any 0 < € < 1, we have

w (Tn) > inf (1 —€)EoT? X
T m( )— |19\§1nr7,l(1—5)( 6) 0 —m—197m—19( )

> inf — (1—€)EgT?2,(X).

T a<—me, b>me

It follows that for any 0 < e < 1,

liminf ry,, (T;,) > liminf  inf (1= €)EgT24(X) = (1 — ) EgT?(X).

m—00 m—00 a<—me, b>me

Hence we have ., (Trn) — EoT?(X), i.e., mw, (Tin) — Tw,, (T) — 0.
Corollary 5.1.1 T™ is minimaz (for quadratic loss).

5.2 Admissibility

In this section, the parameter space is assumed to be an open subset of a
topological space, so that we can consider open neighborhoods of members of
O, and continuous functions on ©. We moreover restrict ourselves to statistics
T with R(0,T) < cc.

Lemma 5.2.1 Suppose that the statistic T is Bayes for the prior density w.
Then (i) or (ii) below are sufficient conditions for the admissibility of T.

(i) The statistic T is the unique Bayes decision (i.e., r4,(T) = 1,(T") implies
thatV 0, T =T"),

(it) For all T', R(0,T") is continuous in 6, and moreover, for all open U C O,
the prior probability II(U) := [, w(9)du(9) of U is strictly positive.
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Proof.
(i) Suppose that for some 7', R(6,T") < R(6,T) for all §. Then also r,(7") <
rw(T'). Because T' is Bayes, we then must have equality:

Tw(T') = 74 (T).

So then, V 0, T’ and T are equal Py-a.s., and hence, V 0, R(0,T") = R(6,T), so
that 7" can not be strictly better than 7.

(i) Suppose that T' is inadmissible. Then, for some 7", R(0,T7") < R(0,T) for
all 8, and, for some 6y, R(6p,T’) < R(6y,T). This implies that for some € > 0,
and some open neighborhood U C O of 0y, we have

R(W,T") < RW,T) —¢, 9 € U.

But then
rw(T") = /UR(ﬁ,T Jw(F)dv(9) + /c R, T")w(9)dv(9)
S/RmﬂMWMM—JWH/IWIWW@M
U c
=1ry(T) — ell(U) < 1(T).
We thus arrived at a contradiction. O

Lemma 5.2.2 Suppose that T is extended Bayes, and that for all T', R(0,T")
is continuous in 6. In fact assume, for all open sets U C O,
Tw,, (T) — infpr o, (T7)
1L, (U)
as m — oo. Here Iy, (U) = [;; wm(9)dpm(0) is the probability of U under the
prior Il,,,. Then T is admissible.

— 0,

Proof. We start out as in the proof of (ii) in the previous lemma. Suppose that
T is inadmissible. Then, for some 7", R(6,7") < R(#,T) for all 8, and, for some
0o, R(6y,T") < R(0y,T), so that for some € > 0, and some open neighborhood
U C © of 6y, we have

R, T") < R(W,T) —¢, 9 €U.
This would give that for all m,
Tw, (T') < 1, (T) — €I, (U).

Suppose for simplicity that a Bayes decision T;,, for the prior w,, exists, for all
m, i.e.
Twn, (Tm) = i;l/f’l“wm (T, m=1,2,....

Then, for all m,
rwm (Tm) S rwm (T/) S 7ﬂw'm (T) - 61_177'L(Z'J)’

. Twi (1) = Twy (Tin)
I (U)

that is, we arrived at a contradiction. O

>e>0,
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Example 5.2.1 Let X be N(6,1)-distributed, and R(0,T) := Eg(T — 6)? be
the quadratic risk. We consider estimators of the form

T=aX+b, a>0, beR.

Lemma T is admissible if and only if one of the following cases hold
(i) a <1,
(ii) a =1 and b = 0.

Proof.
(<) ()

First, we show that T is Bayes for some prior. It turns out that this works with
a normal prior, i.e., we take § ~ AN (c,72) for some ¢ and 72 to be specified.

With the notation
f(0) o< g(x, )
we mean that f(¢)/g(x,9) does not depend on 9. We have

B p(z|?)w() o o — ¥ —c
wiile) = P o oo - 0)o (22F)

~ exp[—;{(x _92 4 WH

T

1 9 2z +c 21#—72
X exp|—= — .
Py 7241 T2

We conclude that Bayes estimator is

X +c
TBayes - E(9’X> == 7-27_’_1
Taking
7'2 C
b,

211 el
yields T' = TRayes-
Next, we check (i) in Lemma 5.2.1, i.e. that T" is unique. For quadratic loss,
and for T' = E(0|X), the Bayes risk of an estimator 7" is

ro(T") = Evar(6|X) + E(T — T")?.

This follows from straightforward calculations:

ro(T') = / RO, T Yw(9)dp(9)

=ER(O,T)=E@0-T) =E [E((G ~T')?

)

X> + (T —T")? =var(d| X) + (T - T"2

and, with 6 being the random variable,

E((H —T')? X) = E((@ —T)?
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We conclude that if r,(T") = r,(T"), then
E(T-T)*=0.

Here, the expectation is with 6 integrated out, i.e., with respect to the measure
P with density

p(z) = / pol)w(9)du(9).

Now, we can write X = 0-+¢, with  N'(c, 7%)-distributed, and with € a standard
normal random variable independent of . So X is N'(¢, 72+1), that is, P is the
N (e, 72 + 1)-distribution. Now, E(T — T")? = 0 implies T = T’ P-a.s.. Since
P dominates all Py, we conclude that T'=T" Py-a.s., for all §. So T is unique,
and hence admissible.

(<) (i)

In this case, T'= X. We use Lemma 5.2.2. Because R(#,T) = 1 for all 6, also
rw(T) = 1 for any prior. Let wy, be the density of the N(0,m)-distribution.
As we have seen in the previous part of the proof, the Bayes estimator is

m
T,=——X.

" om+1
By the bias-variance decomposition, it has risk

m2 m 2 m?2 02
0,T,,) = —1) 6*= .
B, T <m+1>2+(m+1 > CESERN S

As E#? = m, its Bayes risk is

m2 m m

runTn) = Co 2 Y Gy 12 " mr 1

It follows that

m 1

T (T) = Twp, (i) m 1 mt1

So T is extended Bayes. But we need to prove the more refined property of
Lemma 5.2.2. It is clear that here, we only need to consider open intervals
U = (u,u+ h), with v and h > 0 fixed. We have

no-o () -+()
1

= o= <\/“m) h+ o(1/vm).

For m large,
U 1

6 () =00 = = > | o)
)

so for m sufficiently large (depending on u

()>

N



102 CHAPTER 5. PROVING ADMISSIBILITY AND MINIMAXITY

Thus, for m sufficiently large (depending on u and h), we have

1
> ——h.
~ 4\/m

We conclude that for m sufficiently large

Twm (T) = Tw,, (Tin) < 4
I1,,,(U) = hym’

As the right hand side converges to zero as m — oo, this shows that X is
admissible.

(=)

We now have to show that if (i) or (ii) do not hold, then 7' is not admissible.
This means we have to consider two cases: a > 1 and a = 1, b # 0. In the
case a > 1, we have R(6,aX 4+ b) > var(aX +b) > 1= R(6,X), so aX + b is
not admissible. When a = 1 and b # 0, it is the bias term that makes a X + b
inadmissible:

1L (U)

R(O,X +b)=1+b*>1=R(0,X).
O

Lemma 5.2.3 Let 0 € © = R and {Py : 6 € O} be an exponential family in
canonical form:

po(x) = expl0T (z) — d(0)]h(z).

Then T is an admissible estimator of g(0) := d(), under quadratic loss (i.e.,
under the loss L(6,a) := |a — g(0)|?).

Proof. Recall that
d(0) = EoT, d() = vare(T) = I1(6).
Now, let 77 be some estimator, with expectation
EoT' := q(0).

the bias of T" is

or

q(8) = b(6) + g(8) = b(6) + d(6).

This implies )
q(0) = b(0) + 1(0).
By the Cramer Rao lower bound

R(0,T") = varg(T") + b*(6)

Suppose now that
RO, T") < R(6,T),V 6.
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Because R(0,T) = I(f) this implies

W+b2<0> < 1(0),

or

1(0){0*(0) +20(6)} < ~[b(6)]* < 0.

This in turn implies

b2(9) + 2b() < 0,
and hence, b(0) is decreasing and when b(6) # 0,

b(0) 1
RO =2
SO d 1
i i) 320

(i ~2)2°

In other words, 1/b(f) — /2 is an increasing function.

We will now show that this gives a contradiction, implying that b(6) = 0 for all
0.

Suppose instead b(6p) < 0 for some y. Then also b(J) < 0 for all ¥ > 6 since
b(-) is decreasing. It follows that

1 S 1 +19—9
b(19>_b(90) 2

LN oo, ¥ — 00
ie.,

b(¥) — 0, ¥ — oc.
This is not possible, as b(f) is a decreasing function.
Similarly, if b(6p) > 0, take 8y > 9 — —o0, to find again

b(¥) — 0, ¥ — —o0,

which is not possible.

We conclude that b(f) = 0 for all 6, i.e., T" is an unbiased estimator of 6. By
the Cramer Rao lower bound, we now conclude

R(0,T') = varg(T") > R(0,T) = I(9).

O

Example Let X be N (6, 1)-distributed, with § € R unknown. Then X is an
admissible estimator of 6.
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Example Let X be N(0,02), with 02 € (0,00) unknown. Its density is

72
pol) = \/227 exp [—202] — expl0T(x) — d(0)]h(x),
with
T(x) = —2%/2, § =1/02, d(6) = (logo?)/2 = —(log ) /2,
. 1 o?
i0) =~ =~
- 1 ot
d(9) = = o

Observe that § € © = (0, 00), which is not the whole real line. So Lemma 5.2.3
cannot be applied. We will now show that T is not admissible. Define for all
a> 0,

T, :=—aX 2,

so that 7" = Ty /5. We have
R(9,T,) = varg(T,) + bias3(T,)

= 2a%0" + [a — 1/2]%0".

