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These notes in English closely follow Mathematische Statistik, by H.R. Künsch
(2005). Mathematische Statistik can be used as supplementary reading material
in German.

Mathematical rigor and clarity often bite each other. At some places, not all
subtleties are fully presented. A snake will indicate this.
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Chapter 1

Introduction

Statistics is about the mathematical modeling of observable phenomena, using
stochastic models, and about analyzing data: estimating parameters of the
model and testing hypotheses. In these notes, we study various estimation and
testing procedures. We consider their theoretical properties and we investigate
various notions of optimality.

1.1 Some notation and model assumptions

The data consist of measurements (observations) x1, . . . , xn, which are regarded
as realizations of random variables X1, . . . , Xn. In most of the notes, the Xi

are real-valued: Xi ∈ R (for i = 1, . . . , n), although we will also consider some
extensions to vector-valued observations.

Example 1.1.1 Fizeau and Foucault developed methods for estimating the
speed of light (1849, 1850), which were later improved by Newcomb and Michel-
son. The main idea is to pass light from a rapidly rotating mirror to a fixed
mirror and back to the rotating mirror. An estimate of the velocity of light
is obtained, taking into account the speed of the rotating mirror, the distance
travelled, and the displacement of the light as it returns to the rotating mirror.

Fig. 1

The data are Newcomb’s measurements of the passage time it took light to
travel from his lab, to a mirror on the Washington Monument, and back to his
lab.
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distance: 7.44373 km.

66 measurements on 3 consecutive days

first measurement: 0.000024828 seconds= 24828 nanoseconds
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1.1. SOME NOTATION AND MODEL ASSUMPTIONS 9

One may estimate the speed of light using e.g. the mean, or the median, or
Huber’s estimate (see below). This gives the following results (for the 3 days
separately, and for the three days combined):

Mean

Median

Huber

Day 1 Day 2 Day 3 All

21.75 28.55 27.85 26.21

25.5 28 27 27

25.65 28.40 27.71 27.28

Table 1

The question which estimate is “the best one” is one of the topics of these notes.

Notation

The collection of observations will be denoted by X = {X1, . . . , Xn}. The
distribution of X, denoted by IP, is generally unknown. A statistical model is
a collection of assumptions about this unknown distribution.

We will usually assume that the observations X1, . . . , Xn are independent and
identically distributed (i.i.d.). Or, to formulate it differently, X1, . . . , Xn are
i.i.d. copies from some population random variable, which we denote by X.
The common distribution, that is: the distribution of X, is denoted by P . For
X ∈ R, the distribution function of X is written as

F (·) = P (X ≤ ·).

Recall that the distribution function F determines the distribution P (and vise
versa).

Further model assumptions then concern the modeling of P . We write such
a model as P ∈ P, where P is a given collection of probability measures, the
so-called model class.

The following example will serve to illustrate the concepts that are to follow.

Example 1.1.2 Let X be real-valued. The location model is

P := {Pµ,F0(X ≤ ·) := F0(· − µ), µ ∈ R, F0 ∈ F0}, (1.1)

where F0 is a given collection of distribution functions. Assuming the expec-
tation exist, we center the distributions in F0 to have mean zero. Then Pµ,F0

has mean µ. We call µ a location parameter. Often, only µ is the parameter of
interest, and F0 is a so-called nuisance parameter.
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The class F0 is for example modeled as the class of all symmetric distributions,
that is

F0 := {F0(x) = 1− F0(−x),∀ x}. (1.2)

This is an infinite-dimensional collection: it is not parametrized by a finite
dimensional parameter. We then call F0 an infinite-dimensional parameter.

A finite-dimensional model is for example

F0 := {Φ(·/σ) : σ > 0}, (1.3)

where Φ is the standard normal distribution function.

Thus, the location model is

Xi = µ+ εi, i = 1, . . . , n,

with ε1, . . . , εn i.i.d. and, under model (1.2), symmetrically but otherwise un-
known distributed and, under model (1.3), N (0, σ2)-distributed with unknown
variance σ2.

1.2 Estimation

A parameter is an aspect of the unknown distribution. An estimator T is some
given function T (X) of the observations X. The estimator is constructed to
estimate some unknown parameter, γ say.

In Example 1.1.2, one may consider the following estimators µ̂ of µ:

• The average

µ̂1 :=
1

n

N∑
i=1

Xi.

Note that µ̂1 minimizes over µ the squared loss

n∑
i=1

(Xi − µ)2.

It can be shown that µ̂1 is a “good” estimator if the model (1.3) holds. When
(1.3) is not true, in particular when there are outliers (large, “wrong”, obser-
vations) (Ausreisser), then one has to apply a more robust estimator.

• The (sample) median is

µ̂2 :=

{
X((n+1)/2) when n odd
{X(n/2) +X(n/2+1)}/2 when n is even

,

where X(1) ≤ · · · ≤ X(n) are the order statistics. Note that µ̂2 is a minimizer
of the absolute loss

n∑
i=1

|Xi − µ|.
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• The Huber estimator is

µ̂3 := arg min
µ

n∑
i=1

ρ(Xi − µ), (1.4)

where

ρ(x) =

{
x2 if |x| ≤ k
k(2|x| − k) if |x| > k

,

with k > 0 some given threshold.

• We finally mention the α-trimmed mean, defined, for some 0 < α < 1, as

µ̂4 :=
1

n− 2[nα]

n−[nα]∑
i=[nα]+1

X(i).

Note To avoid misunderstanding, we note that e.g. in (1.4), µ is used as variable
over which is minimized, whereas in (1.1), µ is a parameter. These are actually
distinct concepts, but it is a general convention to abuse notation and employ
the same symbol µ. When further developing the theory (see Chapter 6) we
shall often introduce a new symbol for the variable, e.g., (1.4) is written as

µ̂3 := arg min
c

n∑
i=1

ρ(Xi − c).

An example of a nonparametric estimator is the empirical distribution function

F̂n(·) :=
1

n
#{Xi ≤ ·, 1 ≤ i ≤ n}.

This is an estimator of the theoretical distribution function

F (·) := P (X ≤ ·).

Any reasonable estimator is constructed according the so-called a plug-in princi-
ple (Einsetzprinzip). That is, the parameter of interest γ is written as γ = Q(F ),
with Q some given map. The empirical distribution F̂n is then “plugged in”, to
obtain the estimator T := Q(F̂n). (We note however that problems can arise,
e.g. Q(F̂n) may not be well-defined ....).

Examples are the above estimators µ̂1, . . . , µ̂4 of the location parameter µ. We
define the maps

Q1(F ) :=

∫
xdF (x)

(the mean, or point of gravity, of F ), and

Q2(F ) := F−1(1/2)

(the median of F ), and

Q3(F ) := arg min
µ

∫
ρ(· − µ)dF,
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and finally

Q4(F ) :=
1

1− 2α

∫ F−1(1−α)

F−1(α)
xdF (x).

Then µ̂k corresponds to Qk(F̂n), k = 1, . . . , 4. If the model (1.2) is correct,
µ̂1, . . . , µ̂4 are all estimators of µ. If the model is incorrect, each Qk(F̂n) is still
an estimator of Qk(F ) (assuming the latter exists), but the Qk(F ) may all be
different aspects of F .

1.3 Comparison of estimators: risk functions

A risk function R(·, ·) measures the loss due to the error of an estimator. The
risk depends on the unknown distribution, e.g. in the location model, on µ
and/or F0. Examples are

R(µ, F0, µ̂) :=

{
IEµ,F0 |µ̂− µ|p
IPµ,F0(|µ̂− µ| > a)
. . .

.

Here p ≥ 1 and a > 0 are chosen by the researcher.

If µ̂ is an equivariant estimator, the above risks no longer depend on µ. An
estimator µ̂ := µ̂(X1, . . . , Xn) is called equivariant if

µ̂(X1 + c, . . . ,Xn + c) = µ̂(X1, . . . , Xn) + c, ∀ c.

Then, writing
IPF0 := IP0,F0 ,

(and likewise for the expectation IEF0), we have for all t > 0

IPµ,F0(µ̂− µ ≤ t) = IPF0(µ̂ ≤ t),

that is, the distribution of µ̂− µ does not depend on µ. We then write

R(µ, F0, µ̂) := R(F0, µ̂) :=

{
IEF0 |µ̂|p
IPF0(|µ̂| > a)
. . .

.

1.4 Comparison of estimators: sensitivity

We can compare estimators with respect to their sensitivity to large errors in
the data. Suppose the estimator µ̂ = µ̂n is defined for each n, and is symmetric
in X1, . . . , Xn.

Influence of a single additional observation
The influence function is

l(x) := µ̂n+1(X1, . . . , Xn, x)− µ̂n(X1, . . . , Xn), x ∈ R.
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Break down point
Let for m ≤ n,

ε(m) := sup
x∗1,...,x

∗
m

|µ̂(x∗1, . . . , x
∗
m, Xm+1, . . . , Xn)|.

If ε(m) :=∞, we say that with m outliers the estimator can break down. The
break down point is defined as

ε∗ := min{m : ε(m) =∞}/n.

1.5 Confidence intervals

Consider the location model (Example 1.1.2).

Definition A subset I = I(X) ⊂ R, depending (only) on the data X =
(X1, . . . , Xn), is called a confidence set (Vertrauensbereich) for µ, at level 1−α,
if

IPµ,F0(µ ∈ I) ≥ 1− α, ∀ µ ∈ R, F0 ∈ F0.

A confidence interval is of the form

I := [µ, µ̄],

where the boundaries µ = µ(X) and µ̄ = µ̄(X) depend (only) on the data X.

1.5.1 Equivalence confidence sets and tests

Let for each µ0 ∈ R, φ(X, µ0) ∈ {0, 1} be a test at level α for the hypothesis

Hµ0 : µ = µ0.

Thus, we reject Hµ0 if and only if φ(X, µ0) = 1, and

IPµ0,F0(φ(X, µ0) = 1) ≤ α.

Then

I(X) := {µ : φ(X, µ) = 0}

is a (1− α)-confidence set for µ.

Conversely, if I(X) is a (1 − α)-confidence set for µ, then, for all µ0, the test
φ(X, µ0) defined as

φ(X, µ0) =
{

1 if µ0 /∈ I(X)
0 else

is a test at level α of Hµ0 .
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1.6 Intermezzo: quantile functions

Let F be a distribution function. Then F is cadlag (continue à droite, limite à
gauche). Define the quantile functions

qFsup(u) := sup{x : F (x) ≤ u},

and
qFinf(u) := inf{x : F (x) ≥ u} := F−1(u).

It holds that
F (qFinf(u)) ≥ u

and, for all h > 0,
F (qFsup(u)− h) ≤ u.

Hence
F (qFsup(u)−) := lim

h↓0
F (qFsup(u)− h) ≤ u.

1.7 How to construct tests and confidence sets

Consider a model class
P := {Pθ : θ ∈ Θ}.

Moreover, consider a space Γ, and a map

g : Θ→ Γ, g(θ) := γ.

We think of γ as the parameter of interest (as in the plug-in principle, with
γ = Q(Pθ) = g(θ)).

For instance, in Example 1.1.2, the parameter space is Θ := {θ = (µ, F0), µ ∈
R, F0 ∈ F0}, and, when µ is the parameter of interest, g(µ, F0) = µ.

To test

Hγ0 : γ = γ0,

we look for a pivot (Tür-Angel). This is a function Z(X, γ) depending on the
data X and on the parameter γ, such that for all θ ∈ Θ, the distribution

IPθ(Z(X, g(θ)) ≤ ·) =: G(·)

does not depend on θ. We note that to find a pivot is unfortunately not always
possible. However, if we do have a pivot Z(X, γ) with distribution G, we can
compute its quantile functions

qL := qGsup

(α
2

)
, qR := qGinf

(
1− α

2

)
.

and the test

φ(X, γ0) :=
{

1 if Z(X, γ0) /∈ [qL, qR]
0 else

.
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Then the test has level α for testing Hγ0 , with γ0 = g(θ0):

IPθ0(φ(X, g(θ0)) = 1) = Pθ0(Z(X, g(θ0)) > qR) + IPθ0(Z(X), g(θ0)) < qL)

= 1−G(qR) +G(qL) ≤ 1−
(

1− α

2

)
+
α

2
= α.

As example, consider again the location model (Example 1.1.2). Let

Θ := {θ = (µ, F0), µ ∈ R, F0 ∈ F0},

with F0 a subset of the collection of symmetric distributions (see (1.2)). Let µ̂
be an equivariant estimator, so that the distribution of µ̂− µ does not depend
on µ.

• If F0 := {F0} is a single distribution (i.e., the distribution F0 is known), we
take Z(X, µ) := µ̂−µ as pivot. By the equivariance, this pivot has distribution
G depending only on F0.

• If F0 := {F0(·) = Φ(·/σ) : σ > 0}, we choose µ̂ := X̄n where X̄n =
∑n

i=1Xi/n
is the sample mean. As pivot, we take

Z(X, µ) :=

√
n(X̄n − µ)

Sn
,

where S2
n =

∑n
i=1(Xi − X̄)2/(n − 1) is the sample variance. Then G is the

Student distribution with n− 1 degrees of freedom.

• If F0 := {F0 symmetric and continuous at x = 0}, we let the pivot be the
sign test statistic:

Z(X, µ) :=
n∑
i=1

l{Xi ≥ µ}.

Then G is the Binomial(n, p) distribution, with parameter p = 1/2.

Let Zn(X1, . . . , Xn, γ) be some function of the data and the parameter of in-
terest, defined for each sample size n. We call Zn(X1, . . . , Xn, γ) an asymptotic
pivot if for all θ ∈ Θ,

lim
n→∞

IPθ(Zn(X1, . . . , Xn, γ) ≤ ·) = G(·),

at all continuity points of G, where the limit G does not depend on θ.

In the location model, suppose X1, . . . , Xn are the first n of an infinite sequence
of i.i.d. random variables, and that

F0 := {F0 :

∫
xdF0(x) = 0,

∫
x2dF0(x) <∞}.

Then

Zn(X1, . . . , Xn, µ) :=

√
n(X̄n − µ)

Sn
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is an asymptotic pivot, with limiting distribution G = Φ.

Comparison of confidence intervals and tests
When comparing confidence intervals, the aim is usually to take the one with
smallest length on average (keeping the level at 1 − α). In the case of tests,
we look for the one with maximal power. In the location model, this leads to
studying

IEµ,F0 |µ̄(X)− µ(X)|

for (1 − α)-confidence sets [µ, µ̄], or to studying the power of test φ(X, µ0) at
level α. Recall that the power is Pµ,F0(φ(X, µ0) = 1) for values µ 6= µ0.

1.8 An illustration: the two-sample problem

Consider the following data, concerning weight gain/loss. The control group x
had their usual diet, and the treatment group y obtained a special diet, designed
for preventing weight gain. The study was carried out to test whether the diet
works.

control
group group

treatment

5
0
16
2
9

32
+ +

6
-5
-6
1
4

0

rank(x) rank(y)
x y

7

9

10
3

5

8
2
1
4
6

Table 2

Let n (m) be the sample size of the control group x (treatment group y). The
mean in group x (y) is denoted by x̄ (ȳ). The sums of squares are SSx :=∑n

i=1(xi− x̄)2 and SSy :=
∑m

j=1(yj − ȳ)2. So in this study, one has n = m = 5
and the values x̄ = 6.4, ȳ = 0, SSx = 161.2 and SSy = 114. The ranks, rank(x)
and rank(y), are the rank-numbers when putting all n+m data together (e.g.,
y3 = −6 is the smallest observation and hence rank(y3) = 1).

We assume that the data are realizations of two independent samples, say
X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym), where X1, . . . , Xn are i.i.d. with
distribution function FX , and Y1, . . . , Ym are i.i.d. with distribution function
FY . The distribution functions FX and FY may be in whole or in part un-
known. The testing problem is:
H0 : FX = FY
against a one- or two-sided alternative.
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1.8.1 Assuming normality

The classical two-sample student test is based on the assumption that the data
come from a normal distribution. Moreover, it is assumed that the variance of
FX and FY are equal. Thus,

(FX , FY ) ∈{
FX = Φ

(
· − µ
σ

)
, FY = Φ

(
· − (µ+ γ)

σ

)
: µ ∈ R, σ > 0, γ ∈ Γ

}
.

Here, Γ ⊃ {0} is the range of shifts in mean one considers, e.g. Γ = R for
two-sided situations, and Γ = (−∞, 0] for a one-sided situation. The testing
problem reduces to
H0 : γ = 0.

We now look for a pivot Z(X,Y, γ). Define the sample means

X̄ :=
1

n

n∑
i=1

Xi, Ȳ :=
1

m

m∑
j=1

Yj ,

and the pooled sample variance

S2 :=
1

m+ n− 2

{ n∑
i=1

(Xi − X̄)2 +
m∑
j=1

(Yj − Ȳ )2

}
.