Thus, R(0,T,) is minimized at a = 1/6 giving

R(0,Ty/6) = 0" /6 < 0" /2 = R(6,T).

5.3 Inadmissibility in higher-dimensional settings

Let (for i = 1,...,p) X; ~ N(60;,1) and let X1,..., X, be independent. The
vector 0 := (01,...,0,) € RP is unknown. For an estimator 1" = (T1,...,T)) €
RP, we define the risk

R(0,T) := zp: Ey(T; — 6;)°.
=1

Note that R(0,X) = p where X := (X1,...,X,). One can moreover show
(in a similar way as for the case p = 1) that X is minimax, extended Bayes,
UMRE and that is reaches the Cramer-Rao lower bound. But for p > 2, X is
inadmissible. This follows from the lemma below, which shows that X can be
improved by Stein’s estimator. We use the notation || X||? := >0 | X2.

Definition Let p > 2 and let 0 < b < 2(p — 2) be some constant. Stein’s

estimator is
b
T <1 _ )x.
X112
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Lemma We have

1
X1

RO, T*) =p— [Zb(p —2)— 52] Ey

Proof. We first calculate

\ b 2
BTy =00 = By (1~ )Xo

= Ey [(Xi — ;) — bxz} 2

X2
X7 i(Xi —0;)
:Eg[(X 0;)% + b* 4 —2b}
X X2
X? Xi(Xi — 6;)
=14 VEy—Si —2bFp
X1 X2

Consider now the expectation in the last term, with i = 1 (say):

X1(X1—61)  [ai(z1—01) - o 0\ da
B = [ T ot - 00

i=1

- [t -0 d”“H{ i}
=— Hihzdcf)(fﬂl —61) ﬁ{¢($i - ei)dx,}

=2

- [oian-ona() ﬁ{m - 03z}
= [ ot - )<H T \\4>d”“H{ d””l}
s

=1

1 X2
:EG[ —2 1 }
1x02 CIx

105

The same calculation can be done for all other i. Inserting the result in our

formula for Fy(T} — 6;)? gives

X? 1 X2
* 2
Bo(TY = 00" =1+ V" Bo g ~ %E‘)L\X\P - 2IIXZII‘*}
9 X2 1
=1+ (b + 4b)E9 — 20F)y

X1 X%
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It follows that

) b X2 1
RO, T")=p+ (b +4b)E97”z;H4Z — QbPEHHXHQ
=p— [Zb(p —2)— 52] EQL.
X112

O

We thus have the surprising fact that Stein’s estimator of ; uses also the
observations X; with j # i, even though these observations are independent of
X, and have a distribution which does not depend on 6;.

Note that [2b(p — 2) — b?] is maximized for b = p — 2. So the value b = p — 2
gives the maximal improvement over X. Stein’s estimator is then

p—2
T = [1_ ]X.
X2

Remark It turns out that Stein’s estimator is also inadmissible!

Remark Let g(f) := Ey1/|| X|?>. One can show that g(0) = 1/(p — 2). More-
over, g(0) 1 0 as [|6]| 1 oo, so R(0,T*) =~ R(A, X) for ||0] large.

Remark Let us take an empirical Bayesian point of view. Suppose 01,...,0,
are i.i.d. with the A/(0, 72)-distribution. If 72 is known, Bayes estimator is

7_2

mXi, 221,,p

Ti,Bayes =
(see Example 5.2.1). Given 6;, X; ~ N(0;,1) (i = 1,...,p). So uncondi-
tionally, X; ~ N(0,1+ 72) (i = 1,...,p). Thus, unconditionally, Xi,...,X,
are identically distributed, each having the N(0, 0?)-distribution with o? =
1 + 72. As estimator of the variance 02 we may use the the sample version
62 := 3"  X2/p = || X||*/p (we need not center with the sample average as
the unconditional mean of the X; is known to be zero). That is, we estimate
72 by

=6 —1=|X|*/p-1

This leads to the empirical Bayes estimator

~2
T p
T, = 2% = 1 ] X

This shows that when p > 4, then Stein’s estimator with b = p is an empirical
Bayes estimator.



Chapter 6

Asymptotic theory

In this chapter, the observations Xi,..., X, are considered as the first n of
an infinite sequence of i.i.d. random variables X1,...,X,,,... with values in X
and with distribution P. We say that the X; are i.i.d. copies, of some random
variable X € X with distribution P. We let P = P x P X - - - be the distribution
of the whole sequence {X;}°;.

The model class for P is P := {Py : 6 € ©}. When P = Py, we write
P =Py = Py x Py x---. The parameter of interest is

v:=g(0) € R,
where g : © — RP is a given function. We let
r:={g90): 006}
be the parameter space for .

An estimator of ~, based on the data Xi,...,X,, is some function 7T, =
T.(X1,...,X,) of the data. We assume the estimator is defined for all n,
i.e., we actually consider a sequence of estimators {7}, }2° ;.

Remark Under the i.i.d. assumption, it is natural to assume that each T,, is a
symmetric function of the data, that is

To( X1, ., Xn) = Tn(Xayy ... Xx,)

for all permutations 7 of {1,...,n}. In that case, one can write T,, in the form
T, = Q(P,), where P, is the empirical distribution (see also Subsection 1.9.1).

6.1 Types of convergence

Definition Let {Z,}7°, and Z be RP-valued random variables defined on the
same probability space.® We say that Z, converges in probability to Z if for all

"Let (22, A,P) be a probability space, and X : @ — X and Y : Q — Y be two measurable
maps. Then X and Y are called random variables, and they are defined on the same probability
space €.

107
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e >0,
lim P(||Z, — Z|| > ¢€) =0.
n— oo

Notation: Z, £>Z.

Remark Chebyshev’s inequality can be a tool to prove convergence in proba-
bility. It says that for all increasing functions v : [0,00) — [0, 00), one has

i < BOUZ0 - 21)
P(1Z0— 2] > ) < “HEA

Definition Let {Z,}5°; and Z be RP-valued random variables. We say that
Zy converges in distribution to Z, if for all continuous and bounded functions
/s

lim Ef(Z,) =Ef(Z).

n—o0

Notation: Z, £>Z.

Remark Convergence in probability implies convergence in distribution, but
not the other way around.

Example Let X1, Xs,... be i.i.d. real-valued random variables with mean u
and variance 2. Let X, := >i1 Xi/n be the average of the first n. Then by
the central limit theorem (CLT),

V(X — 1) N (0, 02),

that is B
X
]P(ﬁw < z) — ®(z2), V 2.
o
The following theorem says that for convergence in distribution, one actually
can do with one-dimensional random variables. We omit the proof.

Theorem 6.1.1 (Cramér-Wold device) Let ({Z,},Z) be a collection of RP-
valued random variables. Then

anZ & aTanaTZ YV a e RP.

Example Let X1, X5, ... bei.i.d. copies of a random variable X = (X(l)7 e ,X(p))T
in RP. Assume EX =y = (p1,...,p1p)7 and ¥ 1= Cov(X) := EXXT — T
exist. Then for all a € RP,

Ea"X = a’p, var(a’ X) = o’ a.

Define

X, = (XM, XEHT,
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By the 1-dimensional CLT, for all a € RP,

V(' X, — CLT/,L)EXN‘(O, a’'Ya).

The Cramér-Wold device therefore gives the p-dimensional CLT
= D
\/E(Xn - ,U>—>N(O7 E)'

We recall the Portmanteau Theorem:

Theorem 6.1.2 Let ({Z,},Z) be a collection of RP-valued random variables.
Denote the distribution of Z by Q and let G = Q(Z < -) be its distribution
function. The following statements are equivalent:

(i) anZ (i.e., Ef(Z,) = Ef(Z) Y f bounded and continuous).
(i1) Bf (Z,) = Ef(Z) YV f bounded and Lipschitz.?

(iii) Ef(Z,) = Ef(Z) ¥V f bounded and Q-a.s. continuous.

(iv) P(Z, < z) = G(2) for all G-continuity points z.

6.1.1 Stochastic order symbols

Let {Z,,} be a collection of RP-valued random variables, and let {r,} be strictly
positive random variables. We write

Zn = O0p(1)
(Zy, is bounded in probability) if

lim limsupP(]|Z,] > M) = 0.
M—0o pn—oo

This is also called uniform tightness of the sequence {Z,}. We write Z,, =
Op(ryp) if Zy/rn, = Op(1).

If Z,, converges in probability to zero, we write this as
Zn = op(1).

Moreover, Z,, = op(ry) (Zy, is of small order r, in probability) if Z,, /r, = op(1).

6.1.2 Some implications of convergence

Lemma 6.1.1 Suppose that Z,, converges in distribution. Then Z, = Op(1).

2A real-valued function f on (a subset of) R? is Lipschitz if for a constant C' and all (z, %)
in the domain of f, |f(z) — f(2)| < C||z — Z||.
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Proof. To simplify, take p = 1 (Cramér-Wold device). Let anZ , where Z
has distribution function G. Then for every G-continuity point M,

P(Z,>M)—1-GM),
and for every G-continuity point —M,
P(Z,<-M)— G(—M).

Since 1 — G(M) as well as G(—M) converge to zero as M — oo, the result
follows. =

Example Let X7, Xo,... be i.i.d. copies of a random variable X € R with
EX = p and var(X) < co. Then by the CLT,

— 1
Xn—pu=0p|—].
noRmr (ﬁ)
Theorem 6.1.3 (Slutsky) Let ({Zn, An}, Z) be a collection of RP-valued ran-
dom wvariables, and a € RP be a vector of constants. Assume that anZ,

Anga. Then
ATz, Pyt

Proof. Take a bounded Lipschitz function f, say

|fl <CB, If(2) = f(2)] < CLllz — 2.

Then
'Ef(ASZm —Ef(aTZ)‘

< ‘Ef(AZ Z) ~Ef(a"Z,)

+ ‘Ef(aTZn) ]Ef(aTZ)‘.

Because the function z + f(a’z) is bounded and Lipschitz (with Lipschitz
constant ||a||CL), we know that the second term goes to zero. As for the first
term, we argue as follows. Let ¢ > 0 and M > 0 be arbitrary. Define 5,, :=
{1Zall < M, |4y — a]l < €}. Then

‘Ef(AZZn) ~Ef(a’Z,)

SE‘f(AZ Z2) - f(d"Z,)

=E‘f<AZZn> — f(d"Z,)

15,} +E]f<A£Zn> ~ f(a"Z)

S}
< CreM + QCB]P(STCL) (6.1)

Now
P(Sy) < P(|| Zn]l > M) + P([|An — al| > ¢).

Thus, both terms in (6.1) can be made arbitrary small by appropriately choosing
e small and n and M large. a
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6.2 Consistency and asymptotic normality

Definition A sequence of estimators {T,,} of v = g(0) is called consistent if

Tn&'y.

Definition A sequence of estimators {T,,} of v = g(0) is called asymptotically
normal with asymptotic covariance matrix Vy, if

V(T =) 25N (0, V5).

Example Suppose P is the location model
,P:{P#,F()(X < ) = FO('_/‘L)7 MER, Fy e-7:0}'
The parameter is then 0 = (u, Fy) and © = R x Fy. We assume for all Fy € Fy

/a;dFo(x) =0, of, = /xQng(x) < 0.

Let g(0) := p and T, :== (X1 + -+ X,,)/n = X,,. Then T, is a consistent
estimator of y and, by the central limit theorem

VAT, - 1) 25N (0,0%,).

6.2.1 Asymptotic linearity

As we will show, for many estimators, asymptotic normality is a consequence
of asymptotic linearity, that is, the estimator is approximately an average, to
which we can apply the CLT.

Definition The sequence of estimators {T,} of v = g(0) is called asymptoti-
cally linear if for a function lg : X — RP, with Eplg(X) =0 and
Eglg(X)IF (X) := Vp < o0,
it holds that
1 n
To—y=—-) lp(X; —1/2y,
= X0+ ory (7

Remark. We then call Iy the influence function of (the sequence) T;,. Roughly
speaking, lp(z) approximately measures the influence of an additional observa-
tion .

Example Assuming the entries of X have finite variance, the estimator 7T, :=
X, is a linear and hence asymptotically linear estimator of the mean u, with
influence function

log(x) =2 — p.



112 CHAPTER 6. ASYMPTOTIC THEORY

Example 6.2.1 Let X be real-valued, with EgX := p, varg(X) := o2 and
K := Eg(X — p)* (assumed to exist). Consider the estimator

of 02. We rewrite

n n

SO = o (K= ) = 23 (K= ) (Ko — )

i=1 i=1

S|

~2
g, =

= (X ) (K )
=1

Because by the CLT, X,, — u = Op,(n™"/2), we get

n

. 1
= X+ Opy (1)

So 62 is asymptotically linear with influence function

lo(z) = (z — p)* — o2

The asymptotic variance is

2
V9:E9<(X—M)2—02> =k —ol.

6.2.2 The o-technique

Theorem 6.2.1 Let ({1}, Z) be a collection of random variables in RP, ¢ € RP
be a nonrandom vector, and {r,} be a nonrandom sequence of positive numbers,
with r, 4 0. Moreover, let h : RP — R be differentiable at c, with derivative
h(c) € RP. Suppose that

(Th — ) frn257.

Then

(W(T) = h(e)) frasi(c)T Z.

Proof. By Slutsky’s Theorem,
i 2\T Do\
h(e)" (T, — ¢)/rn—h(c)" Z.

Since (1}, —¢)/ry converges in distribution, we know that ||7,, —c||/r, = Op(1).
Hence, ||T), — ¢|| = Op(ry). The result follows now from

h(T,) — h(c) = h(e)' (T, — ¢) + o(||Tn — ¢||) = h(e)T (T}, — ¢) + op(ry).
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Corollary 6.2.1 Let T,, be an asymptotically linear estimator of v := g(@),
with influence function lg and asymptotic covariance matriz Vy. Suppose h is
differentiable at v. Then it follows in the same way as in the previous theorem,
that h(T,,) is an asymptotically linear estimator of h(7y), with influence function
h)Tlg and asymptotic variance h(v)T Vyh(~).

Example 6.2.2 Let Xj,..., X, be a sample from the Exponential(6) distri-
bution, with § > 0. Then X,, is a linear estimator of EpX = 1/6 := ~, with
influence function lg(x) = = — 1/0. The variance of \/n(T}, — 1/6) is 1/6% = ~2.
Thus, 1/X,, is an asymptotically linear estimator of 6. In this case, h(y) = 1/,
so that h(y) = —1/42. The influence function of 1/X,, is thus

(7)lg () = —712<x ) = 0%z~ 1/6).

The asymptotic variance of 1/X,, is
1

=%
72

[(1))*? =

Vﬁa(}%——0>J2$Af«L92)

n

Example 6.2.3 Consider again Example 6.2.1. Let X be real-valued, with
EpX = pu, varg(X) := 02 and k := Ep(X — pu)* (assumed to exist). Define
moreover, for r = 1,2, 3,4, the r-th moment u, := FpX". We again consider
the estimator

We have
where T,, = (T,,1, Tn2)T, with
Ty = Xy, Ty Y X2
n,l — An, n,2—nz 70
=1
and

h(t) =ty —t3, t = (t1,12)L.

The estimator T}, has influence function

Mﬂ—(;i%)~

By the 2-dimensional CLT,
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with )
E:(ua—ul us—muz)
ps — ppe  fa — (3

()= ()

so that 62 has influence function

2u Tl W

—2p1 — 1

< 1 ) (mZ_M2>:(x_ﬂ)2_J2v
(invoking p; = p). After some calculations, one finds moreover that

T
—21 —2u\ _ 4
(1) =) e

i.e., the -method gives the same result as the ad hoc method in Example 6.2.1,
as it of course should.

It holds that

6.3 Me-estimators

Let, for each v € I, be defined some loss function p(X). These are for instance
constructed as in Chapter 2: we let L(#,a) be the loss when taking action a.
Then, we fix some decision d(z), and rewrite

L(ea d(fL‘)) = p’Y(z)a
assuming the loss L depends only on 6 via the parameter of interest v = g(0).

We now require that the risk
Eopc (X )

is minimized at the value ¢ = 7 i.e.,

v = argmin Fyp.(X). (6.2)
cel’

Alternatively, given p., one may view (6.2) as the definition of .

If ¢ — pc(x) is differentiable for all z, we write

. 0
Yelw) i= pule) = —pele).
Then, assuming we may interchange differentiation and taking expectations 3 ,
we have

Egip(X) = 0.

31f |0pe/Oc| < H(-) where EgH(X) < oo, then it follows from the dominated convergence
theorem that 0[Egp.(X)]/0c = Eg[0p.(X)/c].
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Example 6.3.1 Let X € R, and let the parameter of interest be the mean
= FEgX. Assume X has finite variance o> Then

p = argmin Ey(X — ¢)?,
C

as (recall), by the bias-variance decomposition
Eo(X —c) =0+ (u—c)*

So in this case, we can take

pel) = (& — o).

Example 6.3.2 Suppose © C RP and that the densities pg = dPy/dv exist
w.r.t. some o-finite measure v.

Definition The quantity

o~ raa(23)

is called the Kullback Leibler information, or the relative entropy.

Remark Some care has to be taken, not to divide by zero! This can be handled
e.g., by assuming that the support {x : pg(x) > 0} does not depend on 6 (see
also condition I in the CRLB of Chapter 3).

Define now
po(x) = —logpg(r).

One easily sees that

K(010) = Egpg(X) — Egpo(X).

Lemma Eyp;(X) is minimized at 0=0:

6 = argmin Egp;(X).
0

Proof. We will show that
K(0]0) > 0.

This follows from Jensen’s inequality. Since the log-function is concave,

= ()2 (5 (35) v
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Definition The M-estimator 4, of v is defined as

. 1
i 1= argmin — z;pc(Xz)-
1=

The “M” in “M-estimator” stands for Minimizer (or - take minus signs - Max-
imizer).

If p.(x) is differentiable in ¢ for all =, we generally can define 4, as the solution
of putting the derivatives

a n n
e Z PC(XZ') = Z ¢C(XZ)
i=1 i=1
to zero. This is called the Z-estimator.

Definition The Z-estimator 4, of v is defined as a solution of the equations

1 n
=1
Remark A solution 4, € I" is then assumed to exist.

6.3.1 Consistency of M-estimators

Note that v minimizes a theoretical expectation, whereas the M-estimator 4,
minimizes the empirical average. Likewise, v is a solution of putting a theoret-
ical expectation to zero, whereas the Z-estimator 4, is the solution of putting
an empirical average to zero.

By the law of large numbers, averages converge to expectations. So the M-
estimator (Z-estimator) does make sense. However, consistency and further
properties are not immediate, because we actually need convergence the aver-
ages to expectations over a range of values ¢ € I' simultaneously. This is the
topic of empirical process theory.

We will borrow the notation from empirical process theory. That is, for a
function f: X — R", we let

Pof = Bof(X), Buf = > f(X0).
=1

Then, by the law of large numbers, if Py|f| < oo,

A~

(Pn - Pg)f — 0, ]Pg—a.S..

We will need that convergence of to the minimum value also implies convergence
of the arg min, i.e., convergence of the location of the minimum. To this end,
we present the following definition.
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Definition The minimizer v of Pyp. is called well-separated if for all ¢ > 0,

inf{Ppp.: cel, |[c—=| > e} > Pyp,.

Theorem 6.3.1 Suppose the uniform convergence

sup ](]Sn — Py)pc| = 0, Py—a.s..
cel

Then
Pypz,, — Pyp, Pg—a.s..

If v is well-separated, this implies 4, — v, Pg-a.s..