Note that X̄ has expectation µ and variance σ2/n, and Ȳ has expectation µ+γ
and variance σ2/m. So Ȳ − X̄ has expectation γ and variance

σ2

n
+
σ2

m
= σ2

(
n+m

nm

)
.

The normality assumption implies that

Ȳ − X̄ is N
(
γ, σ2

(
n+m

nm

))
−distributed.

Hence √
nm

n+m

(
Ȳ − X̄ − γ

σ

)
is N (0, 1)−distributed.

To arrive at a pivot, we now plug in the estimate S for the unknown σ:

Z(X,Y, γ) :=

√
nm

n+m

(
Ȳ − X̄ − γ

S

)
.

Indeed, Z(X,Y, γ) has a distribution G which does not depend on unknown
parameters. The distribution G is Student(n+m−2) (the Student-distribution
with n+m−2 degrees of freedom). As test statistic for H0 : γ = 0, we therefore
take

T = T Student := Z(X,Y, 0).
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The one-sided test at level α, for H0 : γ = 0 against H1 : γ < 0, is

φ(X,Y) :=

{
1 if T < −tn+m−2(1− α)
0 if T ≥ −tn+m−2(1− α)

,

where, for ν > 0, tν(1− α) = −tν(α) is the (1− α)-quantile of the Student(ν)-
distribution.

Let us apply this test to the data given in Table 2. We take α = 0.05. The
observed values are x̄ = 6.4, ȳ = 0 and s2 = 34.4. The test statistic takes the
value −1.725 which is bigger than the 5% quantile t8(0.05) = −1.9. Hence, we
cannot reject H0. The p-value of the observed value of T is

p−value := IPγ=0(T < −1.725) = 0.06.

So the p-value is in this case only a little larger than the level α = 0.05.

1.8.2 A nonparametric test

In this subsection, we suppose that FX and FY are continuous, but otherwise
unknown. The model class for both FX and FY is thus

F := {all continuous distributions}.

The continuity assumption ensures that all observations are distinct, that is,
there are no ties. We can then put them in strictly increasing order. Let
N = n+m and Z1, . . . , ZN be the pooled sample

Zi := Xi, i = 1, . . . , n, Zn+j := Yj , j = 1, . . . ,m.

Define

Ri := rank(Zi), i = 1, . . . , N.

and let

Z(1) < · · · < Z(N)

be the order statistics of the pooled sample (so that Zi = Z(Ri) (i = 1, . . . , n)).
The Wilcoxon test statistic is

T = TWilcoxon :=
n∑
i=1

Ri.

One may check that this test statistic T can alternatively be written as

T = #{Yj < Xi}+
n(n+ 1)

2
.

For example, for the data in Table 2, the observed value of T is 34, and

#{yj < xi} = 19,
n(n+ 1)

2
= 15.



1.8. AN ILLUSTRATION: THE TWO-SAMPLE PROBLEM 19

Large values of T mean that the Xi are generally larger than the Yj , and hence
indicate evidence against H0.

To check whether or not the observed value of the test statistic is compatible
with the null-hypothesis, we need to know its null-distribution, that is, the
distribution under H0. Under H0 : FX = FY , the vector of ranks (R1, . . . , Rn)
has the same distribution as n random draws without replacement from the
numbers {1, . . . , N}. That is, if we let

r := (r1, . . . , rn, rn+1, . . . , rN )

denote a permutation of {1, . . . , N}, then

IPH0

(
(R1, . . . , Rn, Rn+1, . . . RN ) = r

)
=

1

N !
,

(see Theorem 1.8.1), and hence

IPH0(T = t) =
#{r :

∑n
i=1 ri = t}
N !

.

This can also be written as

IPH0(T = t) =
1(
N
n

)#{r1 < · · · < rn < rn+1 < · · · < rN :
n∑
i=1

ri = t}.

So clearly, the null-distribution of T does not depend on FX or FY . It does
however depend on the sample sizes n and m. It is tabulated for n and m
small or moderately large. For large n and m, a normal approximation of the
null-distribution can be used.

Theorem 1.8.1 formally derives the null-distribution of the test, and actually
proves that the order statistics and the ranks are independent. The latter result
will be of interest in Example 2.10.4.

For two random variables X and Y , use the notation

X
D
= Y

when X and Y have the same distribution.

Theorem 1.8.1 Let Z1, . . . , ZN be i.i.d. with continuous distribution F on
R. Then (Z(1), . . . , Z(N)) and R := (R1, . . . , RN ) are independent, and for all
permutations r := (r1, . . . , rN ),

IP(R = r) =
1

N !
.

Proof. Let ZQi := Z(i), and Q := (Q1, . . . , QN ). Then

R = r ⇔ Q = r−1 := q,
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where r−1 is the inverse permutation of r.1 For all permutations q and all
measurable maps f ,

f(Z1, . . . , ZN )
D
= f(Zq1 , . . . , ZqN ).

Therefore, for all measurable sets A ⊂ RN , and all permutations q,

IP

(
(Z1, . . . , ZN ) ∈ A, Z1 < . . . < ZN

)

= IP

(
(Zq1 . . . , ZqN ) ∈ A, Zq1 < . . . < ZqN

)
.

Because there are N ! permutations, we see that for any q,

IP

(
(Z(1), . . . , Z(n)) ∈ A

)
= N !IP

(
(Zq1 . . . , ZqN ) ∈ A, Zq1 < . . . < ZqN

)

= N !IP

(
(Z(1), . . . , Z(N)) ∈ A, R = r

)
,

where r = q−1. Thus we have shown that for all measurable A, and for all r,

IP

(
(Z(1), . . . , Z(N)) ∈ A, R = r

)
=

1

N !
IP

(
(Z(1), . . . , Z(n)) ∈ A

)
. (1.5)

Take A = RN to find that (1.5) implies

IP

(
R = r

)
=

1

N !
.

Plug this back into (1.5) to see that we have the product structure

IP

(
(Z(1), . . . , Z(N)) ∈ A, R = r

)
= IP

(
(Z(1), . . . , Z(n)) ∈ A

)
IP

(
R = r

)
,

which holds for all measurable A. In other words, (Z(1), . . . , Z(N)) and R are
independent. tu

1.8.3 Comparison of Student’s test and Wilcoxon’s test

Because Wilcoxon’s test is ony based on the ranks, and does not rely on the
assumption of normality, it lies at hand that, when the data are in fact normally
distributed, Wilcoxon’s test will have less power than Student’s test. The loss

1Here is an example, with N = 3:

(z1, z2, z3) = ( 5 , 6 , 4 )

(r1, r2, r3) = ( 2 , 3 , 1 )

(q1, q2, q3) = ( 3 , 1 , 2 )
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of power is however small. Let us formulate this more precisely, in terms of
the relative efficiency of the two tests. Let the significance α be fixed, and
let β be the required power. Let n and m be equal, N = 2n be the total
sample size, and NStudent (NWilcoxon) be the number of observations needed to
reach power β using Student’s (Wilcoxon’s) test. Consider shift alternatives,
i.e. FY (·) = FX(· − γ), (with, in our example, γ < 0). One can show that
NStudent/NWilcoxon is approximately .95 when the normal model is correct. For
a large class of distributions, the ratio NStudent/NWilcoxon ranges from .85 to∞,
that is, when using Wilcoxon one generally has very limited loss of efficiency as
compared to Student, and one may in fact have a substantial gain of efficiency.

1.9 How to construct estimators

Consider i.i.d. observations X1, . . . , Xn, copies of a random variable X with
distribution P ∈ {Pθ : θ ∈ Θ}. The parameter of interest is denoted by
γ = g(θ) ∈ Γ.

1.9.1 Plug-in estimators

For real-valued observations, one can define the distribution function

F (·) = P (X ≤ ·).

An estimator of F is the empirical distribution function

F̂n(·) =
1

n

n∑
i=1

l{Xi ≤ ·}.

Note that when knowing only F̂n, one can reconstruct the order statistics
X(1) ≤ . . . ≤ X(n), but not the original data X1, . . . , Xn. Now, the order
at which the data are given carries no information about the distribution P . In
other words, a “reasonable”2 estimator T = T (X1, . . . , Xn) depends only on the
sample (X1, . . . , Xn) via the order statistics (X(1), . . . X(n)) (i.e., shuffling the
data should have no influence on the value of T ). Because these order statistics
can be determined from the empirical distribution F̂n, we conclude that any
“reasonable” estimator T can be written as a function of F̂n:

T = Q(F̂n),

for some map Q.

Similarly, the distribution function Fθ := Pθ(X ≤ ·) completely characterizes
the distribution P . Hence, a parameter is a function of Fθ:

γ = g(θ) = Q(Fθ).

2What is “reasonable” has to be considered with some care. There are in fact “reasonable”
statistical procedures that do treat the {Xi} in an asymmetric way. An example is splitting
the sample into a training and test set (for model validation).
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If the mapping Q is defined at all Fθ as well as at F̂n, we call Q(F̂n) a plug-in
estimator of Q(Fθ).

The idea is not restricted to the one-dimensional setting. For arbitrary obser-
vation space X , we define the empirical measure

P̂n =
1

n

n∑
i=1

δXi ,

where δx is a point-mass at x. The empirical measure puts mass 1/n at each
observation. This is indeed an extension of X = R to general X , as the empirical
distribution function F̂n jumps at each observation, with jump height equal to
the number of times the value was observed (i.e. jump height 1/n if all Xi are
distinct). So, as in the real-valued case, if the map Q is defined at all Pθ as well
as at P̂n, we call Q(P̂n) a plug-in estimator of Q(Pθ).

We stress that typically, the representation γ = g(θ) as function Q of Pθ is not
unique, i.e., that there are various choices of Q. Each such choice generally
leads to a different estimator. Moreover, the assumption that Q is defined at
P̂n is often violated. One can sometimes modify the map Q to a map Qn that,
in some sense, approximates Q for n large. The modified plug-in estimator then
takes the form Qn(P̂n).

1.9.2 The method of moments

Let X ∈ R and suppose (say) that the parameter of interest is θ itself, and
that Θ ⊂ Rp. Let µ1(θ), . . . , µp(θ) denote the first p moments of X (assumed
to exist), i.e.,

µj(θ) = EθX
j =

∫
xjdFθ(x), j = 1, . . . , p.

Also assume that the map
m : Θ→ Rp,

defined by
m(θ) = [µ1(θ), . . . , µp(θ)],

has an inverse
m−1(µ1, . . . , µp),

for all [µ1, . . . , µp] ∈M (say). We estimate the µj by their sample counterparts

µ̂j :=
1

n

n∑
i=1

Xj
i =

∫
xjdF̂n(x), j = 1, . . . , p.

When [µ̂1, . . . , µ̂p] ∈M we can plug them in to obtain the estimator

θ̂ := m−1(µ̂1, . . . , µ̂p).

Example
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Let X have the negative binomial distribution with known parameter k and
unknown success parameter θ ∈ (0, 1):

Pθ(X = x) =

(
k + x− 1

x

)
θk(1− θ)x, x ∈ {0, 1, . . .}.

This is the distribution of the number of failures till the kth success, where at
each trial, the probability of success is θ, and where the trials are independent.
It holds that

Eθ(X) = k
(1− θ)
θ

:= m(θ).

Hence

m−1(µ) =
k

µ+ k
,

and the method of moments estimator is

θ̂ =
k

X̄ + k
=

nk∑n
i=1Xi + nk

=
number of successes

number of trails
.

Example

Suppose X has density

pθ(x) = θ(1 + x)−(1+θ), x > 0,

with respect to Lebesgue measure, and with θ ∈ Θ ⊂ (0,∞). Then, for θ > 1

EθX =
1

θ − 1
:= m(θ),

with inverse

m−1(µ) =
1 + µ

µ
.

The method of moments estimator would thus be

θ̂ =
1 + X̄

X̄
.

However, the mean EθX does not exist for θ < 1, so when Θ contains values
θ < 1, the method of moments is perhaps not a good idea. We will see that the
maximum likelihood estimator does not suffer from this problem.

1.9.3 Likelihood methods

Suppose that P := {Pθ : θ ∈ Θ} is dominated by a σ-finite measure ν. We
write the densities as

pθ :=
dPθ
dν

, θ ∈ Θ.

Definition The likelihood function (of the data X = (X1, . . . , Xn)) is

LX(ϑ) :=

n∏
i=1

pϑ(Xi).
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The MLE (maximum likelihood estimator) is

θ̂ := arg max
ϑ∈Θ

LX(ϑ).

Note We use the symbol ϑ for the variable in the likelihood function, and the
slightly different symbol θ for the parameter we want to estimate. It is however
a common convention to use the same symbol for both (as already noted in the
earlier section on estimation). However, as we will see below, different symbols
are needed for the development of the theory.

Note Alternatively, we may write the MLE as the maximizer of the log-likelihood

θ̂ = arg max
ϑ∈Θ

logLX(ϑ) = arg max
ϑ∈Θ

n∑
i=1

log pϑ(Xi).

The log-likelihood is generally mathematically more tractable. For example,
if the densities are differentiable, one can typically obtain the maximum by
setting the derivatives to zero, and it is easier to differentiate a sum than a
product.

Note The likelihood function may have local maxima. Moreover, the MLE is
not always unique, or may not exist (for example, the likelihood function may
be unbounded).

We will now show that maximum likelihood is a plug-in method. First, as noted
above, the MLE maximizes the log-likelihood. We may of course normalize the
log-likelihood by 1/n:

θ̂ = arg max
ϑ∈Θ

1

n

n∑
i=1

log pϑ(Xi).

Replacing the average
∑n

i=1 log pϑ(Xi)/n by its theoretical counterpart gives

arg max
ϑ∈Θ

Eθ log pϑ(X)

which is indeed equal to the parameter θ we are trying to estimate: by the
inequality log x ≤ x− 1, x > 0,

Eθ log
pϑ(X)

pθ(X)
≤ Eθ

(
pϑ(X)

pθ(X)
− 1

)
= 0.

(Note that using different symbols ϑ and θ is indeed crucial here.) Chapter 6
will put this is a wider perspective.

Example

We turn back to the previous example. Suppose X has density

pθ(x) = θ(1 + x)−(1+θ), x > 0,
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with respect to Lebesgue measure, and with θ ∈ Θ = (0,∞). Then

log pϑ(x) = log ϑ− (1 + ϑ) log(1 + x),

d

dϑ
log pϑ(x) =

1

ϑ
− log(1 + x).

We put the derivative of the log-likelihood to zero and solve:

n

θ̂
−

n∑
i=1

log(1 +Xi) = 0

⇒ θ̂ =
1

{
∑n

i=1 log(1 +Xi)}/n
.

(One may check that this is indeed the maximum.)

Example

Let X ∈ R and θ = (µ, σ2), with µ ∈ R a location parameter, σ > 0 a scale
parameter. We assume that the distribution function Fθ of X is

Fθ(·) = F0

(
· − µ
σ

)
,

where F0 is a given distribution function, with density f0 w.r.t. Lebesgue mea-
sure. The density of X is thus

pθ(·) =
1

σ
f0

(
· − µ
σ

)
.

Case 1 If F0 = Φ (the standard normal distribution), then

f0(x) = φ(x) =
1√
2π

exp

[
−1

2
x2

]
, x ∈ R,

so that

pθ(x) =
1√

2πσ2
exp

[
− 1

2σ2
(x− µ)2

]
, x ∈ R.

The MLE of µ resp. σ2 is

µ̂ = X̄, σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2.

Case 2 The (standardized) double exponential or Laplace distribution has den-
sity

f0(x) =
1√
2

exp

[
−
√

2|x|
]
, x ∈ R,

so

pθ(x) =
1√
2σ2

exp

[
−
√

2|x− µ|
σ

]
, x ∈ R.
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The MLE of µ resp. σ is now

µ̂ = sample median, σ̂ =

√
2

n

n∑
i=1

|Xi − µ̂2|.

Example

Here is a famous example, from Kiefer and Wolfowitz (1956), where the like-
lihood is unbounded, and hence the MLE does not exist. It concerns the case
of a mixture of two normals: each observation, is either N (µ, 1)-distributed or
N (µ, σ2)-distributed, each with probability 1/2 (say). The unknown parameter
is θ = (µ, σ2), and X has density

pθ(x) =
1

2
φ(x− µ) +

1

2σ
φ((x− µ)/σ), x ∈ R,

w.r.t. Lebesgue measure. Then

LX(µ̃, σ̃2) =
n∏
i=1

(
1

2
φ(Xi − µ̃) +

1

2σ̃
φ((Xi − µ̃)/σ̃)

)
.

Taking µ̃ = X1 yields

LX(X1, σ̃
2) =

1√
2π

(
1

2
+

1

2σ̃
)
n∏
i=2

(
1

2
φ(Xi −X1) +

1

2σ̃
φ((Xi −X1)/σ̃)

)
.

Now, since for all z 6= 0

lim
σ̃↓0

1

σ̃
φ(z/σ̃) = 0,

we have

lim
σ̃↓0

n∏
i=2

(
1

2
φ(Xi −X1) +

1

2σ̃
φ((Xi −X1)/σ̃)

)
=

n∏
i=2

1

2
φ(Xi −X1) > 0.

It follows that

lim
σ̃↓0

LX(X1, σ̃
2) =∞.

Asymptotic tests and confidence intervals based on the likelihood

Suppose that Θ is an open subset of Rp. Define the log-likelihood ratio

Z(X, θ) := 2

{
logLX(θ̂)− logLX(θ)

}
.

Note that Z(X, θ) ≥ 0, as θ̂ maximizes the (log)-likelihood. We will see in
Chapter 6 that, under some regularity conditions,

Z(X, θ)
Dθ−→ χ2

p, ∀ θ.
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Here, “
Dθ−→ ” means convergence in distribution under IPθ, and χ2

p denotes the
Chi-squared distribution with p degrees of freedom.

Thus, Z(X, θ) is an asymptotic pivot. For the null-hypotheses

H0 : θ = θ0,

a test at asymptotic level α is: reject H0 if Z(X, θ0) > χ2
p(1−α), where χ2

p(1−α)
is the (1−α)-quantile of the χ2

p-distribution. An asymptotic (1−α)-confidence
set for θ is

{θ : Z(X, θ) ≤ χ2
p(1− α)}

= {θ : 2 logLX(θ̂) ≤ 2 logLX(θ) + χ2
p(1− α)}.

Example

Here is a toy example. Let X have the N (µ, 1)-distribution, with µ ∈ R un-
known. The MLE of µ is the sample average µ̂ = X̄. It holds that

logLX(µ̂) = −n
2

log(2π)− 1

2

n∑
i=1

(Xi − X̄)2,

and

2

{
logLX(µ̂)− logLX(µ)

}
= n(X̄ − µ)2.

The random variable
√
n(X̄−µ) is N (0, 1)-distributed under IPµ. So its square,

n(X̄ − µ)2, has a χ2
1-distribution. Thus, in this case the above test (confidence

interval) is exact.
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Chapter 2

Decision theory

Notation
In this chapter, we denote the observable random variable (the data) by X ∈ X ,
and its distribution by P ∈ P. The probability model is P := {Pθ : θ ∈ Θ},
with θ an unknown parameter. In particular cases, we apply the results with
X being replaced by a vector X = (X1, . . . , Xn), with X1, . . . , Xn i.i.d. with
distribution P ∈ {Pθ : θ ∈ Θ} (so that X has distribution IP :=

∏n
i=1 P ∈

{IPθ =
∏n
i=1 Pθ : θ ∈ Θ}).

2.1 Decisions and their risk

Let A be the action space.

• A = R corresponds to estimating a real-valued parameter.

• A = {0, 1} corresponds to testing a hypothesis.

• A = [0, 1] corresponds to randomized tests.

• A = {intervals} corresponds to confidence intervals.

Given the observation X, we decide to take a certain action in A. Thus, an
action is a map d : X → A, with d(X) being the decision taken.

A loss function (Verlustfunktion) is a map

L : Θ×A → R,

with L(θ, a) being the loss when the parameter value is θ and one takes action
a.

The risk of decision d(X) is defined as

R(θ, d) := EθL(θ, d(X)), θ ∈ Θ.

29
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Example 2.1.1 In the case of estimating a parameter of interest g(θ) ∈ R, the
action space is A = R (or a subset thereof). Important loss functions are then

L(θ, a) := w(θ)|g(θ)− a|r,

where w(·) are given non-negative weights and r ≥ 0 is a given power. The risk
is then

R(θ, d) = w(θ)Eθ|g(θ)− d(X)|r.

A special case is taking w ≡ 1 and r = 2. Then

R(θ, d) = Eθ|g(θ)− d(X)|2

is called the mean square error.

Example 2.1.2 Consider testing the hypothesis

H0 : θ ∈ Θ0

against the alternative

H1 : θ ∈ Θ1.

Here, Θ0 and Θ1 are given subsets of Θ with Θ0 ∩Θ1 = ∅. As action space, we
take A = {0, 1}, and as loss

L(θ, a) :=

{
1 if θ ∈ Θ0 and a = 1
c if θ ∈ Θ1 and a = 0
0 otherwise

.

Here c > 0 is some given constant. Then

R(θ, d) =

{
Pθ(d(X) = 1) if θ ∈ Θ0

cPθ(d(X) = 0) if θ ∈ Θ1

0 otherwise

.

Thus, the risks correspond to the error probabilities (type I and type II errors).

Note
The best decision d is the one with the smallest risk R(θ, d). However, θ is not
known. Thus, if we compare two decision functions d1 and d2, we may run into
problems because the risks are not comparable: R(θ, d1) may be smaller than
R(θ, d2) for some values of θ, and larger than R(θ, d2) for other values of θ.

Example 2.1.3 Let X ∈ R and let g(θ) = EθX := µ. We take quadratic loss

L(θ, a) := |µ− a|2.

Assume that varθ(X) = 1 for all θ. Consider the collection of decisions

dλ(X) := λX,

where 0 ≤ λ ≤ 1. Then

R(θ, dλ) = var(λX) + bias2
θ(λX)
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= λ2 + (λ− 1)2µ2.

The “optimal” choice for λ would be

λopt :=
µ2

1 + µ2
,

because this value minimizes R(θ, dλ). However, λopt depends on the unknown
µ, so dλopt(X) is not an estimator.

Various optimality concepts
We will consider three optimality concepts: admissibility (zulässigkeit), mini-
max and Bayes.

2.2 Admissibility

Definition A decision d′ is called strictly better than d if

R(θ, d′) ≤ R(θ, d), ∀ θ,

and

∃ θ : R(θ, d′) < R(θ, d).

When there exists a d′ that is strictly better than d, then d is called inadmissible.

Example 2.2.1 Let, for n ≥ 2, X1, . . . , Xn be i.i.d., with g(θ) := Eθ(Xi) := µ,
and var(Xi) = 1 (for all i). Take quadratic loss L(θ, a) := |µ − a|2. Consider
d′(X1, . . . , Xn) := X̄n and d(X1, . . . , Xn) := X1. Then, ∀ θ,

R(θ, d′) =
1

n
, R(θ, d) = 1,

so that d is inadmissible.

Note
We note that to show that a decision d is inadmissible, it suffices to find a
strictly better d′. On the other hand, to show that d is admissible, one has to
verify that there is no strictly better d′. So in principle, one then has to take
all possible d′ into account.

Example 2.2.2 Let L(θ, a) := |g(θ)− a|r and d(X) := g(θ0), where θ0 is some
fixed given value.

Lemma Assume that Pθ0 dominates Pθ
1 for all θ. Then d is admissible.

Proof.

1Let P and Q be probability measures on the same measurable space. Then P dominates
Q if for all measurable B, P (B) = 0 implies Q(B) = 0 (Q is absolut stetig bezüglich P ).
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Suppose that d′ is better than d. Then we have

Eθ0 |g(θ0)− d′(X)|r ≤ 0.

This implies that

d′(X) = g(θ0), Pθ0−almost surely. (2.1)

Since by (2.1),

Pθ0(d′(X) 6= g(θ0)) = 0

the assumption that Pθ0 dominates Pθ, ∀ θ, implies now

Pθ(d
′(X) 6= g(θ0)) = 0, ∀ θ.

That is, for all θ, d′(X) = g(θ0), Pθ-almost surely, and hence, for all θ, R(θ, d′) =
R(θ, d). So d′ is not strictly better than d. We conclude that d is admissible. tu

Example 2.2.3 We consider testing

H0 : θ = θ0

against the alternative

H1 : θ = θ1.

We let A = [0, 1] and let d := φ be a randomized test. As risk, we take

R(θ, φ) :=

{
Eθφ(X), θ = θ0

1− Eθφ(X), θ = θ1
.

We let p0 (p1) be the density of Pθ0 (Pθ1) with respect to some dominating
measure ν (for example ν = Pθ0 + Pθ1). A Neyman Pearson test is

φNP :=


1 if p1/p0 > c
q if p1/p0 = c
0 if p1/p0 < c

.

Here 0 ≤ q ≤ 1, and 0 ≤ c < ∞ are given constants. To check whether φNP is
admissible, we first recall the Neyman Pearson Lemma.

Neyman Pearson Lemma Let φ be some test. We have

R(θ1, φNP)−R(θ1, φ) ≤ c[R(θ0, φ)−R(θ0, φNP)].

Proof.

R(θ1, φNP)−R(θ1, φ) =

∫
(φ− φNP)p1

=

∫
p1/p0>c

(φ− φNP)p1 +

∫
p1/p0=c

(φ− φNP)p1 +

∫
p1/p0<c

(φ− φNP)p1

≤ c
∫
p1/p0>c

(φ− φNP)p0 + c

∫
p1/p0=c

(φ− φNP)p0 + c

∫
p1/p0<c

(φ− φNP)p0
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= c[R(θ0, φ)−R(θ0, φNP)].

tu

Lemma A Neyman Pearson test is admissible if and only if one of the following
two cases hold:
i) its power is strictly less than 1,
or
ii) it has minimal level among all tests with power 1.

Proof. Suppose R(θ0, φ) < R(θ0, φNP). Then from the Neyman Pearson
Lemma, we know that either R(θ1, φ) > R(θ1, φNP) (i.e., then φ is not bet-
ter then φNP), or c = 0. But when c = 0, it holds that R(θ1, φNP) = 0, i.e. then
φNP has power one.

Similarly, suppose that R(θ1, φ) < R(θ1, φNP). Then it follows from the Neyman
Pearson Lemma that R(θ0, φ) > R(θ0, φNP), because we assume c <∞.

tu

2.3 Minimaxity

Definition A decision d is called minimax if

sup
θ
R(θ, d) = inf

d′
sup
θ
R(θ, d′).

Thus, the minimax criterion concerns the best decision in the worst possible
case.

Lemma A Neyman Pearson test φNP is minimax, if and only if R(θ0, φNP) =
R(θ1, φNP).

Proof. Let φ be a test, and write for j = 0, 1,

rj := R(θj , φNP), r′j = R(θj , φ).

Suppose that r0 = r1 and that φNP is not minimax. Then, for some test φ,

max
j
r′j < max

j
rj .

This implies that both
r′0 < r0, r

′
1 < r1

and by the Neyman Pearson Lemma, this is not possible.

Let S = {(R(θ0, φ), R(θ1, φ)) : φ : X → [0, 1]}. Note that S is convex. Thus, if
r0 < r1, we can find a test φ with r0 < r′0 < r1 and r′1 < r1. So then φNP is not
minimax. Similarly if r0 > r1.

tu
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2.4 Bayes decisions

Suppose the parameter space Θ is a measurable space. We can then equip it
with a probability measure Π. We call Π the a priori distribution.

Definition The Bayes risk (with respect to the probability measure Π) is

r(Π, d) :=

∫
Θ
R(ϑ, d)dΠ(ϑ).

A decision d is called Bayes (with respect to Π) if

r(Π, d) = inf
d′
r(Π, d′).

If Π has density w := dΠ/dµ with respect to some dominating measure µ, we
may write

r(Π, d) =

∫
Θ
R(ϑ, d)w(ϑ)dµ(ϑ) := rw(d).

Thus, the Bayes risk may be thought of as taking a weighted average of the
risks. For example, one may want to assign more weight to “important” values
of θ.

Example 2.4.1 Consider again the testing problem

H0 : θ = θ0

against the alternative

H1 : θ = θ1.

Let L(θ0, a) := a and L(θ1, a) := 1− a, w(θ0) =: w0 and w(θ1) =: w1 = 1−w0.
Then

rw(φ) := w0R(θ0, φ) + w1R(θ1, φ).

We take 0 < w0 = 1− w1 < 1.

Lemma Bayes test is

φBayes =


1 if p1/p0 > w0/w1

q if p1/p0 = w0/w1

0 if p1/p0 < w0/w1

.

Proof.

rw(φ) = w0

∫
φp0 + w1(1−

∫
φp1)

=

∫
φ(w0p0 − w1p1) + w1.

So we choose φ ∈ [0, 1] to minimize φ(w0p0 − w1p1). This is done by taking

φ =


1 if w0p0 − w1p1 < 0
q if w0p0 − w1p1 = 0
0 if w0p0 − w1p1 > 0

,
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where for q we may take any value between 0 and 1. tu

Note that

2rw(φBayes) = 1−
∫
|w1p1 − w0p0|.

In particular, when w0 = w1 = 1/2,

2rw(φBayes) = 1−
∫
|p1 − p0|/2,

i.e., the risk is large if the two densities are close to each other.

2.5 Intermezzo: conditional distributions

Recall the definition of conditional probabilities: for two sets A and B, with
P (B) 6= 0, the conditional probability of A given B is defined as

P (A|B) =
P (A ∩B)

P (B)
.

It follows that

P (B|A) = P (A|B)
P (B)

P (A)
,

and that, for a partition {Bj}2

P (A) =
∑
j

P (A|Bj)P (Bj).

Consider now two random vectors X ∈ Rn and Y ∈ Rm. Let fX,Y (·, ·), be the
density of (X,Y ) with respect to Lebesgue measure (assumed to exist). The
marginal density of X is

fX(·) =

∫
fX,Y (·, y)dy,

and the marginal density of Y is

fY (·) =

∫
fX,Y (x, ·)dx.

Definition The conditional density of X given Y = y is

fX(x|y) :=
fX,Y (x, y)

fY (y)
, x ∈ Rn.

2{Bj} is a partition if Bj ∩Bk = ∅ for all j 6= k and P (∪jBj) = 1.
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Thus, we have

fY (y|x) = fX(x|y)
fY (y)

fX(x)
, (x, y) ∈ Rn+m,

and

fX(x) =

∫
fX(x|y)fY (y)dy, x ∈ Rn.

Definition The conditional expectation of g(X,Y ) given Y = y is

E[g(X,Y )|Y = y] :=

∫
fX(x|y)g(x, y)dx.

Note thus that

E[g1(X)g2(Y )|Y = y] = g2(y)E[g1(X)|Y = y].

Notation We define the random variable E[g(X,Y )|Y ] as

E[g(X,Y )|Y ] := h(Y ),

where h(y) is the function h(y) := E[g(X,Y )|Y = y].

Lemma 2.5.1 (Iterated expectations lemma) It holds that

E

[
[E[g(X,Y )|Y ]

]
= Eg(X,Y ).

Proof. Define

h(y) := E[g(X,Y )|Y = y].

Then

Eh(Y ) =

∫
h(y)fY (y)dy =

∫
E[g(X,Y )|Y = y]fY (y)dy

=

∫ ∫
g(x, y)fX,Y (x, y)dxdy = Eg(X,Y ).

tu

2.6 Bayes methods

Let X have distribution P ∈ P := {Pθ : θ ∈ Θ}. Suppose P is dominated by a
(σ-finite) measure ν, and let pθ = dPθ/dν denote the densities. Let Π be an a
priori distribution on Θ, with density w := dΠ/dµ. We now think of pθ as the
density of X given the value of θ. We write it as

pθ(x) = p(x|θ), x ∈ X .
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Moreover, we define

p(·) :=

∫
Θ
p(·|ϑ)w(ϑ)dµ(ϑ).

Definition The a posteriori density of θ is

w(ϑ|x) = p(x|ϑ)
w(ϑ)

p(x)
, ϑ ∈ Θ, x ∈ X .

Lemma 2.6.1 Given the data X = x, consider θ as a random variable with
density w(ϑ|x). Let

l(x, a) := E[L(θ, a)|X = x] =

∫
Θ
L(ϑ, a)w(ϑ|x)dµ(ϑ),

and
d(x) := arg min

a
l(x, a).

Then d is Bayes decision dBayes.

Proof.

rw(d′) =

∫
Θ
R(ϑ, d′)w(ϑ)dµ(ϑ)

=

∫
Θ

[∫
X
L(ϑ, d′(x))p(x|ϑ)dν(x)

]
w(ϑ)dµ(ϑ)

=

∫
X

[∫
Θ
L(ϑ, d′(x))w(ϑ|x)dµ(ϑ)

]
p(x)dν(x)

=

∫
X
l(x, d′(x))p(x)dν(x)

≥
∫
X
l(x, d(x))p(x)dν(x)

= rw(d).

tu

Example 2.6.1 For the testing problem

H0 : θ = θ0

against the alternative

H1 : θ = θ1, with loss function

L(θ0, a) := a, L(θ1, a) := 1− a, a ∈ {0, 1},

we have
l(x, φ) = φw0p0(x)/p(x) + (1− φ)w1p1(x)/p(x).