Proof. The uniform convergence implies

0 < Py(ps, — py) = —(Pu = Po)(ps, — py) + Pulps, — py)

< _(Pn - PG)(P% - Pv) < ’(Pn - PO)P%‘ + ’(Pn - PO)PW‘

< sup |(pn — Py)pe| + |(I3n - PG)P7| < 2sup |(pn — Py)pe|-
cel cel’

The second result of the theorem follows immediately from this and the well-
separated-ness. 0

In the next lemma, we give sufficient conditions for the uniform in ¢ conver-
gence of the empirical risk Pnpc to the theoretical risk Pyp.. Consistency of
the M-estimator is then an easy consequence, as was shown in Theorem 6.3.1.
(For consistency the assumption of a compact parameter space I' can often be
omitted if ¢ — p. is convex. We skip the details.)

Lemma 6.3.1 Suppose that T" is compact, that ¢ — p.(z) is continuous for all
xz, and that

Py <sup \pc|) < 0.
cel

Then we have the uniform convergence

sup |(P, — Py)pe| = 0, Py—a.s.. (6.3)
cel’

Proof. Define for each 6 > 0 and ce T,

w('vé’c) = sup ‘PE—Pc‘-
cerl: ||é—c||<d

Then for all z, as § | 0,
w(z,d,c) — 0.

So also, by dominated convergence

Pyw(-,6,¢) — 0.
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Hence, for all € > 0, there exists a . such that
Pyw(-,0c,¢) < e.

Let
B.:={ceT:|c—c| <}

Then {B.: c € I'} is a covering of I by open sets. Since I' is compact, there
exists finite sub-covering
Be, ...Be,.

For c € B.,,
|pe = pe;| < w(-,d¢;,¢5).-
It follows that
Sup (P — Po)pel < RUDS |(Po — Po)pe, |

+ max P,w(-, 0. ,c¢;) + max Pyw(-, 6., ,¢c;
1§j§N’n(7cj7j) 1§],SN9(7CJ7])

— 21%3%)%P9w(-,5cj,cj) < 2¢, Py—as..

O

Example The above theorem directly uses the definition of the M-estimator,
and thus does not rely on having an explicit expression available. Here is
an example where an explicit expression is indeed not possible. Consider the
logistic location family, where the densities are

e:):fO

TETORR

po(x) =
where 6 € © C R is the location parameter. Take
po(w) == —logpy(w) = 0 — x + 2log(1 +¢).
So én is a solution of
n Z 14eXitn -

This expression cannot be made into an explicit expression. However, we do
note the caveat that in order to be able to apply the above consistency theorem,
we need to assume that © is bounded. This problem can be circumvented by
using the result below for Z-estimators.

To prove consistency of a Z-estimator of a one-dimensional parameter is rela-
tively easy.

Theorem 6.3.2 Assume that T' C R, that ¥.(z) is continuous in c for all z,
that
Pylip] < o0, Ve,

and that 3 6 > 0 such that

Pope >0, y<c<y+46,
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Py <0, y—d<c<n.

Then for n large enough, Pg-a.s., there is a solution 4, of in% =0, and this
solution 4, s consistent.

Proof. Let 0 < € < § be arbitrary. By the law of large numbers, for n
sufficiently large, Py-a.s.,

Poipyse >0, Pytpy o <0.

The continuity of ¢ +— 1. implies that then in% = 0 for some |y, —y| <e. O

6.3.2 Asymptotic normality of M-estimators
Recall the CLT: for each f : X — R" for which

S = Ppf fT — (Pof)(Ppf)”

exists, we have

Denote now

Definition The stochastic process
{vn(c): ceT}

1s called the empirical process indexed by c. The empirical process is called
asymptotically continuous at 7 if for all (possibly random) sequences {vy,} in
I, with ||y, — || = op, (1), we have

V() = va(7)] = opy (1).

For verifying asymptotic continuity, there are various tools, which involve com-
plexity assumptions on the map ¢+ .. This goes beyond the scope of these
notes. Asymptotic linearity can also be established directly, under rather re-
strictive assumptions, see Theorem 6.3.4 below. But first, let us see what
asymptotic continuity can bring us.

We assume that

My : 0

= ﬁpmﬂc

c=7y

exists. It is a p X p matrix. We require it to be of full rank, which amounts to
assuming that v, as a solution to Pyt = 0, is well-identified.
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Theorem 6.3.3 Let 4, be the Z-estimator of v, and suppose that 4, is a con-
sistent estimator of v, and that v, is asymptotically continuous at . Suppose
moreover M;l exists, and also

Jo = Pyl .
Then 4y, is asymptotically linear, with influence function
lg = — My ..
Hence
Vil = 1) 25N (0, Vo),
with

Vo =M, JpM, "
Proof. By definition, R
Pps, =0, Py, = 0.

So we have
0 = Pys, = (P — Py)s, + Pots,

= (Pu = Po)s, + Po(t3, — 1y
= (i) + (23).
For the first term, we use the asymptotic continuity of v, at ~:
(Z) = (I:)n - P0)¢ﬁ/n = Vn(’s/n)/\/ﬁ = Vn(’}/)/\/ﬁ + OPe(l/\/ﬁ)

= Putby + op, (1/n).
For the second term, we use the differentiability of Py, at ¢ = ~:

(i) = Pp(13,, — tby) = M(Gn — ) + o7 — 7))
So we arrive at

0 = Putpy + op, (1/n) + M (3 =) + o7 = )-

Because, by the CLT, Pyt = Op,(1/+/n), this implies ||3, — 7| = Op, (1/v/n).
Hence

0= prﬂ/)'y + M — ) + OPQ(]‘/\/E)7
or

M('?n - ’Y) = _in'y + OPg(l/\/ﬁ)a

or

(Y —7) = _pnMilw”/ + OPe(l/\/ﬁ)'

O

In the next theorem, we assume quite a lot of smoothness for the functions
1. (namely, derivatives that are Lipschitz), so that asymptotic linearity can be
proved by straightforward arguments. We stress however that such smoothness
assumptions are by no means necessary.



6.3. M-ESTIMATORS 121

Theorem 6.3.4 Let 4, be the Z-estimator of v, and suppose that vy, is a consis-
tent estimator of v. Suppose that, for all ¢ in a neighborhood {c € T : |[c—~] <
€}, the map ¢ — .(x) is differentiable for all x, with derivative

del@) = soptbel)

(a p X p matriz). Assume moreover that, for all ¢ and ¢ in a neighborhood of

v, and for all x, we have, in matriz-norm?*,

lWe(@) — ve(2)]| < H(z)lle - ¢l

where H : X — R satisfies
PyH < .

Then
0

My =2
0= 9T

Ppe| = Py, (6.4)
=7

Assuming M~' and J := Egp 00 exist, the influence function of 4, is
Yy
lg = —Mg‘l%.

Proof. Result (6.4) follows from the dominated convergence theorem.

By the mean value theorem,
0= Puts, = Putby + Potbs, () (G — )
where for all z, ||[¥,(x) — || < ||¥n — ]| Thus
0= Pty + Buthy (. — 7) + Pu(5,() — ¥y) (Bn — ),

so that

Buthy + Bthy (i —w] < BuH | — 71 = Oy ()14 — 111

where in the last inequality, we used PpH < oo. Now, by the law of large
numbers,

pn@/')ﬂ/ = PQQLW + Ope(l) = M9 + Opg(l).
Thus

Bty + Ma(5 — ) + omy (I3 —wm) — Opy (J5n = 7I1).

Because Pntp, = Op,(1/y/n), this ensures that |5, — 7| = Op,(1/v/n). It
follows that

prﬂ/}'y + M@(’?n - '7) + OPQ(l/\/ﬁ) = OPe(l/n)'

“For a matrix A, || Al := sup, o [[Av]|/]|v||-
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Hence
MB(’AYn - 7) = - An'(/}”/ + OPe(l/\/ﬁ)
and so
(Gn = 7) = —PuMy 'y + op, (1/ V).
O

Example 6.3.3 In this example, we show that, under regularity conditions, the
MLE is asymptotically normal with asymptotic covariance matrix the inverse
of the Fisher-information matrix I(f). Let P = {Fy : 6 € O} be dominated
by a o-finite dominating measure v, and write the densities as py = dPy/dv.
Suppose that © C RP. Assume condition I, i.e. that the support of py does not
depend on 6. As loss we take minus the log-likelihood:
po := —log py.

We suppose that the score function

Sp = 2log Py = bo
700 7 T g

exists, and that we may interchange differentiation and integration, so that the
score has mean zero.

. 0 0
Pese—/pgdl/—ae/pgdu—ael_o.

Recall that the Fisher-information matrix is
I(9) := Pysgs} .

Now, it is clear that ¢y = —sy, and, assuming derivatives exist and that again
we may change the order of differentiation and integration,

My = Pyipp = —Ppéo,

and )
Pysg = Py (pe — 8983)
Do

0? T
= (8989T 1) — Pyspsy
=0-—1(0).
Hence, in this case, My = —I(6), and the influence function of the MLE

0, = arg max P, log p;
00
is
lo = 1(60) 'se.

So the asymptotic covariance matrix of the MLE 0, is

1(6)~1 <P95959T>I(9)1 = I1(6)"L.
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Example 6.3.4 In this example, the parameter of interest is the a-quantile.
We will consider a loss function which does not satisfy regularity conditions,
but nevertheless leads to an asymptotically linear estimator.

Let X := R. The distribution function of X is denoted by F. Let 0 < a < 1
be given. The a-quantile of F' is v = F~!(a) (assumed to exist). We moreover
assume that F has density f with respect to Lebesgue measure, and that f(z) >
0 in a neighborhood of . As loss function we take

pel) i= p(z —c),
where

p(z) = (1 — a)|z|{z < 0} + a|z[l{z > 0}.
We now first check that

argmin Pyp, = F~(a) := 7.
C

We have

p(x) = al{z >0} — (1 — a)l{z < 0}.
Note that p does not exist at * = 0. This is one of the irregularities in this
example.

It follows that
Ye(x) = —al{z > c} + (1 — a){z < c}.
Hence
Pﬁwc: —a+F(c)
(the fact that 9. is not defined at x = ¢ can be shown not to be a problem,
roughly because a single point has probability zero, as F' is assumed to be

continuous). So
Pyp, =0, for v = F(a).

We now derive My, which is a scalar in this case:

My = %PNZJC o
:g¢ﬂ+p@> = f(7) = f(F}(a))
c =y

The influence function is thus °

lo(z) = —M; " (x) = chw{—l{m <)+ a}.

"Note that in the special case o = 1/2 (where 7 is the median), this becomes

1
lo(z) =4 T T
+2fl(w) >
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We conclude that, for

4p = arg min Pnpc,
(&

which we write as the sample quantile 4, = F,~

~(a) (or an approximation
thereof up to order op,(1/y/n)), one has

A1 —1 D, a(l —a)
Vi) - Fa) Daa (0. 5052 ).

Example 6.3.5 In this example, we illustrate that the Huber-estimator is
asymptotically linear. Let again X = R and F be the distribution function
of X. We let the parameter of interest be the a location parameter. The Huber
loss function is

pe(x) = p(z —c),
with
(z) = z? lz| <k
PO k@l — k) || >k
We define v as

~ = arg min Pyp..
C

It holds that

2r x| <k
plx) = {+2k x>k
-2k xz< -k

Therefore,

2 —c) |lz—cl <k
¢c($)={—2k x—c>k
+2k xr—c< —k

One easily derives that

k+c
Pyhe = —2 /_ | adF () 4 %lF (s 6) ~ F(~h+.)

—2k[1 — F(k + ¢)] + 2kF(—k + c).

So
0 — e 0%c

= AF(k+7) — F(—k +7)].

The influence function of the Huber estimator is

1 T —7 ‘$—’y‘§]€

R T e T B

For £ — 0, this corresponds to the influence function of the median.
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6.4 Plug-in estimators

When X is Euclidean space, one can define the distribution function F'(x) :=
Py(X < x) and the empirical distribution function

A 1
F,.(z) = ﬁ#{XZ- <z 1<i<n}

This is the distribution function of a probability measure that puts mass 1/n at
each observation. For general X', we define likewise the empirical distribution P,
as the distribution that puts mass 1/n at each observation, i.e., more formally

1 n
Pn = EZéX”
i=1

where 6, is a point mass at x. Thus, for (measurable ) sets A C X,
- 1
P,(A) = —#{X, € A, 1 <i<n}.
n

For (measurable) functions f : X — R”, we write, as in the previous section,

Thus, for sets,

P,(A) = P,la
Again, as in the previous section, we use the same notations for expectations
under Fp:
Pt = Eaf(X) = [ ap
so that

Py(A) = Pyla.
The parameter of interest is denoted as

v =9(0) € R”.
It can often be written in the form

v = Q(Fp),

where () is some functional on (a supset of) the model class P. Assuming @ is
also defined at the empirical measure P, the plug-in estimator of v is now

T, = Q(P,).

Conversely,
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~

Definition If a statistic T,, can be written as T,, = Q(F,), then it is called a
Fisher-consistent estimator of v = g(0), if Q(Py) = g(0) for all § € ©.

We will also encounter modifications, where
T, = Qn (P n)a

and for n large,

Qn(Py) = Q(Py) = g(0).

N

Example Let v := h(Pyf). The plug-in estimator is then T,, = h(P, f).

Example The M-estimator 4, = argmin Pnpc is a plug-in estimator of v =
cel
arg min Pyp. (and similarly for the Z-estimator).
cel

Example Let X = R and consider the a-trimmed mean

n—[naj

> X
]

i=[na)+1

1
T, = ——
" n—2[nal

What is its theoretical counterpart? Because the i-th order statistic X(;) can
be written as
A1
X = F, (i/n),
and in fact

X(z) = F_l(u)v Z/?’L Su< (Z+ 1)/77'7

n

we may write, for a, := [nal/n,

n 1 n—[naj

To= b S Elifn)

n—2[naln
i=[na]+1

! /1_an Fn_l(u)du = Qn(Pn)

C1—2an Ja,t1/m

Replacing E, by F' gives,

1—ap
Qn(F) ! / F~Y(u)du

1 =20 Jant1/m

1 11—« . 1 Fﬁl(l—a)
~ F~ = F =Q(P).
o | s = [ Ly P = Q)

Example Let X = R, and suppose X has density f w.r.t., Lebesgue measure.
Suppose f is the parameter of interest. We may write

o) = im Fla+ h)2—hF(x —h)
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Replacing F' by F,, here does not make sense. Thus, this is an example where
Q(P) = f is only well defined for distributions P that have a density f. We
may however slightly extend the plug-in idea, by using the estimator

A Fp(x + hy) — Fo(z — hy)

fn(l') = oh, = Qn(Pn)v

with A, “small” (h, — 0 as n — 00).

6.4.1 Consistency of plug-in estimators
We first present the uniform convergence of the empirical distribution function
to the theoretical one.

Such uniform convergence results hold also in much more general settings (see
also (6.3) in the proof of consistency for M-estimators).

Theorem 6.4.1 (Glivenko-Cantelli) Let X = R. We have

sup |Fy(z) — F(z)] — 0, Py — a.s..
x

Proof. We know that by the law of large numbers, for all x
| (x) — F(z)| = 0, Pyp—a.s.,
so also for all finite collection a1, ...,ay,

Fo(a;) — F(a; Py—a.s..
11535\[‘ n(aj) (aj)] = 0, Pp—a.s

Let € > 0 be arbitrary, and take ag < a1 < --- < ay_1 < ay in such a way that
F(aj) — F(aj—1) <€ j=1,...,N
where F'(ap) := 0 and F(ay) := 1. Then, when z € (a;_1, a4,
Fy(2) = F(x) < Falaj) = F(aj-1) < Falaj) = F(ay) + ¢,

and

N N

Fy(x) — F(x) > Fu(aj—1) — F(aj) > Fu(aj1) — Faj1) =,

sup | Fj,(z) — F(z)| < max |E,(aj) — F(aj)| + € = ¢, Pyp—as..
x 1<jSN

O

Example Let X = R and let F' be the distribution function of X. We consider
estimating the median v := F~1(1/2). We assume F to continuous and strictly
increasing. The sample median is

X((n+1)/2) n Odd

T, = 1 1/2) := .
- (172) {[X(n/2) +X(n/2+1)]/2 n even
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So
~ 1 1/(2n) n odd
F,(T,) = - .
(Tn) 2 + {O n even

It follows that

|F(Tn) - F(7)| < |Fn(Tn) - F(Tn)’ + |Fn(Tn) - F(7)|
= ’Fn(Tn) - F(Tn)| + ‘Fn(Tn) - %‘

R 1
< |Fu(T) = F(T)| 4 5 = 0, Po—as.

So E-1(1/2) = T, — v = F~'(1/2), Pg—a.s., i.e., the sample median is a
consistent estimator of the population median.

6.4.2 Asymptotic normality of plug-in estimators

Let v := Q(P) € R? be the parameter of interest. The idea in this subsection is
to apply a d-method, but now in a nonparametric framework. The parametric
d-method says that if 0, is an asymptotically linear estimator of # € RP, and if
~v = g(0) is some function of the parameter 6, with g being differentiable at 6,
then 4 is an asymptotically linear estimator of . Now, we write v = Q(P) as
a function of the probability measure P (with P = Py, so that g(6) = Q(Fp)).
We let P play the role of 0, i.e., we use the probability measures themselves as
parameterization of P. We then have to redefine differentiability in an abstract
setting, namely we differentiate w.r.t. P.

Definition
o The influence function of Q at P is

i QU =P +eds) — Q(P)
lp(z):= 161&)1 ;

, * € X,

whenever the limit exists.
o The map Q is called Gateaux differentiable at P if for all probability measures
P, we have ~
iy A= D)= Q(P)
€ €

= Eplp(X).

o Let d be some (pseudo-)metric on the space of probability measures. The map
Q is called Fréchet differentiable at P, with respect to the metric d, if

Q(P) — Q(P) = Eplp(X) + o(d(P, P)).

Remark 1 In line with the notation introduced previously, we write for a
function f: X — R" and a probability measure P on X

Pf:= Esf(X).
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Remark 2 If @) is Fréchet or Gateaux differentiable at P, then
Plp(:= Eplp(X)) = 0.

Remark 3 If @) is Fréchet differentiable at P, and if moreover
d((1 —€)P +€eP,P) =o(e), €0,
then @ is Gateaux differentiable at P:
Q((1 —€)P+€P) —Q(P) = ((1—€)P + eP)lp + o(e)
= ePlp + o(e).
We now show that Fréchet differentiable functionals are generally asymptoti-
cally linear.

Lemma 6.4.1 Suppose that @ is Fréchet differentiable at P with influence
function lp, and that

d(P,,P) = Op(n~"/?). (6.5)
Then R X
Q(P,) — Q(P) = Pulp + op(n~/?).

Proof. This follows immediately from the definition of Fréchet differentiability.
g

Corollary 6.4.1 Assume the conditions of Lemma 6.4.1, with influence func-
tion lp satisfying Vp := Plplg < 0. Then

VaQ(E) - Q(P) 28 N0, V).

An example where (6.5) holds
Suppose X = R and that we take
d(P, P) := sup |F(z) — F(x)|.
xT
Then indeed d(P,,P) = Op(n~/2). This follows from Donsker’s theorem,
which we state here without proof:

Donsker’s theorem Suppose F' is continuous. Then
sup V| Ey () — Fla)| 2 2,
x

where the random variable Z has distribution function

G(z)=1- 22:(—1)j+1 exp[—2j22%], z > 0.
7j=1

Fréchet differentiability is generally quite hard to prove, and often not even
true. We will only illustrate Gateaux differentiability in some examples.
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Example 6.4.1 We consider the Z-estimator. Throughout in this example, we
assume enough regularity.

Let v be defined by the equation
Py, = 0.
Let P, := (1 —€)P + €P, and let 4. be a solution of the equation
Petpy, = 0.
We assume that as € | 0, also 7. — . It holds that
(1= €)Ptpy, + €Pypy, =0,

SO
wae +€(P - P)d)'ye =0,
and hence

Py, — ) + €(P — P)iy, =0.