Thus,

arg min
φ
l(·, φ) =


1 if w1p1 > w0p0

q if w1p1 = w0p0

0 if w1p1 < w0p0

.
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In the next example, we shall use:

Lemma. Let Z be a real-valued random variable. Then

arg min
a∈R

E(Z − a)2 = EZ.

Proof.

E(Z − a)2 = var(Z) + (a− EZ)2.

tu

Example 2.6.2 Consider the case A = R and Θ ⊆ R . Let L(θ, a) := |θ− a|2.
Then

dBayes(X) = E(θ|X).

Example 2.6.3 Consider again the case Θ ⊆ R, and A = Θ, and now with
loss function L(θ, a) := l{|θ − a| > c} for a given constant c > 0. Then

l(x, a) = Π(|θ − a| > c|X = x) =

∫
|ϑ−a|>c

w(ϑ|x)dϑ.

We note that for c→ 0

1− l(x, a)

2c
=

Π(|θ − a| ≤ c|X = x)

2c
≈ w(a|x) = p(x|a)

w(a)

p(x)
.

Thus, for c small, Bayes rule is approximately d0(x) := arg maxa∈Θ p(x|a)w(a).
The estimator d0(X) is called the maximum a posteriori estimator. If w is the
uniform density on Θ (which only exists if Θ is bounded), then d0(X) is the
maximum likelihood estimator.

Example 2.6.4 Suppose that given θ, X has Poisson distribution with pa-
rameter θ, and that θ has the Gamma(k, λ)-distribution. The density of θ is
then

w(ϑ) = λkϑk−1e−λϑ/Γ(k),

where

Γ(k) =

∫ ∞
0

e−zzk−1dz.

The Gamma(k, λ) distribution has mean

Eθ =

∫ ∞
0

ϑw(ϑ)dϑ =
k

λ
.

The a posteriori density is then

w(ϑ|x) = p(x|ϑ)
w(ϑ)

p(x)

= e−ϑ
ϑx

x!

λkϑk−1e−λϑ/Γ(k)

p(x)
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= e−ϑ(1+λ)ϑk+x−1c(x, k, λ),

where c(x, k, λ) is such that ∫
w(ϑ|x)dϑ = 1.

We recognize w(ϑ|x) as the density of the Gamma(k + x, 1 + λ)-distribution.
Bayes estimator with quadratic loss is thus

E(θ|X) =
k +X

1 + λ
.

The maximum a posteriori estimator is

k +X − 1

1 + λ
.

Example 2.6.5 Suppose given θ, X has the Binomial(n, θ)-distribution, and
that θ is uniformly distributed on [0, 1]. Then

w(ϑ|x) =

(
n

x

)
ϑx(1− ϑ)n−x/p(x).

This is the density of the Beta(x+1, n−x+1)-distribution. Thus, with quadratic
loss, Bayes estimator is

E(θ|X) =
X + 1

n+ 2
.

More generally, suppose that X is binomial(n, θ) and that θ has the Beta(r, s)-
prior

w(ϑ) =
Γ(r + s)

Γ(r)Γ(s)
ϑr−1(1− ϑ)s−1, 0 < ϑ < 1.

Here r and s are given positive numbers. The prior expectation is

Eθ =
r

r + s
.

Bayes estimator under quadratic loss is the posterior expectation

E(θ|X) =
X + r

n+ r + s
.

2.7 Discussion of Bayesian approach

A main objection against the Bayesian approach is that it is generally subjective.
The final estimator depends strongly on the choice of the prior distribution. On
the other hand, Bayesian methods are very powerful and often quite natural.
The prior may be inspired by or estimated from previous data sets, in which
case the above subjectivity problem becomes less pregnant. Furthermore, in
complicated models with many unknown parameters, Bayesian methods are a
welcome tool for developing sensible algorithms.
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Credibility sets. A (frequentist) confidence set for a parameter of interest can
be hard to find, and is also less easy to explain to “non-experts”. The Bayesian
version of a confidence set is called a credibility set, which generally is seen as
an intuitively much clearer concept. For example, in the case of a real-valued
parameter θ, a (1− α)-credibility interval is defined as

I := [θ̂L(X), θ̂R(X)],

where the endpoints θ̂L and θ̂R are chosen in such a way that∫ θ̂R(X)

θ̂L(X)
w(ϑ|X)dϑ = (1− α).

Thus, it is the set which has posterior probability (1−α). A (1−α)-credibility
set is generally not a (1 − α)-confidence set, i.e., from a frequentist point of
view, its properties are not always clear.

Pragmatic point of view. The Bayesian approach is fruitful for the construc-
tion of estimators. One can then proceed by studying the frequentist properties
of the Bayesian procedure. For example, in the Binomial(n, θ)-model with a
uniform prior on θ, the Bayes estimator is

θ̂Bayes(X) =
X + 1

n+ 2
.

Given this estimator, one can “forget” we obtained it by Bayesian arguments,
and study for example its (frequentist) mean square error.

Complexity regularization. Here is a “toy” example, where a Bayesian
method helps constructing a useful procedure. Let X1, . . . , Xn be independent
random variables, where Xi is N (θi, 1)- distributed. The n parameters θi are
all unknown. Thus, there are as many observations as unknowns, a situation
where complexity regularization is needed. Complexity regularization means
that in principle, one allows for any parameter value, but that one pays a
price for choosing “complex” values. What “complexity” means depends on the
situation at hand. We consider in this example the situation where complexity
is the opposite of sparsity, where the sparseness of a vector ϑ is defined as its
number of non-zero entries. Consider the estimator

θ̂ := arg min
ϑ

n∑
i=1

(Xi − ϑi)2 + 2λ

n∑
i=1

|ϑi|,

where λ > 0 is a regularization parameter. Note that when λ = 0, one has
θ̂i = Xi for all i, whereas on the other extreme, when λ = ∞, one has θ̂ ≡ 0.
The larger λ, the more sparse the estimator will be. In fact, it is easy to verify
that for i = 1, . . . , n,

θ̂i =

{Xi − λ Xi > λ
0 |Xi| ≤ λ
Xi + λ Xi < −λ

.
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This is called the soft thresholding estimator. The procedure corresponds to
Bayesian maximum a posteriori estimation, with double-exponential prior. In-
deed, suppose that the prior is θ1, . . . , θn i.i.d. with density

w(z) =
1

τ
√

2
exp

[
−
√

2|z|
τ

]
, z ∈ R,

where τ > 0 is the prior scale parameter ( τ2 is the variance of this distribution).
Given X1, . . . , Xn, the posterior distribution of the vector θ is then

w(ϑ|X1, . . . , Xn) ∝

(2π)−n/2 exp

[
−
∑n

i=1(Xi − ϑi)2

2

]
× (2πτ)−n/2 exp

[
−
√

2
∑n

i=1 |ϑi|
τ

]
.

Thus, θ̂ with regularization parameter λ = 2
√

2/τ is the maximum a posteriori
estimator.

Bayesian methods as theoretical tool. In Chapter 5 we will illustrate the
fact that Bayesian methods can be exploited as a tool for proving for example
frequentist lower bounds. We will see for instance that the Bayesian estimator
with constant risk is also the minimax estimator. The idea in such results is to
look for “worst possible priors”.

2.8 Integrating parameters out

Striving at flexible prior distributions one can model them depending on another
“hyper-parameter”, say τ , i.e., in formula

w(ϑ) := w(ϑ|τ).

Keeping τ fixed and integrating ϑ out, the density of X is then

p̃(x|τ) :=

∫
p(x|ϑ)w(ϑ|τ)dµ(ϑ).

One can proceed by estimating τ , using for instance maximum likelihood (this
is generally computationally quite hard), or the methods of moments. One then
obtains a prior w(ϑ|τ̂) with estimated parameter τ̂ . The prior is thus based on
the data. The whole procedure is called empirical Bayes.

Example 2.8.1 SupposeX1, . . . , Xn are independent andXi has a Poisson(θi)-
distribution, i = 1, . . . , n. Assume moreover that θ1, . . . , θn are i.i.d. with
Gamma(k, λ)-distribution, i.e., each has prior density

w(z|k, λ) = e−λzzk−1λk/Γ(k), z > 0.

Both k and λ are considered as hyper-parameters. Then the density ofX1, . . . , Xn

is

p̃(x1, . . . , xn|k, λ) ∝
∫ (

e−
∑n
i=1 ϑi

n∏
i=1

ϑxii e−λ
∑n
i=1 ϑi

n∏
i=1

ϑk−1
i

λk

Γ(k)

)
dϑ1 · · · dϑn.
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=

n∏
i=1

Γ(xi + k)

Γ(k)
pk(1− p)xi+k−1,

where p := λ/(1 + λ). Thus, under p̃(·|k, λ), the observations X1, . . . , Xn are
independent and Xi has a negative binomial distribution with parameters k and
p (check the formula for the negative binomial distribution, see e.g. the first
example in Subsection 1.9.2). The mean and variance of the negative binomial
distribution can be calculated directly or looked up in a textbook. We then
find (for i = 1, . . . , n),

E(Xi|k, λ) =
k(1− p)

p
=
k

λ

and

var(Xi|k, λ) =
k(1− p)

p2
=
k(1 + λ)

λ2
.

We use the method of moments to estimate k and λ. Let X̄n be the sample
mean and S2

n :=
∑n

i=1(Xi − X̄)2/(n− 1) be the sample variance. We solve

k̂

λ̂
= X̄n,

k̂(1 + λ̂)

λ̂2
= S2

n.

This yields

k̂ =
X̄2
n

S2
n − X̄n

, λ̂ =
X̄n

S2
n − X̄n

.

For given k and λ, the Bayes estimator of θi is given in Example 2.6.4. We now
insert the estimated values of k and λ to get an empirical Bayes estimator

θ̂i =
Xi + k̂

1 + λ̂
= Xi(1− X̄n/S

2
n) + X̄2

n/S
2
n, i = 1, . . . , n.

The MLE of θi is Xi itself (i = 1, . . . , n). We see that the empirical Bayes
estimator uses all observations to estimate a particular θi. The empirical Bayes
estimator θ̂i is a convex combination (1 − α)Xi + αX̄n of Xi and X̄n, with
α = X̄n/S

2
n generally close to one if the pooled sample has mean and variance

approximately equal, i.e., if the pooled sample is “Poisson-like”.

2.9 Intermezzo: some distribution theory

2.9.1 The multinomial distribution

In a survey, people were asked their opinion about some political issue. Let X
be the number of yes-answers, Y be the number of no and Z be the number
of perhaps. The total number of people in the survey is n = X + Y + Z. We
consider the votes as a sample with replacement, with p1 = P (yes), p2 = P (no),
and p3 = P (perhaps), p1 + p2 + p3 = 1. Then

P (X = x, Y = y, Z = z) =

(
n

x y z

)
px1p

y
2p
z
3, (x, y, z) ∈ {0, . . . , n}, x+y+z = n.
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Here (
n

x y z

)
:=

n!

x!y!z!
.

It is called a multinomial coefficient.

Lemma The marginal distribution of X is the Binomial(n, p1)-distribution.

Proof. For x ∈ {0, . . . , n}, we have

P (X = x) =
n−x∑
y=0

P (X = x, Y = y, Z = n− x− y)

=

n−x∑
y=0

(
n

x y n− x− y

)
px1p

y
2(1− p1 − p2)n−x−y

=

(
n

x

)
px1

n−x∑
y=0

(
n− x
y

)
py2(1− p1 − p2)n−x−y =

(
n

x

)
px1(1− p1)n−x.

tu

Definition We say that the random vector (N1, . . . , Nk) has the multinomial
distribution with parameters n and p1, . . . , pk (with

∑k
j=1 pj = 1), if for all

(n1, . . . , nk) ∈ {0, . . . , n}k, with n1 + · · ·+ nk = n, it holds that

P (N1 = n1, . . . , Nk = nk) =

(
n

n1 · · · nk

)
pn1

1 · · · p
nk
k .

Here (
n

n1 · · · nk

)
:=

n!

n1! · · ·nk!
.

Example 2.9.1 Let X1, . . . , Xn be i.i.d. copies of a random variable X ∈ R
with distribution F , and let −∞ = a0 < a1 < · · · < ak−1 < ak = ∞. Define,
for j = 1, . . . , k,

pj := P (X ∈ (aj−1, aj ]) = F (aj)− F (aj−1),

Nj

n
:=

#{Xi ∈ (aj−1, aj ]}
n

= F̂n(aj)− F̂n(aj−1).

Then (N1, . . . , Nk) has the Multinomial(n, p1, . . . , pk)-distribution.

2.9.2 The Poisson distribution

Definition A random variable X ∈ {0, 1, . . .} has the Poisson distribution with
parameter λ > 0, if for all x ∈ {0, 1, . . .}

P (X = x) = e−λ
λx

x!
.
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Lemma Suppose X and Y are independent, and that X has the Poisson(λ)-
distribution, and Y the Poisson(µ)-distribution. Then Z := X + Y has the
Poisson(λ+ µ)-distribution.

Proof. For all z ∈ {0, 1, . . .}, we have

P (Z = z) =

z∑
x=0

P (X = x, Y = z − x)

=

z∑
x=0

P (X = x)P (Y = z − x) =

z∑
x=0

e−λ
λx

x!
e−µ

µz−x

(z − x)!

= e−(λ+µ) 1

z!

z∑
x=0

(
z

x

)
λxµz−x = e−(λ+µ) (λ+ µ)z

z!
.

tu

Lemma Let X1, . . . , Xn be independent, and (for i = 1, . . . , n), let Xi have
the Poisson(λi)-distribution. Define Z :=

∑n
i=1Xi. Let z ∈ {0, 1, . . .}. Then

the conditional distribution of (X1, . . . , Xn) given Z = z is the multinomial
distribution with parameters z and p1, . . . , pn, where

pj =
λj∑n
i=1 λi

, j = 1, . . . , n.

Proof. First note that Z is Poisson(λ+)-distributed, with λ+ :=
∑n

i=1 λi.
Thus, for all (x1, . . . , xn) ∈ {0, 1, . . . , z}n satisfying

∑n
i=1 xi = z, we have

P (X1 = x1, . . . , Xn = xn|Z = z) =
P (X1 = x1, . . . , Xn = xn)

P (Z = z)

=

∏n
i=1

(
e−λiλxii /xi!

)
e−λ+λz+/z!

=

(
z

x1 · · · xn

)(
λ1

λ+

)x1
· · ·
(
λn
λ+

)xn
.

tu

2.9.3 The distribution of the maximum of two random variables

Let X1 and X2 be independent and both have distribution F . Suppose that F
has density f w.r.t. Lebesgue measure. Let

Z := max{X1, X2}.

Lemma The distribution function of Z is F 2. Moreover, Z has density

fZ(z) = 2F (z)f(z), z ∈ R.
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Proof. We have for all z,

P (Z ≤ z) = P (max{X1, X2} ≤ z)

= P (X1 ≤ z,X2 ≤ z) = F 2(z).

If F has density f , then (Lebesgue)-almost everywhere,

f(z) =
d

dz
F (z).

So the derivative of F 2 exists almost everywhere, and

d

dz
F 2(z) = 2F (z)f(z).

tu

Let X := (X1, X2). The conditional density of X given Z = z has density

fX(x1, x2|z) =


f(x2)
2F (z) if x1 = z and x2 < z
f(x1)
2F (z) if x1 < z and x2 = z
0 else

.

The conditional distribution function of X1 given Z = z is

FX1(x1|z) =

{
F (x1)
2F (z) , x1 < z
1, x1 ≥ z

.

Note thus that this distribution has a jump of size 1/2 at z.

2.10 Sufficiency

Let S : X → Y be some given map. We consider the statistic S = S(X).
Throughout, by the phrase for all possible s, we mean for all s for which con-
ditional distributions given S = s are defined (in other words: for all s in the
support of the distribution of S, which may depend on θ).

Definition We call S sufficient for θ ∈ Θ if for all θ, and all possible s, the
conditional distribution

Pθ(X ∈ ·|S(X) = s)

does not depend on θ.

Example 2.10.1 Let X1, . . . , Xn be i.i.d., and have the Bernoulli distribution
with probability θ ∈ (0, 1) of success: (for i = 1, . . . , n)

Pθ(Xi = 1) = 1− Pθ(Xi = 0) = θ.

Take S =
∑n

i=1Xi. Then S is sufficient for θ: for all possible s,

IPθ(X1 = x1, . . . , Xn = xn|S = s) =
1(
n
s

) , n∑
i=1

xi = s.
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Example 2.10.2 Let X := (X1, . . . , Xn), withX1, . . . , Xn i.i.d. and Poisson(θ)-
distributed. Take S =

∑n
i=1Xi. Then S has the Poisson(nθ)-distribution. For

all possible s, the conditional distribution of X given S = s is the multinomial
distribution with parameters s and (p1, . . . , pn) = ( 1

n , . . . ,
1
n):

IPθ(X1 = x1, . . . , Xn = xn|S = s) =

(
s

x1 · · · xn

)(
1

n

)s
,

n∑
i=1

xi = s.