Assuming differentiabality of ¢ — P, we obtain

Pln, — ) = (porPe )=+ ol =)

=y
= Mp(ve — ) + o(|ve — )
Moreover, again under regularity
(P = Py = (P = P)ipy + (P = P)(¢hy. = ¢5)
= (P — P)ip, +o(1) = Py, + o(1).
It follows that
Mp(ve =7) + o(|ve =) + €(P = P)y, + o(e) = 0,

or, assuming Mp to be invertible,

(e = 7)1+ 0(1)) = —eMp" Pip, + o(e),

which gives
Je Z0 Mlgl Pd)’y-
€

The influence function is thus (as already seen in Subsection 6.3.2)

Ip = —Mp'y,.
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Example 6.4.2 The a-trimmed mean is a plug-in estimator of

F1(1—-a)
7= Q(P) ! / rdF ().

120 Jpo

Using partial integration, may write this as
11—«
(1-2a)y=(1-a)F'(1-a)—aF a)- / vdF 1 (v).
The influence function of the quantile F~1(v) is
1
(@)= ————(Hz < F (v —v)
(@) = =gy (M < P} - 0)

(see Example 6.3.4), i.e., for the distribution P = (1 —¢€)P + eP, with distri-
bution function F, = (1 — ¢)F + €¢F', we have
F7Yv)— F~Yv) = 1 ~
lim —< =Pgy =~ | F(F *(v)) —v).
e 1= = gy (P00 )
Hence, for P, = (1 —€¢)P + P,

(1 20yt QU= P+ P) = Q(P)
el0 €

_ /:_a f(Fll(U)) <F(F‘1(v)) - v) dv

_ /F P:_(:a) f(lu) <F(u) - F(u)> dF (1) = /F P:_(:a) (ﬁ(u) - F(u)) du

11—«
=(1—-a)Pgi—q — aPqy — / vdPq,
o

= (1 —2a)Plp,

Ip(z) = —— / e <l{x <u}— F(u))du.

_1 — 2« F*l(a)

where

We conclude that, under regularity conditions, the a-trimmed mean is asymp-
totically linear with the above influence function {p, and hence asymptotically
normal with asymptotic variance Pl%.

6.5 Asymptotic relative efficiency

In this section, we assume that the parameter of interest is real-valued:

vyeI CR.

Definition Let T,,1 and T}, 2 be two estimators of vy, that satisfy

D .
V(T —7)—>N(0, V), 7 =1,2.



132 CHAPTER 6. ASYMPTOTIC THEORY

Then
Vo1

)

Vo2

€2:1 \=

is called the asymptotic relative efficiency of T}, o with respect to T, 1.

If es;1 > 1, the estimator T}, 2 is asymptotically more efficient than 7, ;. An
asymptotic (1 — a)-confidence interval for v based on Tj, 2 is then narrower than
the one based on T, 1.

Example 6.5.1 Let X = R, and F be the distribution function of X. Suppose
that F'is symmetric around the parameter of interest . In other words,

F() = Fo(- — p),

where Fy is symmetric around zero. We assume that Fy has finite variance
02, and that is has density fo w.r.t. Lebesgue measure, with fo(0) > 0. Take
Ty = X, the sample mean, and T}, 2 := 13’,:1(1/2), the sample median. Then
Vo1 = 0% and Vyo = 1/(4f2(0)) (the latter being derived in Example 6.3.4). So

e2.1 = 40” f3(0).

Whether the sample mean is the winner, or rather the sample median, depends
thus on the distribution Fj. Let us consider three cases.

Case i Let Fy be the standard normal distribution, i.e., Fy = ®. Then 02 =1
and fo(0) = 1/v/2m. Hence

2
€] = — &~ 0.64.
s

So X,, is the winner. Note that X,, is the MLE in this case.

Case ii Let Fyy be the Laplace distribution, with variance o2 equal to one. This
distribution has density

1
V2

So we have fo(0) = 1/+/2, and hence

fo(z) exp[—V2|z]], = € R.

€1 = 2.

Thus, the sample median, which is the MLE for this case, is the winner.

Case iii Suppose
Fo = (1 =n)®+nd(-/3).

This means that the distribution of X is a mixture, with proportions 1 — 7 and
n, of two normal distributions, one with unit variance, and one with variance 32.
Otherwise put, associated with X is an unobservable label Y € {0,1}. If Y =1,
the random variable X is N (u, 1)-distributed. If Y = 0, the random variable
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X has a N(u,3?) distribution. Moreover, P(Y =1)=1—-P(Y =0)=1—1.
Hence

02 :=var(X) = (1 —np)var(X|Y = 1) +nvar(X|Y =0) = (1 —7n)+9n =1 —8n.
It furthermore holds that
1 Do) = ——(1_ 2"
Fo(0) = (1~ ma(0) + L(0) = m(l d )

It follows that

2 27 2
a==-(1-=1) .
2.1 W( 3)(+877)

Let us now further compare the results with the a-trimmed mean. Because
F is symmetric, the a-trimmed mean has the same influence function as the
Huber-estimator with k = F~1(1 — a):

1 T — M, |$_M’§k

= {4k, x-p>k
FO(k)_F(_k) —k I—M<—]€

lo(z)

This can be seen from Example 6.4.2. The influence function is used to compute
the asymptotic variance Vp , of the a-trimmed mean:

-1
JE0) a2apy () + 20(Fy (1~ 0)?
(1—2a)?

Vb,a =

From this, we then calculate the asymptotic relative efficiency of the a-trimmed
mean w.r.t. the mean. Note that the median is the limiting case with o — 1/2.

Table: Asymptotic relative efficiency of a-trimmed mean over mean

a=2005 0125 0.5
n = 0.00 0.99 0.94 0.64
0.05 1.20 1.19 0.83
0.25 1.40 1.66 1.33

6.6 Asymptotic Cramer Rao lower bound

Let X have distribution P € {Fp : 6 € ©}. We assume for simplicity that
© C R and that 6 is the parameter of interest. Let T}, be an estimator of 6.

Throughout this section, we take certain, sometimes unspecified, regularity
conditions for granted.

In particular, we assume that P is dominated by some o-finite measure v, and
that the Fisher-information

1(9) := Epsi(X)
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exists for all 6. Here, sy is the score function

d .
59 1= @logpe = Pa/Po,

with py := dPy/dv.

Recall now that if 7, is an unbiased estimator of 6, then by the Cramer Rao
lower bound, 1/I(0) is a lower bound for its variance (under regularity condi-
tions I and II, see Section 3.3).

Definition Suppose that

V(T — 0)2% A (b, Vi), v 0.

Then by is called the asymptotic bias, and Vy the asymptotic variance. The
estimator T, s called asymptotically unbiased if by = 0 for all 6. If T, is
asymptotically unbiased and moreover Vy = 1/1(0) for all 8, and some regularity
conditions holds, then T, is called asymptotically efficient.

Remark 1 The assumptions in the above definition, are for all §. Clearly, if
one only looks at one fixed given 6y, it is easy to construct a super-efficient es-
timator, namely T, = 0y. More generally, to avoid this kind of super-efficiency,
one does not only require conditions to hold for all #, but in fact uniformly
in 0, or for all sequences {6,}. The regularity one needs here involves the
idea that one actually needs to allow for sequences 6,, the form 6,, = 0 + h/+\/n.
In fact, the regularity requirement is that also, for all h,

V(T — 0,)2% N(0, Vi),

To make all this mathematically precise is quite involved. We refer to van der
Vaart (1998). A glimps is given in Le Cam’s 3! Lemma, see the next subsection.

Remark 2 Note that when 6 = 6, is allowed to change with n, this means that
distribution of X; can change with n, and hence X; can change with n. Instead
of regarding the sample Xi,...,X,, are the first n of an infinite sequence, we
now consider for each n a new sample, say X1 1,..., Xpn.

Remark 3 We have seen that the MLE 6, generally is indeed asymptotically
unbiased with asymptotic variance Vjy equal to 1/1(0), i.e., under regularity
assumptions, the MLE is asymptotically efficient.

For asymptotically linear estimators, with influence function ly, one has asymp-
totic variance Vp = EplZ(X). The next lemma indicates that generally 1/1(6)
is indeed a lower bound for the asymptotic variance.

Lemma 6.6.1 Suppose that

o= Iy -1/2
(Tn e)_n;zg(xz)ﬂpe(n ),
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where Eglg(X) =0, Epl3(X) := Vp < co. Assume moreover that
Eyplg(X)sp(X) = 1.
Then 1
Vo > @
Proof. This follows from the Cauchy-Schwarz inequality:
1 = |covg(lg(X), se(X))|?

< varg(lg(X))varg(se(X)) = VoI (0).

135

(6.6)

O

It may look like a coincidence when in a special case, equality (6.6) indeed
holds. But actually, it is true in quite a few cases. This may at first seem like

magic.

We consider two examples. To simplify the expressions, we again write short-

hand

Pyf = Epf(X).
Example 6.6.1 This example examines the Z-estimator of 8. Then we have,
for P = Py,

Py = 0.

The influence function is

lo = —vbo/ Mo,
where

My := C%ng.

Under regularity, we have
) . . d
Mo =Py = [ dopadv, o = 500,
We may also write

d
M = — ) d ) = — .
0 / Yopedv, Po 20"

This follows from the chain rule
d . )
@T/)epe = Ygpo + Vopo,

and (under regularity)

d

d d d
d9¢9p9dv da/%pedv 70 g d00 0

Thus
Plpsg = —M, ' Pypgsg = — M, * /ngpadu =1,

that is, (6.6) holds.
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Example 6.6.2 We consider now the plug-in estimator Q(Pn) Suppose that
@ is Fisher consistent (i.e., Q(Py) = 6 for all ). Assume moreover that @ is
Fréchet differentiable with respect to the metric d, at all Py, and that

a(P;, Py) = O(1f — ).
Then, by the definition of Fréchet differentiability
h = Q(Posn) — Q(Fy) = Posnle + o(|h]) = (Porn — Py)lo + o(|h]),

or, as h — 0,

1=

P, — P, l — d
(Potn — Pa)lg +o(1) = J lo(pos+n — po)dv

W N +o(1)

— /lezbedl/ = Py(lpse)-

So (6.6) holds.

6.6.1 Le Cam’s 3" Lemma

The following example serves as a motivation to consider sequences 6,, depend-
ing on n. It shows that pointwise asymptotics can be very misleading.

Example 6.6.3 (Hodges-Lehmann example of super-efficiency) Let X1,..., X,
be i.i.d. copies of X, where X = 6 + ¢, and € is N(0, 1)-distributed. Consider
the estimator B B
o { BT
" X, /2, if |X,| <n /4

Then D, [N(0,1), 60
\/E(Tn_e) _9> {N(OZEL)Z =0 "

So the pointwise asymptotics show that T;, can be more efficient than the sample
average X,,. But what happens if we consider sequences 6,,? For example, let
0n = h/y/n. Then, under Py, X, = & + h/(v/n) = Op,, (n=1/2). Hence,
Py, (| X,| > n~1/%) = 0, so that Py, (T}, = X,,) — 0. Thus,

V(T — 0,) = V(T — 0,){Ty, = X0} + V(T — 0,)4 T, = X,,/2}
Dy h 1
—S N(—=,-).
N(-3,7)
The asymptotic mean square error AMSEy(T,,) is defined as the asymptotic
variance 4+ asymptotic squared bias:
1+ h?
AMSEy (T) = *4 .
The AMSEy(X,,) of X,, is its normalized non-asymptotic mean square error,
which is

AMSE, (X,,) = MSE,, (X,,) = 1.

So when h is large enough, the asymptotic mean square error of T}, is larger
than that of X,,.
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Le Cam’s 3" lemma shows that asymptotic linearity for all # implies asymptotic
normality, now also for sequences 6,, = 0 + h/+/n. The asymptotic variance for
such sequences #,, does not change. Moreover, if (6.6) holds for all 6, the
estimator is also asymptotically unbiased under Py, .

Lemma 6.6.2 (Le Cam’s 3" Lemma) Suppose that for all 6,
1 n
T 0= 5 3 10(X0) + ory (™),
1=
where Pylg = 0, and Vy := Pglg < 00. Then, under reqularity conditions,

\/ﬁ(Tn — Gn) % N({Pg(l@S@) — 1}h, Vg) .

We will present a sketch of the proof of this lemma. For this purpose, we need
the following auxiliary lemma.

Lemma 6.6.3 (Auziliary lemma) Let Z € R? be N (u, X)-distributed, where
I of 012
M = y E = 2 .
12 o2 03

p2 = —05/2.
Let Y € R? be N (i1 + a, X)-distributed, with

0= [7L2
O’% ’

Let ¢z be the density of Z and ¢y be the density of Y. Then we have the
following equality for all z = (21, z2) € R?:

Suppose that

¢z(z)e” = ¢y (2).
Proof. The density of Z is
1
62(0) = s exp| =5 (o — B - )|

T ony/det(®)

Now, one easily sees that

So
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and

2
:ZQ—’LLQ—§O'2:ZZ.

Sketch of proof of Le Cam’s 3’ Lemma. Set

n

i=1

Then under Py, by a two-term Taylor expansion,

as

We moreover have, by the assumed asymptotic linearity, under Py,
1 n
T,—0)~ — lo(X;).

Thus,

(Vo) Dy

where Z € R?, has the two-dimensional normal distribution:

7= <§;> ~N <<—}§201(9)) 7 <hP9‘(/l9939) hig-(’l(ej)e))) .

Thus, we know that for all bounded and continuous f : R? — R, one has

Eef(\/ﬁ(Tn - 9)7An) —>]Ef(Zla ZZ)'

Now, let f: R — R be bounded and continuous. Then, since

n

[ po. (Xi) = [ [ po(Xi)e™,
i=1

i=1

we may write

Eo, f (\i(T, — 0)) = Eo f (\a(T, — 0))e™.
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The function (z1,22) — f(21)e* is continuous, but not bounded. However,
one can show that one may extend the Portmanteau Theorem to this situation.
This then yields

Eof (Vn(T, — 0))e —Ef(Z;)e?>.

Now, apply the auxiliary Lemma, with

H= <—hz201(9)) T <hP9‘(/?959) h§g§l€;)9)> '

Then we get

]Ef(Zl)eZQ:/f(zl)ez2qbz(z)dz:/f(zl)gby(z)dz:Ef(Yl),

V= () () Chrdan "))

Y1 ~ N (hPy(lgsg), Vo).

where

so that

So we conclude that

D,
\/E(Tn —0) =3 Y1~ J\/(th(lgSg), Vo).

Hence

VAT, = ) = Vii(To — 6) — b 255 N (h{ Py(lpsg) — 1}, Vi).

6.7 Asymptotic confidence intervals and tests

Again throughout this section, enough regularity is assumed, such as existence

Intermezzo: the x? distribution Let Y1, ...,Y, be i.i.d. N'(0, 1)-distributed.
Define the p-vector

Y
Y = :
Y,
Then Y is N(0,I)-distributed, with I the p x p identity matrix. The x?2-
distribution with p degrees of freedom is defined as the distribution of

p
2 . 2
IY)?:=>_v7
j=1
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Notation: [|Y]|? ~ X%-

For a symmetric positive definite matrix 3, one can define the square root »i/2
as a symmetric positive definite matrix satisfying

21/221/2 -3

Its inverse is denoted by ¥ ~/2 (which is the square root of 1. If Z € R? is
N (0, X)-distributed, the transformed vector

Y =%z
is N(0, I)-distributed. It follows that

Z'S 2 =YY = |V |? ~ X2

Asymptotic pivots Recall the definition of an asymptotic pivot (see Section
1.7). It is a function Z,(vy) := Z,(X1,...,Xy,7y) of the data X;,..., X, and
the parameter of interest v = g(#) € RP, such that its asymptotic distribution
does not depend on the unknown parameter 6, i.e., for a random variable Z,
with distribution ) not depending on 6,

Z 287, v 6.

An asymptotic pivot can be used to construct approximate (1 — a)-confidence
intervals for v, and tests for Hy : v = 79 with approximate level «.

Consider now an asymptotically normal estimator 7T,, of v, which is asymptot-
ically unbiased and has asymptotic covariance matrix Vp, that is

V(T = 1) 25N (0, V), ¥ 6.

(assuming such an estimator exists). Then, depending on the situation, there
are various ways to construct an asymptotic pivot.

15 asymptotic pivot

If the asymptotic covariance matrix Vj is non-singular, and depends only on
the parameter of interest ~y, say Vy = V() (for example, if v = 0), then an
asymptotic pivot is

Zna(v) 7= (T =)V ()" (T = 7).
The asymptotic distribution is the y?-distribution with p degrees of freedom.

2nd asymptotic pivot
If, for all 6, one has a consistent estimator V,, of V'(#), then an asymptotic pivot
is

Zn2(y) = (T — )V, HT = ).

The asymptotic distribution is again the y?-distribution with p degrees of free-
dom.
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Estimators of the asymptotic variance

o If 0, is a consistent estimator of @ and if 6 — Vj is continuous, one may insert
Vn = Vén’

o If T,, = 4, is the M-estimator of v, v being the solution of Fy1, = 0, then
(under regularity) the asymptotic covariance matrix is

Vo =M, JpM, ",

where
Jo = Pyl
and
My =2 P =Py,
ocT =y 7

Then one may estimate Jy and My by
1 n
7 . P T _ T
In 1= B, 5, = ;%n(Xi)%n(Xi%
1=

and

~ ~

. 1 <. .
M, = nlﬂ’yn = E Zw’?n(X’L)7
=1
respectively. Under some regularity conditions,
Vi = MY J, ML

is a consistent estimator of Vj°.

6.7.1 Maximum likelihood

Suppose now that P = {Py : § € ©} has © C RP, and that P is dominated by
some o-finite measure v. Let py := dPy/dv denote the densities, and let

n
0, == arg rgggzl log py(X;)
1=

be the MLE. Recall that 6,, is an M-estimator with loss function py = —log py,
and hence (under regularity conditions), 1y = pg is minus the score function
s9 = py/py. The asymptotic variance of the MLE is I=%(0), where I(f) :=
P@S@Sg is the Fisher information:

V(6 — 02570, 171(8)), ¥ 6.

GFAI‘OIH most algorithms used to compute the M-estimator 4, one easily can obtain M,
and J, as output. Recall e.g. that the Newton-Raphson algorithm is based on the iterations

n -1 n
’A}/new - ;Yold - (Z Qbﬁold) Z w’%ld .
i=1 i=1
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Thus, in this case

Zn1(0) = (0, — 0)1(0)(6n — 0),
and, with I,, being a consistent estimator of ()
Zn2(0) = (0, — 0)1,,(6, — 0).

Note that one may take

n

. 1 . P2 1
I, = - Zsén(Xi) =~ " 5990T n ZIngﬂ(Xi)
i=1 i=1

=0y,

as estimator of the Fisher information .

3rd asymptotic pivot
Define now the twice log-likelihood ratio

2Ly (0n) = 2L,(0) =2 [log p;, (Xi) — log pg(xi)] .
=1

It turns out that the log-likelihood ratio is indeed an asymptotic pivot. A
practical advantage is that it is self-normalizing: one does not need to explicitly
estimate asymptotic (co-)variances.

A~

Lemma 6.7.1 Under reqularity conditions, 2L, (0,) — 2L, (0) is an asymptotic
pivot for 0. Its asymptotic distribution is again the x>-distribution with p de-

grees of freedom:

2L, (0n) — 2L, (0) 252 ¥ 0.

Sketch of the proof. We have by a two-term Taylor expansion
2£n(én) —2L,(0) = P, [logpén —log p9:|

~ 200, — ) Pysg + n(0, — ) P,s9(0,, — 0)

~ 2n(0y, — 0)T Posg — n(6n — 0)T1(0)(0,, — 0),
where in the second step, we used PLég ~ Pyég = —1I (#). (You may compare
this two-term Taylor expansion with the one in the sketch of proof of Le Cam’s
3'd Lemma). The MLE 6, is asymptotically linear with influence function
lo = 1(0) 'sg: ) X

0, — 0 = 1(0) " Pysg + op, (n~Y?).
Hence, R
2L, (0n) — 2L,(0) = n(Prnsg) 1(6) " (Prse).