This distribution does not depend on θ, so S is sufficient for θ.

Example 2.10.3 Let X1 and X2 be independent, and both have the exponen-
tial distribution with parameter θ > 0. The density of e.g., X1 is then

fX1(x; θ) = θe−θx, x > 0.

Let S = X1 +X2. Verify that S has density

fS(s; θ) = sθ2e−θs, s > 0.

(This is the Gamma(2, θ)-distribution.) For all possible s, the conditional den-
sity of (X1, X2) given S = s is thus

fX1,X2(x1, x2|S = s) =
1

s
, x1 + x2 = s.

Hence, S is sufficient for θ.

Example 2.10.4 Let X1, . . . , Xn be an i.i.d. sample from a continuous dis-
tribution F . Then S := (X(1), . . . , X(n)) is sufficient for F : for all possible
s = (s1, . . . , sn) (s1 < . . . < sn), and for (xq1 , . . . , xqn) = s,

IPθ

(
(X1, . . . , Xn) = (x1, . . . , xn)

∣∣∣∣(X(1), . . . , X(n)) = s

)
=

1

n!
.

Example 2.10.5 Let X1 and X2 be independent, and both uniformly dis-
tributed on the interval [0, θ], with θ > 0. Define Z := X1 +X2.

Lemma The random variable Z has density

fZ(z; θ) =

{
z/θ2 if 0 ≤ z ≤ θ
(2θ − z)/θ2 if θ ≤ z ≤ 2θ

.

Proof. First, assume θ = 1. Then the distribution function of Z is

FZ(z) =

{
z2/2 0 ≤ z ≤ 1
1− (2− z)2/2 1 ≤ z ≤ 2

.

So the density is then

fZ(z) =

{
z 0 ≤ z ≤ 1
2− z 1 ≤ z ≤ 2

.
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For general θ, the result follows from the uniform case by the transformation
Z 7→ θZ, which maps fZ into fZ(·/θ)/θ. tu

The conditional density of (X1, X2) given Z = z ∈ (0, 2θ) is now

fX,X2(x1, x2|Z = z; θ) =

{
1
z 0 ≤ z ≤ θ

1
2θ−z θ ≤ z ≤ 2θ

.

This depends on θ, so Z is not sufficient for θ.

Consider now S := max{X1, X2}. The conditional density of (X1, X2) given
S = s ∈ (0, θ) is

fX1,X2(x1, x2|S = s) =
1

2s
, 0 ≤ x1 < s, x2 = s or x1 = s, 0 ≤ x2 < s.

This does not depend on θ, so S is sufficient for θ.

Knowing the sufficient statistic S one can forget about the original data X
without loosing information. Indeed, the following lemma says that any deci-
sion based on the original data X can be replaced by a randomized one which
depends only on S and which has the same risk.

Lemma 2.10.1 Suppose S is sufficient for θ. Let d : X → A be some decision.
Then there is a randomized decision δ(S) that only depends on S, such that

R(θ, δ(S)) = R(θ, d), ∀ θ.

Proof. Let X∗s be a random variable with distribution P (X ∈ ·|S = s). Then,
by construction, for all possible s, the conditional distribution, given S = s,
of X∗s and X are equal. It follows that X and X∗S have the same distribution.
Formally, let us write Qθ for the distribution of S. Then

Pθ(X
∗
S ∈ ·) =

∫
P (X∗s ∈ ·|S = s)dQθ(s)

=

∫
P (X ∈ ·|S = s)dQθ(s) = Pθ(X ∈ ·).

The result of the lemma follows by taking δ(s) := d(X∗s ). tu.

2.10.1 Rao-Blackwell

The result of Rao-Blackwell says that in the case of convex loss a decision
based on the original data X can be replaced by a decision based only on S
with smaller, or not worse, risk. Randomization is not needed here.

Lemma 2.10.2 (Rao Blackwell) Suppose that S is sufficient for θ. Suppose
moreover that the action space A ⊂ Rp is convex, and that for each θ, the
map a 7→ L(θ, a) is convex. Let d : X → A be a decision, and define d′(s) :=
E(d(X)|S = s) (assumed to exist). Then

R(θ, d′) ≤ R(θ, d), ∀ θ.
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Proof. Jensen’s inequality says that for a convex function g,

E(g(X)) ≥ g(EX).

Hence, ∀ θ,

E

(
L

(
θ, d(X)

)∣∣∣∣S = s

)
≥ L

(
θ,E

(
d(X)|S = s

))
= L(θ, d′(s)).

By the iterated expectations lemma, we arrive at

R(θ, d) = EθL(θ, d(X))

= EθE

(
L

(
θ, d(X)

)∣∣∣∣S) ≥ EθL(θ, d′(S)).

tu

2.10.2 Factorization Theorem of Neyman

Theorem 2.10.1 (Factorization Theorem of Neyman) Suppose {Pθ : θ ∈ Θ}
is dominated by a σ-finite measure ν. Let pθ := dPθ/dν denote the densities.
Then S is sufficient for θ if and only if one can write pθ in the form

pθ(x) = gθ(S(x))h(x), ∀ x, θ

for some functions gθ(·) ≥ 0 and h(·) ≥ 0.

Proof in the discrete case. Suppose X takes only the values a1, a2, . . . ∀ θ
(so we may take ν to be the counting measure). Let Qθ be the distribution of
S:

Qθ(s) :=
∑

j: S(aj)=s

Pθ(X = aj).

The conditional distribution of X given S is

Pθ(X = x|S = s) =
Pθ(X = x)

Qθ(s)
, S(x) = s.

(⇒) If S is sufficient for θ, the above does not depend on θ, but is only a
function of x, say h(x). So we may write for S(x) = s,

Pθ(X = x) = Pθ(X = x|S = s)Qθ(S = s) = h(x)gθ(s),

with gθ(s) = Qθ(S = s).

(⇐) Inserting pθ(x) = gθ(S(x))h(x), we find

Qθ(s) = gθ(s)
∑

j: S(aj)=s

h(aj),
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This gives in the formula for Pθ(X = x|S = s),

Pθ(X = x|S = s) =
h(x)∑

j: S(aj)=s
h(aj)

which does not depend on θ. tu

Remark The proof for the general case is along the same lines, but does have
some subtle elements!

Corollary 2.10.1 The likelihood is LX(θ) = pθ(X) = gθ(S)h(X). Hence, the
maximum likelihood estimator θ̂ = arg maxθ LX(θ) = arg maxθ gθ(S) depends
only on the sufficient statistic S.

Corollary 2.10.2 The Bayes decision is

dBayes(X) = arg min
a∈A

l(X, a),

where

l(x, a) = E(L(θ, a)|X = x) =

∫
L(ϑ, a)w(ϑ|x)dµ(ϑ)

=

∫
L(ϑ, a)gϑ(S(x))w(ϑ)dµ(ϑ)h(x)/p(x).

So

dBayes(X) = arg min
a∈A

∫
L(ϑ, a)gϑ(S)w(ϑ)dµ(ϑ),

which only depends on the sufficient statistic S.

Example 2.10.6 Let X1, . . . , Xn be i.i.d., and uniformly distributed on the
interval [0, θ]. Then the density of X = (X1, . . . , Xn) is

pθ(x1, . . . , xn) =
1

θn
l{0 ≤ min{x1, . . . , xn} ≤ max{x1, . . . , xn} ≤ θ}

= gθ(S(x1, . . . , xn))h(x1, . . . , xn),

with

gθ(s) :=
1

θn
l{s ≤ θ},

and

h(x1, . . . , xn) := l{0 ≤ min{x1, . . . , xn}}.

Thus, S = max{X1, . . . , Xn} is sufficient for θ.
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2.10.3 Exponential families

Definition A k-dimensional exponential family is a family of distributions {Pθ :
θ ∈ Θ}, dominated by some σ-finite measure ν, with densities pθ = dPθ/dν of
the form

pθ(x) = exp

[ k∑
j=1

cj(θ)Tj(x)− d(θ)

]
h(x).

Note In case of a k-dimensional exponential family, the k-dimensional statistic
S(X) = (T1(X), . . . , Tk(X)) is sufficient for θ.

Note If X1, . . . , Xn is an i.i.d. sample from a k-dimensional exponential family,
then the distribution of X = (X1, . . . , Xn) is also in a k-dimensional exponential
family. The density of X is then (for x := (x1, . . . , xn)),

pθ(x) =
n∏
i=1

pθ(xi) = exp[
k∑
j=1

ncj(θ)T̄j(x)− nd(θ)]
n∏
i=1

h(xi),

where, for j = 1, . . . , k,

T̄j(x) =
1

n

n∑
i=1

Tj(xi).

Hence S(X) = (T̄1(X), . . . , T̄k(X)) is then sufficient for θ.

Note The functions {Tj} and {cj} are not uniquely defined.

Example 2.10.7 If X is Poisson(θ)-distributed, we have

pθ(x) = e−θ
θx

x!

= exp[x log θ − θ] 1

x!
.

Hence, we may take T (x) = x, c(θ) = log θ, and d(θ) = θ.

Example 2.10.8 If X has the Binomial(n, θ)-distribution, we have

pθ(x) =

(
n

x

)
θx(1− θ)n−x

=

(
n

x

)(
θ

1− θ

)x
(1− θ)n

=

(
n

x

)
exp

[
x log(

θ

1− θ
) + n log(1− θ)

]
.

So we can take T (x) = x, c(θ) = log(θ/(1− θ)), and d(θ) = −n log(1− θ).
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Example 2.10.9 If X has the Negative Binomial(k, θ)-distribution we have

pθ(x) =
Γ(x+ k)

Γ(k)x!
θk(1− θ)x

=
Γ(x+ k)

Γ(k)x!
exp[x log(1− θ) + k log(θ)].

So we may take T (x) = x, c(θ) = log(1− θ) and d(θ) = −k log(θ).

Example 2.10.10 Let X have the Gamma(k, θ)-distribution (with k known).
Then

pθ(x) = e−θxxk−1 θk

Γ(k)

=
xk−1

Γ(k)
exp[−θx+ k log θ].

So we can take T (x) = x, c(θ) = −θ, and d(θ) = −k log θ.

Example 2.10.11 Let X have the Gamma(k, λ)-distribution, and let θ =
(k, λ). Then

pθ(x) = e−λxxk−1 λk

Γ(k)

= exp[−λx+ (k − 1) log x+ k log λ− log Γ(k)].

So we can take T1(x) = x, T2(x) = log x, c(θ) = −λ, c2(θ) = (k − 1), and
d(θ) = −k log λ+ log Γ(k).

Example 2.10.12 Let X be N (µ, σ2)-distributed, and let θ = (µ, σ). Then

pθ(x) =
1√
2πσ

exp

[
−(x− µ)2

2σ2

]

=
1√
2π

exp

[
xµ

σ2
− x2

2σ2
− µ2

2σ2
− log σ

]
.

So we can take T1(x) = x, T2(x) = x2, c1(θ) = µ/σ2, c2(θ) = −1/(2σ2), and
d(θ) = µ2/(2σ2) + log(σ).

2.10.4 Canonical form of an exponential family

In this subsection, we assume regularity conditions, such as existence of deriva-
tives, and inverses, and permission to interchange differentiation and integra-
tion.

Let Θ ⊂ Rk, and let {Pθ : θ ∈ Θ} be a family of probability measures dominated
by a σ-finite measure ν. Define the densities

pθ :=
dPθ
dν

.
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Definition We call {Pθ : θ ∈ Θ} an exponential family in canonical form, if

pθ(x) = exp

[ k∑
j=1

θjTj(x)− d(θ)

]
h(x).

Note that d(θ) is the normalizing constant

d(θ) = log

∫ exp

[ k∑
j=1

θjTj(x)

]
h(x)dν(x)

 .

We let

ḋ(θ) :=
∂

∂θ
d(θ) =


∂
∂θ1

d(θ)
...

∂
∂θk

d(θ)


denote the vector of first derivatives, and

d̈(θ) :=
∂2

∂θ∂θ>
d(θ) =

(
∂2d(θ)

∂θj∂θj′

)
denote the k × k matrix of second derivatives. Further, we write

T (X) :=

 T1(X)
...

Tk(X)

 , EθT (X) :=

EθT1(X)
...

EθTk(X)

 ,

and we write the k × k covariance matrix of T (X) as

Covθ(T (X)) :=

(
covθ(Tj(X), Tj′(X))

)
.

Lemma We have (under regularity)

EθT (X) = ḋ(θ), Covθ(T (X)) = d̈(θ).

Proof. By the definition of d(θ), we find

ḋ(θ) =
∂

∂θ
log

(∫
exp

[
θ>T (x)

]
h(x)dν(x)

)

=

∫
exp

[
θ>T (x)

]
T (x)h(x)dν(x)

∫
exp

[
θ>T (x)

]
h(x)dν(x)

=

∫
exp

[
θ>T (x)− d(θ)

]
T (x)h(x)dν(x)
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=

∫
pθ(x)T (x)dν(x) = EθT (X),

and

d̈(θ) =

∫
exp

[
θ>T (x)

]
T (x)T (x)>h(x)dν(x)

∫
exp

[
θ>T (x)

]
h(x)dν(x)

−

(∫
exp

[
θ>T (x)

]
T (x)h(x)dν(x)

)(∫
exp

[
θ>T (x)

]
T (x)h(x)dν(x)

)>
(∫

exp

[
θ>T (x)

]
h(x)dν(x)

)2

=

∫
exp

[
θ>T (x)− d(θ)

]
T (x)T (x)>h(x)dν(x)

−
(∫

exp

[
θ>T (x)− d(θ)

]
T (x)h(x)dν(x)

)

×
(∫

exp

[
θ>T (x)− d(θ)

]
T (x)h(x)dν(x)

)>
=

∫
pθ(x)T (x)T (x)>dν(x)

−
(∫

pθ(x)T (x)dν(x)

)(∫
pθ(x)T (x)dν(x)

)>
= EθT (X)T (X)> −

(
EθT (X)

)(
EθT (X)

)>
= Covθ(T (X)).

tu

Let us now simplify to the one-dimensional case, that is Θ ⊂ R. Consider an
exponential family, not necessarily in canonical form:

pθ(x) = exp[c(θ)T (x)− d(θ)]h(x).

We can put this in canonical form by reparametrizing

θ 7→ c(θ) := γ (say),

to get

p̃γ(x) = exp[γT (x)− d0(γ)]h(x),

where

d0(γ) = d(c−1(γ)).

It follows that

EθT (X) = ḋ0(γ) =
ḋ(c−1(γ))

ċ(c−1(γ))
=
ḋ(θ)

ċ(θ)
, (2.2)
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and

varθ(T (X)) = d̈0(γ) =
d̈(c−1(γ))

[ċ(c−1(γ))]2
− ḋ(c−1(γ))c̈(c−1(γ))

[ċ(c−1(γ))]3

=
d̈(θ)

[ċ(θ)]2
− ḋ(θ)c̈(θ)

[ċ(θ)]3
=

1

[ċ(θ)]2

(
d̈(θ)− ḋ(θ)

ċ(θ)
c̈(θ)

)
. (2.3)

For an arbitrary (but regular) family of densities {pθ : θ ∈ Θ}, with (again for
simplicity) Θ ⊂ R, we define the score function

sθ(x) :=
d

dθ
log pθ(x),

and the Fisher information for estimating θ

I(θ) := varθ(sθ(X))

(see also Chapter 3 and 6).

Lemma We have (under regularity)

Eθsθ(X) = 0,

and

I(θ) = −Eθṡθ(X),

where ṡθ(x) := d
dθsθ(x).

Proof. The results follow from the fact that densities integrate to one, assuming
that we may interchange derivatives and integrals:

Eθsθ(X) =

∫
sθ(x)pθ(x)dν(x)

=

∫
d log pθ(x)

dθ
pθ(x)dν(x) =

∫
dpθ(x)/dθ

pθ(x)
pθ(x)dν(x)

=

∫
d

dθ
pθ(x)dν(x) =

d

dθ

∫
pθ(x)dν(x) =

d

dθ
1 = 0,

and

Eθṡθ(X) = Eθ

[
d2pθ(X)/dθ2

pθ(X)
−
(
dpθ(X)/dθ

pθ(X)

)2]
= Eθ

[
d2pθ(X)/dθ2

pθ(X)

]
− Eθs2

θ(X).

Now, Eθs
2
θ(X) equals varθsθ(X), since Eθsθ(X) = 0. Moreover,

Eθ

[
d2pθ(X)/dθ2

pθ(X)

]
=

∫
d2

dθ2
pθ(x)dν(x) =

d2

dθ2

∫
pθ(x)dν(x) =

d2

dθ2
1 = 0.

tu
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In the special case that {Pθ : θ ∈ Θ} is a one-dimensional exponential family,
the densities are of the form

pθ(x) = exp[c(θ)T (x)− d(θ)]h(x).

Hence
sθ(x) = ċ(θ)T (x)− ḋ(θ).

The equality Eθsθ(X) = 0 implies that

EθT (X) =
ḋ(θ)

ċ(θ)
,

which re-establishes (2.2). One moreover has

ṡθ(x) = c̈(θ)T (x)− d̈(θ).

Hence, the inequality varθ(sθ(X)) = −Eθṡθ(X) implies

[ċ(θ)]2varθ(T (X)) = −c̈(θ)EθT (X) + d̈(θ)

= d̈(θ)− ḋ(θ)

ċ(θ)
c̈(θ),

which re-establishes (2.3). In addition, it follows that

I(θ) = d̈(θ)− ḋ(θ)

ċ(θ)
c̈(θ).

The Fisher information for estimating γ = c(θ) is

I0(γ) = d̈0(γ) =
I(θ)

[ċ(θ)]2
.

More generally, the Fisher information for estimating a differentiable function
g(θ) of the parameter θ, is equal to I(θ)/[ġ(θ)]2.

Example

LetX ∈ {0, 1} have the Bernoulli-distribution with success parameter θ ∈ (0, 1):

pθ(x) = θx(1− θ)1−x = exp

[
x log

(
θ

1− θ

)
+ log(1− θ)

]
, x ∈ {0, 1}.

We reparametrize:

γ := c(θ) = log

(
θ

1− θ

)
,

which is called the log-odds ratio. Inverting gives

θ =
eγ

1 + eγ
,

and hence

d(θ) = − log(1− θ) = log

(
1 + eγ

)
:= d0(γ).
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Thus

ḋ0(γ) =
eγ

1 + eγ
= θ = EθX,

and

d̈0(γ) =
eγ

1 + eγ
− e2γ

(1 + eγ)2
=

eγ

(1 + eγ)2
= θ(1− θ) = varθ(X).

The score function is

sθ(x) =
d

dθ

[
x log

(
θ

1− θ

)
+ log(1− θ)

]

=
x

θ(1− θ)
− 1

1− θ
.

The Fisher information for estimating the success parameter θ is

Eθs
2
θ(X) =

varθ(X)

[θ(1− θ)]2
=

1

θ(1− θ)
,

whereas the Fisher information for estimating the log-odds ratio γ is

I0(γ) = θ(1− θ).

2.10.5 Minimal sufficiency

Definition We say that two likelihoods Lx(θ) and Lx′(θ) are proportional at
(x, x′), if

Lx(θ) = Lx′(θ)c(x, x
′),∀ θ,

for some constant c(x, x′).
A statistic S is called minimal sufficient if S(x) = S(x′) for all x and x′ for
which the likelihoods are proportional.

Example 2.10.13 LetX1 . . . , Xn be independent andN (θ, 1)-distributed. Then
S =

∑n
i=1Xi is sufficient for θ. We moreover have

logLx(θ) = S(x)θ − nθ2

2
−
∑n

i=1 x
2
i

2
− log(2π)/2.

So

logLx(θ)− logLx′(θ) = (S(x)− S(x′))θ −
∑n

i=1 x
2
i −

∑n
i=1(x′i)

2

2
,

which equals,

log c(x,x′), ∀ θ,

for some function c, if and only if S(x) = S(x′). So S is minimal sufficient.
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Example 2.10.14 LetX1, . . . , Xn be independent and Laplace-distributed with
location parameter θ. Then

logLx(θ) = −(log 2)/2−
√

2
n∑
i=1

|xi − θ|,

so

logLx(θ)− logLx′(θ) = −
√

2
n∑
i=1

(|xi − θ| − |x′i − θ|)

which equals
log c(x,x′), ∀ θ,

for some function c, if and only if (x(1), . . . , x(n)) = (x′(1), . . . , x
′
(n)). So the order

statistics X(1), . . . , X(n) are minimal sufficient.
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Chapter 3

Unbiased estimators

3.1 What is an unbiased estimator?

Let X ∈ X denote the observations. The distribution P of X is assumed to
be a member of a given class {Pθ : θ ∈ Θ} of distributions. The parameter of
interest in this chapter is γ := g(θ), with g : Θ→ R (for simplicity, we initially
assume γ to be one-dimensional).

Let T : X → R be an estimator of g(θ).

Definition The bias of T = T (X) is

biasθ(T ) := EθT − g(θ).

The estimator T is called unbiased if

biasθ(T ) = 0, ∀ θ.

Thus, unbiasedness means that there is no systematic error: EθT = g(θ). We
require this for all θ.

Example 3.1.1 Let X ∼ Binomial(n, θ), 0 < θ < 1. We have

EθT (X) =

n∑
k=0

(
n

k

)
θk(1− θ)n−kT (k) := q(θ).

Note that q(θ) is a polynomial in θ of degree at most n. So only parameters
g(θ) which are polynomials of degree at most n can be estimated unbiasedly. It
means that there exists no unbiased estimator of, for example,

√
θ or θ/(1− θ).

Example 3.1.2 Let X ∼ Poisson(θ). Then

EθT (X) =

∞∑
k=0

e−θ
θk

k!
T (k) := e−θp(θ).

59
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Note that p(θ) is a power series in θ. Thus only parameters g(θ) which are a
power series in θ times e−θ can be estimated unbiasedly. An example is the
probability of early failure

g(θ) := e−θ = Pθ(X = 0).

An unbiased estimator of e−θ is for instance

T (X) = l{X = 0}.

As another example, suppose the parameter of interest is

g(θ) := e−2θ.

An unbiased estimator is

T (X) =

{
+1 if X is even
−1 if X is odd

.

This estimator does not make sense at all!

Example 3.1.3 Let X1, . . . , Xn be i.i.d. N (µ, σ2), and let θ = (µ, σ2) ∈ R ×
R+. Then

S2 :=
1

n− 1

n∑
i=1

(Xi − X̄)2

is an unbiased estimator of σ2. But S is not an unbiased estimator of σ. In
fact, one can show that there does not exist any unbiased estimator of σ!

We conclude that requiring unbiasedness can have disadvantages: unbiased es-
timators do not always exist, and if they do, they can be nonsensical. Moreover,
the property of unbiasedness is not preserved under taking nonlinear transfor-
mations.

3.2 UMVU estimators

Lemma 3.2.1 We have the following equality for the mean square error:

Eθ|T − g(θ)|2 = bias2
θ(T ) + varθ(T ).

In other words, the mean square error consists of two components, the (squared)
bias and the variance. This is called the bias-variance decomposition. As we
will see, it is often the case that an attempt to decrease the bias results in an
increase of the variance (and vise versa).

Example 3.2.1 Let X1, . . . , Xn be i.i.d. N (µ, σ2)-distributed. Both µ and σ2

are unknown parameters: θ := (µ, σ2).
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Case i Suppose the mean µ is our parameter of interest. Consider the estimator
T := λX̄, where 0 ≤ λ ≤ 1. Then the bias is decreasing in λ, but the variance
is increasing in λ:

Eθ|T − µ|2 = (1− λ)2µ2 + λ2σ2/n.

The right hand side can be minimized as a function of λ. The minimum is
attained at

λopt :=
µ2

σ2/n+ µ2
.

However, λoptX̄ is not an estimator as it depends on the unknown parameters.

Case ii Suppose σ2 is the parameter of interest. Let S2 be the sample variance:

S2 :=
1

n− 1

n∑
i=1

(Xi − X̄)2.

It is known that S2 is unbiased. But does it also have small mean square error?
Let us compare it with the estimator

σ̂2 :=
1

n

n∑
i=1

(Xi − X̄)2.

To compute the mean square errors of these two estimators, we first recall that∑n
i=1(Xi − X̄)2

σ2
∼ χ2

n−1,

a χ2-distribution with n−1 degrees of freedom. The χ2-distribution is a special
case of the Gamma-distribution, namely

χ2
n−1 = Γ

(
n− 1

2
,
1

2

)
.

Thus 1

Eθ

(
n∑
i=1

(Xi − X̄)2/σ2

)
= n− 1, var

(
n∑
i=1

(Xi − X̄)2/σ2

)
= 2(n− 1).

It follows that

Eθ|S2 − σ2|2 = var(S2) =
σ4

(n− 1)2
2(n− 1) =

2σ4

n− 1
,

and

Eθσ̂
2 =

n− 1

n
σ2,

biasθ(σ̂
2) = − 1

n
σ2,

1If Y has a Γ(k, λ)-distribution, then EY = k/λ and var(Y ) = k/λ2.
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so that

Eθ|σ̂2 − σ2|2 = bias2
θ(σ̂

2) + varθ(σ̂
2) =

σ4

n2
+
σ4

n2
2(n− 1) =

σ4(2n− 1)

n2
.

Conclusion: the mean square error of σ̂2 is smaller than the mean square error
of S2!

Generally, it is not possible to construct an estimator that possesses the best
among all of all desirable properties. We therefore fix one property: unbi-
asedness (despite its disadvantages), and look for good estimators among the
unbiased ones.

Definition An unbiased estimator T ∗is called UMVU (Uniform Minimum
Variance Unbiased) if for any other unbiased estimator T ,

varθ(T
∗) ≤ varθ(T ), ∀ θ.

Suppose that T is unbiased, and that S is sufficient. Let

T ∗ := E(T |S).

The distribution of T given S does not depend on θ, so T ∗ is also an estimator.
Moreover, it is unbiased:

EθT
∗ = Eθ(E(T |S)) = EθT = g(θ).

By conditioning on S, “superfluous” variance in the sample is killed. Indeed,
the following lemma (which is a general property of conditional distributions)
shows that T ∗ cannot have larger variance than T :

varθ(T
∗) ≤ varθ(T ), ∀ θ.

Lemma 3.2.2 Let Y and Z be two random variables. Then

var(Y ) = var(E(Y |Z)) + Evar(Y |Z).

Proof. It holds that

var(E(Y |Z)) = E

[
E(Y |Z)

]2

−
[
E(E(Y |Z))

]2

= E[E(Y |Z)]2 − [EY ]2,

and

Evar(Y |Z) = E

[
E(Y 2|Z)− [E(Y |Z)]2

]
= EY 2 − E[E(Y |Z)]2.

Hence, when adding up, the term E[E(Y |Z)]2 cancels out, and what is left over
is exactly the variance

var(Y ) = EY 2 − [EY ]2.

tu
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3.2.1 Complete statistics

The question arises: can we construct an unbiased estimator with even smaller
variance than T ∗ = E(T |S)? Note that T ∗ depends on X only via S = S(X),
i.e., it depends only on the sufficient statistic. In our search for UMVU estima-
tors, we may restrict our attention to estimators depending only on S. Thus, if
there is only one unbiased estimator depending only on S, it has to be UMVU.

Definition A statistic S is called complete if we have the following implication:

Eθh(S) = 0 ∀ θ ⇒ h(S) = 0, Pθ − a.s.,∀ θ.

Here, h is a function of S not depending on θ.

Lemma 3.2.3 (Lehmann-Scheffé) Let T be an unbiased estimator of g(θ),
with, for all θ, finite variance. Moreover, let S be sufficient and complete.
Then T ∗ := E(T |S) is UMVU.

Proof. We already noted that T ∗ = T ∗(S) is unbiased and that varθ(T
∗) ≤

varθ(T ) ∀ θ. If T ′(S) is another unbiased estimator of g(θ), we have

Eθ(T (S)− T ′(S)) = 0,∀ θ.

Because S is complete, this implies

T ∗ = T ′, Pθ − a.s.

tu

To check whether a statistic is complete, one often needs somewhat sophisti-
cated tools from analysis/integration theory. In the next two examples, we only
sketch the proofs of completeness.

Example 3.2.2 Let X1, . . . , Xn be i.i.d. Poisson(θ)-distributed. We want to
estimate g(θ) := e−θ, the probability of early failure. An unbiased estimator is

T (X1, . . . , Xn) := l{X1 = 0}.

A sufficient statistic is

S :=

n∑
i=1

Xi.

We now check whether S is complete. Its distribution is the Poisson(nθ)-
distribution. We therefore have for any function h,

Eθh(S) =
∞∑
k=0

e−nθ
(nθ)k

k!
h(k).

The equation

Eθh(S) = 0 ∀ θ,
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thus implies
∞∑
k=0

(nθ)k

k!
h(k) = 0 ∀ θ.

Let f be a function with Taylor expansion at zero. Then

f(x) =

∞∑
k=0

xk

k!
f (k)(0).

The left hand side can only be zero for all x if f ≡ 0, in which case also
f (k)(0) = 0 for all k. Thus (h(k) takes the role of f (k)(0) and nθ the role of x),
we conclude that h(k) = 0 for all k, i.e., that S is complete.

So we know from the Lehmann-Scheffé Lemma that T ∗ := E(T |S) is UMVU.
Now,

P (T = 1|S = s) = P (X1 = 0|S = s)

=
e−θe−(n−1)θ[(n− 1)θ]s/s!

e−nθ(nθ)s/s!
=

(
n− 1

n

)s
.

Hence

T ∗ =

(
n− 1

n

)S
is UMVU.

Example 3.2.3 Let X1, . . . , Xn be i.i.d. Uniform[0, θ]-distributed, and g(θ) :=
θ. We know that S := max{X1, . . . , Xn} is sufficient. The distribution function
of S is

FS(s) = Pθ(max{X1, . . . , Xn} ≤ s) =
(s
θ

)n
, 0 ≤ s ≤ θ.

Its density is thus

fS(s) =
nsn−1

θn
, 0 ≤ s ≤ θ.

Hence, for any (measurable) function h,

Eθh(S) =

∫ θ

0
h(s)

nsn−1

θn
ds.

If

Eθh(S) = 0 ∀ θ,

it must hold that ∫ θ

0
h(s)sn−1ds = 0 ∀ θ.

Differentiating w.r.t. θ gives

h(θ)θn−1 = 0 ∀ θ,
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which implies h ≡ 0. So S is complete.

It remains to find a statistic T ∗ that depends only on S and that is unbiased.
We have

EθS =

∫ θ

0
s
nsn−1

θn
ds =

n

n+ 1
θ.

So S itself is not unbiased, it is too small. But this can be easily repaired: take

T ∗ =
n+ 1

n
S.

Then, by the Lehmann-Scheffé Lemma, T ∗ is UMVU.

In the case of an exponential family, completeness holds for a sufficient statistic
if the parameter space is “of the same dimension” as the sufficient statistic.
This is stated more formally in the following lemma. We omit the proof.

Lemma 3.2.4 Let for θ ∈ Θ,

pθ(x) = exp

[ k∑
j=1

cj(θ)Tj(x)− d(θ)

]
h(x).

Consider the set

C := {(c1(θ), . . . , ck(θ)) : θ ∈ Θ} ⊂ Rk.

Suppose that C is truly k-dimensional (that is, not of dimension smaller than
k), i.e., it contains an open ball in Rk. (Or an open cube

∏k
j=1(aj , bj).) Then

S := (T1, . . . , Tk) is complete.

Example 3.2.4 Let X1, . . . , Xn be i.i.d. with Γ(k, λ)-distribution. Both k and
λ are assumed to be unknown, so that θ := (k, λ). We moreover let Θ := R2

+.
The density f of the Γ(k, λ)-distribution is

f(z) =
λk

Γ(k)
e−λzzk−1, z > 0.

Hence,

pθ(x) = exp

[
−λ

n∑
i=1

xi + (k − 1)
n∑
i=1

log xi − d(θ)

]
h(x),

where
d(k, λ) = −nk log λ+ n log Γ(k),

and
h(x) = l{xi > 0, i = 1, . . . , n}.

It follows that ( n∑
i=1

Xi,

n∑
i=1

logXi

)
is sufficient and complete.
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Example 3.2.5 Consider two independent samples from normal distributions:
X1, . . . Xn i.i.d. N (µ, σ2)-distributed and Y1, . . . , Ym be i.i.d. N (ν, τ2)-distributed.

Case i If θ = (µ, ν, σ2, τ2) ∈ R2 × R2
+, one can easily check that

S :=

( n∑
i=1

Xi,
n∑
i=1

X2
i ,

m∑
j=1

Yj ,
m∑
j=1

Y 2
j

)

is sufficient and complete.

Case ii If µ, σ2 and τ2 are unknown, and ν = µ, then S of course remains
sufficient. One can however show that S is not complete. Difficult question:
does a sufficient and complete statistic exist?

3.3 The Cramer-Rao lower bound

Let {Pθ : θ ∈ Θ} be a collection of distributions on X , dominated by a σ-finite
measure ν. We denote the densities by

pθ :=
dPθ
dν

, θ ∈ Θ.

In this section, we assume that Θ is a one-dimensional open interval (the ex-
tension to a higher-dimensional parameter space will be handled in the next
section).