The result now follows from

Vi Pasg 2EN (0, 1()).

O

"In other words (as for general M-estimators), the algorithm (e.g. Newton Raphson) for
calculating the maximum likelihood estimator 0,, generally also provides an estimator of the
Fisher information as by-product.
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Example 6.7.1 Let Xi,...,X,, be i.i.d. copies of X, where X € {1,...,k} is
a label, with

Py X =j)=mj, j=1,... k.
where the probabilities 7; are positive and add up to one: Z§:1 m o= 1,
but are assumed to be otherwise unknown. Then there are p := k — 1 un-
known parameters, say § = (m,...,m,—1). Define N; := #{i : X; = j}.
(Note that (Ny,. .., Ni) has a multinomial distribution with parameters n and
(T4, 7).

Lemma For each j =1,...,k, the MLE of m; is

N.
7Tj = 7].
n

Proof. The log-densities can be written as

k
log pg(x) = Zl{:r = j}logm;,
j=1
so that
n k
Zlogpg(Xi) = ZN]- log ;.
i=1 j=1
Putting the derivatives with respect to 8 = (my,...,mk_1), (with 7, = 1 —

Zf;ll 0;) to zero gives,

— — — =0.
7 Ty,
Hence
R Tk
Wj:NjE,]—l,. ,l{,
and thus
k .
_ ATk
1= Z?Tj Ny
7=1
yielding
. Ny,
T = —»
n
and hence
NA
ﬁ'j = 7], ] = 1,. ,]C
n

O

We now first calculate Z,, 1(#). For that, we need to find the Fisher information
1(0).
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Lemma The Fisher information is

1
= 0
! : L 7 g
I(H): . '.. . +7[,[,’
. . Tl
0 1
Tk—1

where v is the (k — 1)-vector v := (1,...,1)T .
Proof. We have 1 )
(2) = —Yz =j} — —Ya = k).
s0,(a) = M =} = 2o = 1)

So
TO))5 5 = Bo[ —1{X = 1} — X =k} ) (21X = o) — —1{X = &}
g2 — 1440 T = - = T =72 p =
_{; Ji # Jo
= 1 1 S
w Tt 1 =J2=)
J k
O
We thus find
Zn1(0) =n(0, —0)T1(6)(0,, — 0)
7AT1—7Tl T ?11 0 1 1 ... 1 ﬁl—ﬂl
=n : : : +—1: : :
T
Th—1 — Th—1 0 mil A1 Th—1 — Th—1
k—1 k—1
(7 )° 1 R
="n ’ - ’ +n7T( (7 — m5))?
_ J k
7j=1 7j=1
ko .
_ (7 — 771')2
a nz j
7=1

This is called the Pearson’s chi-square

Z (observed — expected)?
expected '

A version of Z, 2() is to replace, for j =1,...k, m; by 7; in the expression for
the Fisher information. This gives

N, —nm;)?
Zn,?(e)zz( 2 N ]) .
j=1 J

8To invert such a matrix, one may apply the formula (A 4 bb7)~t = A= — %.
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This is called the Pearson’s chi-square

Z (observed — expected)?
observed '

Finally, the log-likelihood ratio pivot is

k ~
. Py
2L, (0,) — 2L,(0) =2 z; N;log (%) .
]:

The approximation log(1+x) &~ z—12/2 shows that 2L, (6,,) —2L,(0) &~ Zp.2(6):

k ~
A~ T; — T4
2L (0p) — 2L,(0) = —22Nj log (1 - Jﬁ, J)
iz

—2ZN (”’ n > +§:NJ< )222,%2(9).

The three asymptotic pivots Z,1(8), Zn2(0) and 2£,(0,) — 2£,(8) are each
asymptotically Xi_l—distributed under Py.

6.7.2 Likelihood ratio tests

Intermezzo: some matrix algebra

Let z € RP be a vector and B be a (¢ X p)-matrix, (p > ¢) with rank ¢. Moreover,
let V' be a positive definite (p X p)-matrix.

Lemma We have

max {2a7z—ala} =272 — 2T BY(BBT)"'B=.
a€RP: Ba=0

Proof. We use Lagrange multipliers A € RP. We have

0
8—{2aTz —a’a+2a"BTA\} =2 —a+ BT\
a

Hence for
a, :=arg max {2a’z—alal,
a€RP: Ba=0
we have
Z — Qyx + BT\ = 0,
or

Ay = 2+ BT\,

The restriction Ba, = 0 gives

Bz+ BBT)=0.
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So
A= —(BBT)™Bz.
Inserting this in the solution a* gives
ax =z — BY(BBT)™'Bz.
Now,

ala, = (2T —2"BY(BBY)™"'B)(:~BT(BBT)"'Bz) = 2T 22" BT (BBT) "' Bz.

So
2ar 2z —ala, = 272 — 2" BT (BBT) ' Bz.
O
Lemma We have
max {247z —a?Va} =TVl = TvIBT(BVIBT)lBYV L.
a€RP: Ba=0
Proof. Make the transformation b := V1/2q, and y := VY22, and C =
BV Y2, Then
max {2a’z —a’Va}
a: Ba=0
= 267y — b'd
W2y b
=yly—ytcTccty oy =2Tv 1z — AV 1BT(BVIBT)"1BV 12
O

Corollary Let L(a) := 2a”2 — a’Va. The difference between the unrestricted
mazimum and the restricted maximum of L(a) is

max L(a) — max L(a) =2/ VI1BT(BV'BT)"'BV 12
a a: Ba=0

Hypothesis testing
For the simple hypothesis

HQZ 9:90,

we can use 2£n(én) —2L,(0y) as test statistic: reject Hy if 2£n(én) —2L,(00) >
X127704’ where xp « is the (1 — a)-quantile of the X]%—distribution.

Consider now the hypothesis
Hy: R(9) =0,

where
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Let 6, be the unrestricted MLE, that is
n
0n = argmax Z; log py(X;).
1=
Moreover, let 60 be the restricted MLE, defined as

00 = ar max lo
n=oIg max Z gpo(X

Define the (¢ x p)-matrix

0

R(0) = 557 RW0)lv=o.

We assume R(6) has rank g.
Let

n

Lall) — L) =Y [logpg (X:) — log i (X)

i=1
be the log-likelihood ratio for testing Hy : R(#) = 0.

Lemma 6.7.2 Under regularity conditions, and if Hy : R(6) = 0 holds, we
have

2L (0,) — 2L (02) 282

Xq-

Sketch of the proof. Let

= \/15 Z S@(X
=1

As in the sketch of the proof of Lemma 6.7.1, we can use a two-term Taylor
expansion to show for any sequence ¥,, satisfying 9, = 6 4+ Op, (n~=1/2), that

2 Z [logm )=ow 0X0) | = 2VA(0,0)" 2o (0, -0)*T(0)(0,0) 0w, ().

Here, we also again use that Y . | $g, (X;)/n = —I(0) + op,(1). Moreover, by
a one-term Taylor expansion, and invoking that R(6) = 0,

R(9,) = R(0)(9,, — ) + op, (n~Y/?).

Insert the corollary in the above matrix algebra, with z := Z,, B := R(Q), and
V = 1(#). This gives
2£n(9n) - 2£n(92)
n

= Zn:[logpg( i) — log pg(X ]—2Z[logp90 — log po(X:)
=1
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=Z10) R (9) (R(H)I(@)lR(G)T> 713(0)1(9)71% + op, (1)

=YWy, + op, (1),
where Y, is the g-vector
Y, :=RO)I)'Z,,
and where W is the (¢ x ¢)-matrix
W:=R(O)I6) RO
We know that
Z 25N (0, 1(6)).

Hence

v, 240, W),

so that

YfW‘lYn%XE.

O

Corollary 6.7.1 From the sketch of the proof of Lemma 6.7.2, one sees that
moreover (under regularity),

2L (0,) — 2L, (%) ~ n(0, —0°)T1(0)(0, — 0°),
and also
2£n(0n) - 2[%(991) ~ n(en - eg)TI(eg)(an - 92)

Example 6.7.2 Let X be a bivariate label, say X € {(j,k): j=1,...,r, k=
1,...,s}. For example, the first index may correspond to sex (r = 2) and the
second index to the color of the eyes (s = 3). The probability of the combination

(J,k) is
ik = Dy <X = (J, k)>-
Let Xq,..., X, beii.d. copies of X, and

Njk = #{X; = (j,k)}.
From Example 6.7.1, we know that the (unrestricted) MLE of 7, is equal to

E n

We now want to test whether the two labels are independent. The null-
hypothesis is

Ho: mjp = (mj4) X (T k) ¥V (5, F).
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Here
S T
Tj+ = Zﬂj7k’ T4k = Zﬁjvk‘
k=1 j=1
One may check that the restricted MLE is
~0 N A
Tk = (Tj4) X (T k),
where
S T
Rjw = D Rjks Tk = ) i
k=1 j=1
The log-likelihood ratio test statistic is thus

. . O N; N;j+N.
2Ln(0n) = 2La(00) =2 > N [1og (jf) ~log (J;;’“ﬂ

j=1k=1

' S
TL]V‘]C
:2§ § N, 1 )
3k 208 <JV¢+Pﬂhk)

j=1k=1

Its approximation as given in Corollary 6.7.1 is

A . o~ (Njx = Nj s Ny g /n)?
2L (0n) — 2L£,(0°) = n : T T .
;;;22; Nj+ Ny k

This is Pearson’s chi-squared test statistic for testing independence. To find
out what the value of ¢ is in this example, we first observe that the unrestricted

case has p = rs — 1 free parameters. Under the null-hypothesis, there remain
(r—1)+ (s — 1) free parameters. Hence, the number of restrictions is

q= <7’s—1>—<(7’—1)+(3—1)> = (r—1)(s — 1).

Thus, under Hy : 75 = (mj,4) X (74) V (j, k), we have

T S
(Njk = Njx Ny o/n)? Dy
" 7 N = X e
;; Nj+ Ny i (r—1)(s—1)

6.8 Complexity regularization (to be written)
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