We will impose the following two conditions:

Condition I The set

A := {x : pθ(x) > 0}

does not depend on θ.

Condition II (Differentiability in L2) For all θ and for a function sθ : X → R
satisfying

I(θ) := Eθsθ(X)2 <∞,

it holds that

lim
h→0

Eθ

(
pθ+h(X)− pθ(X)

hpθ(X)
− sθ(X)

)2

= 0.

Definition If I and II hold, we call sθ the score function, and I(θ) the Fisher
information.

Lemma 3.3.1 Assume conditions I and II. Then

Eθsθ(X) = 0,∀ θ.
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Proof. Under Pθ, we only need to consider values x with pθ(x) > 0, that is,
we may freely divide by pθ, without worrying about dividing by zero.

Observe that

Eθ

(
pθ+h(X)− pθ(X)

pθ(X)

)
=

∫
A

(pθ+h − pθ)dν = 0,

since densities integrate to 1, and both pθ+h and pθ vanish outside A. Thus,

|Eθsθ(X)|2 =

∣∣∣∣Eθ(pθ+h(X)− pθ(X)

hpθ(X)
− sθ(X)

)∣∣∣∣2

≤ Eθ
(
pθ+h(X)− pθ(X)

hpθ(X)
− sθ(X)

)2

→ 0.

tu

Note Thus I(θ) = varθ(sθ(X)).

Remark If pθ(x) is differentiable for all x, we can take (under regularity con-
ditions)

sθ(x) :=
d

dθ
log pθ(x) =

ṗθ(x)

pθ(x)
,

where

ṗθ(x) :=
d

dθ
pθ(x).

Remark Suppose X1, . . . , Xn are i.i.d. with density pθ, and sθ = ṗθ/pθ exists.
The joint density is

pθ(x) =
n∏
i=1

pθ(xi),

so that (under conditions I and II) the score function for n observations is

sθ(x) =

n∑
i=1

sθ(xi).

The Fisher information for n observations is thus

I(θ) = varθ(sθ(X)) =

n∑
i=1

varθ(sθ(Xi)) = nI(θ).

Theorem 3.3.1 (The Cramer-Rao lower bound) Suppose conditions I and II
are met, and that T is an unbiased estimator of g(θ) with finite variance. Then
g(θ) has a derivative, ġ(θ) := dg(θ)/dθ, equal to

ġ(θ) = cov(T, sθ(X)).

Moreover,

varθ(T ) ≥ [ġ(θ)]2

I(θ)
, ∀ θ.
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Proof. We first show differentiability of g. As T is unbiased, we have

g(θ + h)− g(θ)

h
=
Eθ+hT (X)− EθT (X)

h

=
1

h

∫
T (pθ+h − pθ)dν = EθT (X)

pθ+h(X)− pθ(X)

hpθ(X)

= EθT (X)

(
pθ+h(X)− pθ(X)

hpθ(X)
− sθ(X)

)
+ EθT (X)sθ(X)

= Eθ

(
T (X)− gθ

)(
pθ+h(X)− pθ(X)

hpθ(X)
− sθ(X)

)
+ EθT (X)sθ(X)

→ EθT (X)sθ(X),

as, by the Cauchy-Schwarz inequality∣∣∣∣Eθ(T (X)− gθ
)(

pθ+h(X)− pθ(X)

hpθ(X)
− sθ(X)

)∣∣∣∣2
≤ varθ(T )Eθ

(
pθ+h(X)− pθ(X)

hpθ(X)
− sθ(X)

)2

→ 0.

Thus,
ġ(θ) = EθT (X)sθ(X) = covθ(T, sθ(X)).

The last inequality holds because Eθsθ(X) = 0. By Cauchy-Schwarz,

[ġ(θ)]2 = |covθ(T, sθ(X))|2

≤ varθ(T )varθ(sθ(X)) = varθ(T )I(θ).

tu

Definition We call [ġ(θ)]2/I(θ), θ ∈ Θ, the Cramer Rao lower bound (CRLB)
(for estimating g(θ)).

Example 3.3.1 Let X1, . . . , Xn be i.i.d. Exponential(θ), θ > 0. The density
of a single observation is then

pθ(x) = θe−θx, x > 0.

Let g(θ) := 1/θ, and T := X̄. Then T is unbiased, and varθ(T ) = 1/(nθ2). We
now compute the CRLB. With g(θ) = 1/θ, one has ġ(θ) = −1/θ2. Moreover,

log pθ(x) = log θ − θx,

so
sθ(x) = 1/θ − x,

and hence

I(θ) = varθ(X) =
1

θ2
.

The CRLB for n observations is thus

[ġ(θ)]2

nI(θ)
=

1

nθ2
.

In other words, T reaches the CRLB.
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Example 3.3.2 Suppose X1, . . . , Xn are i.i.d. Poisson(θ), θ > 0. Then

log pθ(x) = −θ + x log θ − log x!,

so
sθ(x) = −1 +

x

θ
,

and hence

I(θ) = varθ

(
X

θ

)
=

varθ(X)

θ2
=

1

θ
.

One easily checks that X̄ reaches the CRLB for estimating θ.

Let now g(θ) := e−θ. The UMVU estimator of g(θ) is

T :=

(
1− 1

n

)∑n
i=1Xi

.

To compute its variance, we first compute

EθT
2 =

∞∑
k=0

(
1− 1

n

)2k (nθ)k

k!
e−nθ

= e−nθ
∞∑
k=0

1

k!

(
(n− 1)2θ

n

)k
= e−nθ exp

[
(n− 1)2θ

n

]
= exp

[
(1− 2n)θ

n

]
.

Thus,
varθ(T ) = EθT

2 − [EθT ]2 = EθT
2 − e−2θ

= e−2θ

(
eθ/n − 1

)
{
> θe−2θ/n
≈ θe−2θ/n for n large

.

As ġ(θ) = −e−θ, the CRLB is

[ġ(θ)]2

nI(θ)
=
θe−2θ

n
.

We conclude that T does not reach the CRLB, but the gap is small for n large.

For the next result, we:

Recall Let X and Y be two real-valued random variables. The correlation
between X and Y is

ρ(X,Y ) :=
cov(X,Y )√

var(X)var(Y )
.

We have

|ρ(X,Y )| = 1⇔ ∃ constants a, b : Y = aX + b (a.s.).

The next lemma shows that the CRLB can only be reached within exponential
families, thus is only tight in a rather limited context.
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Lemma 3.3.2 Assume conditions I and II, with sθ = ṗθ/pθ. Suppose T is
unbiased for g(θ), and that T reaches the Cramer-Rao lower bound. Then {Pθ :
θ ∈ Θ} forms a one-dimensional exponential family: there exist functions c(θ),
d(θ), and h(x) such that for all θ,

pθ(x) = exp[c(θ)T (X)− d(θ)]h(x), x ∈ X .

Moreover, c(θ) and d(θ) are differentiable, say with derivatives ċ(θ) and ḋ(θ)
respectively. We furthermore have the equality

g(θ) = ḋ(θ)/ċ(θ), ∀ θ.

Proof. By Theorem 3.3, when T reaches the CRLB, we must have

varθ(T ) =
|cov(T, sθ(X))|2

varθ(sθ(X))
,

i.e., then the correlation between T and sθ(X) is ±1. Thus, there exist constants
a(θ) and b(θ) (depending on θ), such that

sθ(X) = a(θ)T (X)− b(θ). (3.1)

But, as sθ = ṗθ/pθ = d log pθ/dθ, we can take primitives:

log pθ(x) = c(θ)T (x)− d(θ) + h̃(x),

where ċ(θ) = a(θ), ḋ(θ) = b(θ) and h̃(x) is constant in θ. Hence,

pθ(x) = exp[c(θ)T (x)− d(θ)]h(x),

with h(x) = exp[h̃(x)].

Moreover, the equation (3.1) tells us that

Eθsθ(X) = a(θ)EθT − b(θ) = a(θ)g(θ)− b(θ).

Because Eθsθ(X) = 0, this implies that g(θ) = b(θ)/a(θ). tu

3.4 Higher-dimensional extensions

Expectations and covariances of random vectors

Let X ∈ Rp be a p-dimensional random vector. Then EX is a p-dimensional
vector, and

Σ := Cov(X) := EXXT − (EX)(EX)T
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is a p × p matrix containing all variances (on the diagonal) and covariances
(off-diagonal). Note that Σ is positive semi-definite: for any vector a ∈ Rp, we
have

var(aTX) = aTΣa ≥ 0.

Some matrix algebra

Let V be a symmetric matrix. If V is positive (semi-)definite, we write this
as V > 0 (V ≥ 0). One then has that V = W 2, where W is also positive
(semi-)definite.

Auxiliary lemma. Suppose V > 0. Then

max
a∈Rp

|aT c|2

aTV a
= cTV −1c.

Proof. Write V = W 2, and b := Wa, d := W−1c. Then aTV a = bT b = ‖b‖2
and aT c = bTd. By Cauchy-Schwarz

max
b∈Rp

|bTd|2

‖b‖2
= ‖d‖2 = dTd = cTV −1c.

tu

We will now present the CRLB in higher dimensions. To simplify the exposition,
we will not carefully formulate the regularity conditions, that is, we assume
derivatives to exist and that we can interchange differentiation and integration
at suitable places.

Consider a parameter space Θ ⊂ Rp. Let

g : Θ→ R,

be a given function. Denote the vector of partial derivatives as

ġ(θ) :=

 ∂g(θ)/∂θ1
...

∂g(θ)/∂θp

 .

The score vector is defined as

sθ(·) :=

 ∂ log pθ/∂θ1
...

∂ log pθ/∂θp

 .

The Fisher information matrix is

I(θ) = Eθsθ(X)sTθ (X) = Covθ(sθ(X)).
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Theorem 3.4.1 Let T be an unbiased estimator of g(θ). Then, under regular-
ity conditions,

varθ(T ) ≥ ġ(θ)T I(θ)−1ġ(θ).

Proof. As in the one-dimensional case, one can show that, for j = 1, . . . , p,

ġj(θ) = covθ(T, sθ,j(X)).

Hence, for all a ∈ Rp,

|aT ġ(θ)|2 = |covθ(T, a
T sθ(X))|2

≤ varθ(T )varθ(a
T sθ(X))

= varθ(T )aT I(θ)a.

Combining this with the auxiliary lemma gives

varθ(T ) ≥ max
a∈Rp

|aT ġ(θ)|2

aT I(θ)a
= ġ(θ)T I(θ)−1ġ(θ).

tu

Corollary 3.4.1 As a consequence, one obtains a lower bound for unbiased
estimators of higher-dimensional parameters of interest. As example, let g(θ) :=
θ = (θ1, . . . , θp)

T , and suppose that T ∈ Rp is an unbiased estimator of θ. Then,
for all a ∈ Rp, aTT is an unbiased estimator of aT θ. Since aT θ has derivative
a, the CRLB gives

varθ(a
TT ) ≥ aT I(θ)−1a.

But

varθ(a
TT ) = aTCovθ(T )a.

So for all a,

aTCovθ(T )a ≥ aT I(θ)−1a,

in other words, Covθ(T ) ≥ I(θ)−1, that is, Covθ(T ) − I(θ)−1 is positive semi-
definite.

3.5 Uniformly most powerful tests

3.5.1 An example

Let X1, . . . , Xn be i.i.d. copies of a Bernoulli random variable X ∈ {0, 1} with
success parameter θ ∈ (0, 1):

Pθ(X = 1) = 1− Pθ(X = 0) = θ.
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We consider three testing problems. The chosen level in all three problems is
α = 0.05.

Problem 1

We want to test, at level α, the hypothesis

H0 : θ = 1/2 := θ0,

against the alternative

H1 : θ = 1/4 := θ1.

Let T :=
∑n

i=1Xi be the number of successes (T is a sufficient statistic), and
consider the randomized test

φ(T ) :=

{ 1 if T < t0
q if T = t0
0 if T > t0

,

where q ∈ (0, 1), and where t0 is the critical value of the test. The constants q
and t0 ∈ {0, . . . , n} are chosen in such a way that the probability of rejecting
H0 when it is in fact true, is equal to α:

Pθ0(H0 rejected) = Pθ0(T ≤ t0 − 1) + qPθ0(T = t0) := α.

Thus, we take t0 in such a way that

Pθ0(T ≤ t0 − 1) ≤ α, Pθ0(T ≤ t0) > α,

(i.e., t0 − 1 = q+(α) with q+ the quantile function defined in Section 1.6) and

q =
α− Pθ0(T ≤ t0 − 1)

Pθ0(T = t0)
.

Because φ = φNP is the Neyman Pearson test, it is the most powerful test (at
level α) (see the Neyman Pearson Lemma in Section 2.2). The power of the
test is β(θ1), where

β(θ) := Eθφ(T ).

Numerical Example

Let n = 7. Then

Pθ0(T = 0) =

(
1/2

)7

= 0.0078,

Pθ0(T = 1) =
(

7
1

)(
1/2

)7

= 0.0546,

Pθ0(T ≤ 1) = 0.0624 > α,

so we choose t0 = 1. Moreover

q =
0.05− 0.0078

0.0546
=

422

546
.
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The power is now

β(θ1) = Pθ1(T = 0) + qPθ1(T = 1)

=

(
3/4

)7

+
422

546

(
7

1

)(
3/4

)6(
1/4

)
= 0.1335 +

422

546
0.3114.

Problem 2

Consider now testing

H0 : θ0 = 1/2,

against

H1 : θ < 1/2.

In Problem 1, the construction of the test φ is independent of the value θ1 < θ0.
So φ is most powerful for all θ1 < θ0. We say that φ is uniformly most powerful
(German: gleichmässig mächtigst) for the alternative H1 : θ < θ0.

Problem 3

We now want to test

H0 : θ ≥ 1/2,

against the alternative

H1 : θ < 1/2.

Recall the function

β(θ) := Eθφ(T ).

The level of φ is defined as

sup
θ≥1/2

β(θ).

We have

β(θ) = Pθ(T ≤ t0 − 1) + qPθ(T = t0)

= (1− q)Pθ(T ≤ t0 − 1) + qPθ(T ≤ t0).

Observe that if θ1 < θ0, small values of T are more likely under Pθ1 than under
Pθ0 :

Pθ1(T ≤ t) > Pθ0(T ≤ t), ∀ t ∈ {0, 1, . . . , n}.

Thus, β(θ) is a decreasing function of θ. It follows that the level of φ is

sup
θ≥1/2

β(θ) = β(1/2) = α.

Hence, φ is uniformly most powerful for H0 : θ ≥ 1/2 against H1 : θ < 1/2.
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3.5.2 UMP tests and exponential families

Let P := {Pθ : θ ∈ Θ} be a family of probability measures. Let Θ0 ⊂ Θ,
Θ1 ⊂ Θ, and Θ0 ∩Θ1 = ∅. Based on observations X, with distribution P ∈ P,
we consider the general testing problem, at level α, for

H0 : θ ∈ Θ0,

against

H1 : θ ∈ Θ1.

We say that a test φ has level α if

sup
θ∈Θ0

Eθφ(X) ≤ α.

Definition A test φ is called Uniformly Most Powerful (UMP) if
• φ has level α,
• for all tests φ′ with level α, it holds that Eθφ

′(X) ≤ Eθφ(X) ∀ θ ∈ Θ1.

We now simplify the situation to the case where Θ is an interval in R, and to
the testing problem

H0 : θ ≤ θ0,

against

H1 : θ > θ0.

We also suppose that P is dominated by a σ-finite measure ν.

Theorem 3.5.1 Suppose that P is a one-dimensional exponential family

dPθ
dν

(x) := pθ(x) = exp[c(θ)T (x)− d(θ)]h(x).

Assume moreover that c(θ) is a strictly increasing function of θ. Then a UMP
test φ is

φ(T (x)) :=


1 if T (x) > t0
q if T (x) = t0
0 if T (x) < t0

,

where q and t0 are chosen in such a way that Eθ0φ(T ) = α.

Proof. The Neyman Pearson test for H0 : θ = θ0 against H1 : θ = θ1 is

φNP(x) =


1 if pθ1(x)/pθ0(x) > c0

q0 if pθ1(x)/pθ0(x) = c0

0 if pθ1(x)/pθ0(x) < c0

,

where q0 and c0 are chosen in such a way that Eθ0φNP(X) = α. We have

pθ1(x)

pθ0(x)
= exp

[
(c(θ1)− c(θ0))T (X)− (d(θ1)− d(θ0))

]
.
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Hence

pθ1(x)

pθ0(x)

>
=
<
c ⇔ T (x)

>
=
<
t ,

where t is some constant (depending on c, θ0 and θ1). Therefore, φ = φNP. It
follows that φ is most powerful for H0 : θ = θ0 against H1 : θ = θ1. Because φ
does not depend on θ1, it is therefore UMP for H0 : θ = θ0 against H1 : θ > θ0.

We will now prove that β(θ) := Eθφ(T ) is increasing in θ. Let

p̄θ(t) = exp[c(θ)t− d(θ)]

be the density of T with respect to dominating measure ν̄. For ϑ > θ

p̄ϑ(t)

p̄θ(t)
= exp

[
(c(ϑ)− c(θ))t− (d(ϑ)− d(θ))

]
,

which is increasing in t. Moreover, we have∫
p̄ϑdν̄ =

∫
p̄θdν̄ = 1.

Therefore, there must be a point s0 where the two densities cross:{
p̄ϑ(t)
p̄θ(t) ≤ 1 for t ≤ s0

p̄ϑ(t)
p̄θ(t) ≥ 1 for t ≥ s0

.

But then

β(ϑ)− β(θ) =

∫
φ(t)[p̄ϑ(t)− p̄θ(t)]dν̄(t)

=

∫
t≤s0

φ(t)[p̄ϑ(t)− p̄θ(t)]dν̄(t) +

∫
t≥s0

φ(t)[p̄ϑ(t)− p̄θ(t)]dν̄(t)

≥ φ(s0)

∫
[p̄ϑ(t)− p̄θ(t)]dν̄(t) = 0.

So indeed β(θ) is increasing in θ.

But then

sup
θ≤θ0

β(θ) = β(θ0) = α.

Hence, φ has level α. Because any other test φ′ with level α must have
Eθ0φ

′(X) ≤ α, we conclude that φ is UMP.

tu

Example 3.5.1 LetX1, . . . , Xn be an i.i.d. sample from theN (µ0, σ
2)-distribution,

with µ0 known, and σ2 > 0 unknown. We want to test

H0 : σ2 ≤ σ2
0,

against
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H1 : σ2 > σ2
0.

The density of the sample is

pσ2(x1, . . . , xn) = exp

[
− 1

2σ2

n∑
i=1

(xi − µ0)2 − n

2
log(2πσ2)

]
.

Thus, we may take

c(σ2) = − 1

2σ2
,

and

T (X) =
n∑
i=1

(Xi − µ0)2.

The function c(σ2) is strictly increasing in σ2. So we let φ be the test which
rejects H0 for large values of T (X).

Example 3.5.2 LetX1, . . . , Xn be an i.i.d. sample from the Bernoulli(θ)-distribution,
0 < θ < 1. Then

pθ(x1, . . . , xn) = exp

[
log

(
θ

1− θ

) n∑
i=1

xi + n log(1− θ)
]
.

We can take

c(θ) = log

(
θ

1− θ

)
,

which is strictly increasing in θ. Then T (X) =
∑n

i=1Xi.

Right-sided alternative

H0 : θ ≤ θ0 ,

against

H1 : θ > θ0 .

The UMP test is

φR(T ) :=

{ 1 T > tR
qR T = tR
0 T < tR

.

The function βR(θ) := EθφR(T ) is strictly increasing in θ.

Left-sided alternative

H0 : θ ≥ θ0 ,

against

H1 : θ < θ0 .

The UMP test is

φL(T ) :=

{ 1 T < tL
qL T = tL
0 T > tL

.
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The function βL(θ) := EθφL(T ) is strictly decreasing in θ.

Two-sided alternative

H0 : θ = θ0 ,

against

H1 : θ 6= θ0 .

The test φR is most powerful for θ > θ0, whereas φL is most powerful for θ < θ0.
Hence, a UMP test does not exist for the two-sided alternative.

3.5.3 Unbiased tests

Consider again the general case: P := {Pθ : θ ∈ Θ} is a family of probability
measures, the spaces Θ0, and Θ1 are disjoint subspaces of Θ, and the testing
problem is

H0 : θ ∈ Θ0,

against

H1 : θ ∈ Θ1.

The significance level is α (α < 1).

As we have seen in Example 3.5.2, uniformly most powerful tests do not always
exist. We therefore restrict attention to a smaller class of tests, and look for
uniformly most powerful tests in the smaller class.

DefinitionA test φ is called unbiased (German unverfälscht) if for all θ ∈ Θ0

and all ϑ ∈ Θ1,
Eθφ(X) ≤ Eϑφ(X).

Definition A test φ is called Uniformly Most Powerful Unbiased (UMPU) if
• φ has level α,
• φ is unbiased,
• for all unbiased tests φ′ with level α, one has Eθφ

′(X) ≤ Eθφ(X) ∀ θ ∈ Θ1.

We return to the special case where Θ ⊂ R is an interval. We consider testing

H0 : θ = θ0,

against

H1 : θ 6= θ0.

The following theorem presents the UMPU test. We omit the proof (see e.g.
Lehmann ...).

Theorem 3.5.2 Suppose P is a one-dimensional exponential family:

dPθ
dν

(x) := pθ(x) = exp[c(θ)T (x)− d(θ)]h(x),
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with c(θ) strictly increasing in θ. Then a UMPU test is

φ(T (x)) :=


1 if T (x) < tL or T (x) > tR
qL if T (x) = tL
qR if T (x) = tR
0 if tL < T (x) < tR

,

where the constants tR , tL, qR and qL are chosen in such a way that

Eθ0φ(X) = α,
d

dθ
Eθφ(X)

∣∣∣∣
θ=θ0

= 0.

Note Let φR a right-sided test as defined Theorem 3.5.1 with level at most
α and φL be the similarly defined left-sided test. Then βR(θ) = EθφR(T ) is
strictly increasing, and βL(θ) = EθφL(T ) is strictly decreasing. The two-sided
test φ of Theorem 3.5.2 is a superposition of two one-sided tests. Writing

β(θ) = Eθφ(T ),

the one-sided tests are constructed in such a way that

β(θ) = βR(θ) + βL(θ).

Moreover, β(θ) should be minimal at θ = θ0, whence the requirement that its
derivative at θ0 should vanish. Let us see what this derivative looks like. With
the notation used in the proof of Theorem 3.5.1, for a test φ̃ depending only on
the sufficient statistic T ,

Eθφ̃(T ) =

∫
φ̃(t) exp[c(θ)t− d(θ)]dν̄(t).

Hence, assuming we can take the differentiation inside the integral,

d

dθ
Eθφ̃(T ) =

∫
φ̃(t) exp[c(θ)t− d(θ)](ċ(θ)t− ḋ(θ))dν̄(t)

= ċ(θ)covθ(φ̃(T ), T ).

Example 3.5.3 LetX1, . . . , Xn be an i.i.d. sample from theN (µ, σ2
0)-distribution,

with µ ∈ R unknown, and with σ2
0 known. We consider testing

H0 : µ = µ0,

against

H1 : µ 6= µ0.

A sufficient statistic is T :=
∑n

i=1Xi. We have, for tL < tR,

Eµφ(T ) = IPµ(T > tR) + IPµ(T < tL)

= IPµ

(
T − nµ√
nσ0

>
tR − nµ√

nσ0

)
+ IPµ

(
T − nµ√
nσ0

<
tL − nµ√
nσ0

)
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= 1− Φ

(
tR − nµ√

nσ0

)
+ Φ

(
tL − nµ√
nσ0

)
,

where Φ is the standard normal distribution function. To avoid confusion with
the test φ, we denote the standard normal density in this example by Φ̇. Thus,

d

dµ
Eµφ(T ) =

n√
nσ0

Φ̇

(
tR − nµ√

nσ0

)
− n√

nσ0
Φ̇

(
tL − nµ√
nσ0

)
,

So putting
d

dµ
Eµφ(T )

∣∣∣∣
µ=µ0

= 0,

gives

Φ̇

(
tR − nµ0√

nσ0

)
= Φ̇

(
tL − nµ0√

nσ0

)
,

or
(tR − nµ0)2 = (tL − nµ0)2.

We take the solution (tL − nµ0) = −(tR − nµ0), (because the solution
(tL − nµ0) = (tR − nµ0) leads to a test that always rejects, and hence does
not have level α, as α < 1). Plugging this solution back in gives

Eµ0φ(T ) = 1− Φ

(
tR − nµ0√

nσ0

)
+ Φ

(
− tR − nµ0√

nσ0

)
= 2

(
1− Φ

(
tR − nµ0√

nσ0

))
.

The requirement Eµ0φ(T ) = α gives us

Φ

(
tR − nµ0√

nσ0

)
= 1− α/2,

and hence

tR − nµ0 =
√
nσ0Φ−1(1− α/2), tL − nµ0 = −

√
nσ0Φ−1(1− α/2).

3.5.4 Conditional tests

We now study the case where Θ is an interval in R2. We let θ = (β, γ), and we
assume that γ is the parameter of interest. We aim at testing

H0 : γ ≤ γ0,

against the alternative

H1 : γ > γ0.

We assume moreover that we are dealing with an exponential family in canonical
form:

pθ(x) = exp[βT1(x) + γT2(x)− d(θ)]h(x).

Then we can restrict ourselves to tests φ(T ) depending only on the sufficient
statistic T = (T1, T2).
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Lemma 3.5.1 Suppose that {β : (β, γ0) ∈ Θ} contains an open interval. Let

φ(T1, T2) =


1 if T2 > t0(T1)
q(T1) if T2 = t0(T1)
0 if T2 < t0(T1)

,

where the constants t0(T1) and q(T1) are allowed to depend on T1, and are
chosen in such a way that

Eγ0

(
φ(T1, T2)

∣∣∣∣T1

)
= α.

Then φ is UMPU.

Sketch of proof.

Let p̄θ(t1, t2) be the density of (T1, T2) with respect to dominating measure ν̄:

p̄θ(t1, t2) := exp[βt1 + γt2 − d(θ)]h̄(t1, t2).

We assume ν̄(tt, t2) = ν̄1(t1)ν̄2(t2) is a product measure. The conditional den-
sity of T2 given T1 = t1 is then

p̄θ(t2|t1) =
exp[βt1 + γt2 − d(θ)]h̄(t1, t2)∫

s2
exp[βt1 + γs2 − d(θ)]h̄(t1, s2)dν̄2(s2)

= exp[γt2 − d(γ|t1)]h̄(t1, t2),

where

d(γ|t1) := log

(∫
s2

exp[γs2]h̄(t1, s2)dν̄2(s2)

)
.

In other words, the conditional distribution of T2 given T1 = t1
- does not depend on β,
- is a one-parameter exponential family in canonical form.
This implies that given T1 = t1, φ is UMPU.

Result 1 The test φ has level α, i.e.

sup
γ≤γ0

E(β.γ)φ(T ) = E(β,γ0)φ(T ) = α, ∀ β.

Proof of Result 1.

sup
γ≤γ0

E(β,γ)φ(T ) ≥ E(β,γ0)φ(T ) = E(β,γ0)Eγ0(φ(T )|T1) = α.

Conversely,
sup
γ≤γ0

E(β,γ)φ(T ) = sup
γ≤γ0

E(β,γ)Eγ(φ(T )|T1)︸ ︷︷ ︸
≤α

≤ α.

Result 2 The test φ is unbiased.
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Proof of Result 2. If γ > γ0, it holds that Eγ(φ(T )|T1) ≥ α, as the conditional
test is unbiased. Thus, also, for all β,

E(β,γ)φ(T ) = E(β,γ)Eγ(φ(T )|T1) ≥ α,

i.e., φ is unbiased.

Result 3 Let φ′ be a test with level

α′ := sup
β

sup
γ≤γ0

E(β,γ)φ
′(T ) ≤ α,

and suppose moreover that φ′ is unbiased, i.e., that

sup
γ≤γ0

sup
β
E(β,γ)φ

′(T ) ≤ inf
γ>γ0

inf
β
E(β,γ)φ

′(T ).

Then, conditionally on T1, φ′ has level α′.

Proof of Result 3. As

α′ = sup
β

sup
γ≤γ0

E(β,γ)φ
′(T )

we know that
E(β,γ0)φ

′(T ) ≤ α′, ∀ β.

Conversely, the unbiasedness implies that for all γ > γ0,

E(β,γ)φ
′(T ) ≥ α′,∀ β.

A continuity argument therefore gives

E(β,γ0)φ
′(T ) = α′, ∀ β.

In other words, we have

E(β,γ0)(φ
′(T )− α′) = 0,∀ β.

But then also

E(β,γ0)Eγ0

(
(φ′(T )− α′)

∣∣∣∣T1

)
= 0, ∀ β,

which we can write as
E(β,γ0)h(T1) = 0,∀ β.

The assumption that {β : (β, γ0) ∈ Θ} contains an open interval implies that
T1 is complete for (β, γ0). So we must have

h(T1) = 0, P(β,γ0)−a.s., ∀ β,

or, by the definition of h,

Eγ0(φ′(T )|T1) = α′, P(β,γ0) − a.s., ∀ β.

So conditionally on T1, the test φ′ has level α′.
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Result 4 Let φ′ be a test as given in Result 3. Then φ′ can not be more powerful
than φ at any (β, γ), with γ > γ0.

Proof of Result 4. By the Neyman Pearson lemma, conditionally on T1, we
have

Eγ(φ′(T )|T1) ≤ Eγ(φ(T )|T1), ∀ γ > γ0.

Thus also

E(β,γ)φ
′(T ) ≤ E(β,γ)φ(T ), ∀ β, γ > γ0.

tu

Example 3.5.4 Consider two independent samples X = (X1, . . . , Xn) and
Y = (Y1, . . . , Ym), where X1, . . . , Xn are i.i.d. Poisson(λ)-distributed, and
Y1, . . . , Ym are i.i.d. Poisson(µ)-distributed. We aim at testing

H0 : λ ≤ µ,

against the alternative

H1 : λ > µ.

Define

β := log(µ), γ := log(λ/µ).

The testing problem is equivalent to

H0 : γ ≤ γ0,

against the alternative

H1 : γ > γ0,

where γ0 := 0.

The density is

pθ(x1, . . . , xn, y1, . . . , ym)

= exp

[
log(λ)

n∑
i=1

xi + log(µ)

m∑
j=1

yj − nλ−mµ
] n∏
i=1

1

xi!

m∏
j=1

1

yj !

= exp

[
log(µ)(

n∑
i=1

xi +
m∑
j=1

yj) + log(λ/µ)
n∑
i=1

xi − nλ−mµ
]
h(x,y)

= exp[βT1(x,y) + γT2(x)− d(θ)]h(x,y),

where

T1(X,Y) :=

n∑
i=1

Xi +

m∑
j=1

Yj ,

and

T2(X) :=

n∑
i=1

Xi,
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and

h(x,y) :=

n∏
i=1

1

xi!

m∏
j=1

1

yj !
.

The conditional distribution of T2 given T1 = t1 is the Binomial(t1, p)-distribution,
with

p =
nλ

nλ+mµ
=

eγ

1 + eγ
.

Thus, conditionally on T1 = t1, using the observation T2 from the Binomial(t1, p)-
distribution, we test

H0 : p ≤ p0,

against the alternative

H1 : p > p0,

where p0 := n/(n+m). This test is UMPU for the unconditional problem.



Chapter 4

Equivariant statistics

As we have seen in the previous chapter, it can be useful to restrict attention
to a collection of statistics satisfying certain desirable properties. In Chapter
3, we restricted ourselves to unbiased estimators. In this chapter, equivariance
will be the key concept.

The data consists of i.i.d. real-valued random variables X1, . . . , Xn. We write
X := (X1, . . . , Xn). The density w.r.t. some dominating measure ν, of a
single observation is denoted by pθ. The density of X is pθ(x) =

∏
i pθ(xi),

x = (x1, . . . , xn).

Location model
Then θ ∈ R is a location parameter, and we assume

Xi = θ + εi, i = 1, . . . , n.

We are interested in estimating θ. Both the parameter space Θ, as well as the
action space A, are the real line R.

Location-scale model
Here θ = (µ, σ), with µ ∈ R a location parameter and σ > 0 a scale parameter.
We assume

Xi = µ+ σεi, i = 1, . . . , n.

The parameter space Θ and action space A are both R× (0,∞).

4.1 Equivariance in the location model

Definition A statistic T = T (X) is called location equivariant if for all con-
stants c ∈ R and all x = (x1, . . . , xn),

T (x1 + c, . . . , xn + c) = T (x1, . . . , xn) + c.

85
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Examples

T =

{
X̄
X(n+1

2
) (n odd)

· · ·
.

Definition A loss function L(θ, a) is called location invariant if for all c ∈ R,

L(θ + c, a+ c) = L(θ, a), (θ, a) ∈ R2.

In this section we abbreviate location equivariance (invariance) to simply equiv-
ariance (invariance), and we assume throughout that the loss L(θ, a) is invari-
ant.

Corollary If T is equivariant (and L(θ, a) is invariant), then

R(θ, T ) = EθL(θ, T (X)) = EθL(0, T (X)− θ)

= EθL(0, T (X− θ)) = EθL0[T (ε)],

where L0[a] := L(0, a) and ε := (ε1, . . . , εn). Because the distribution of ε does
not depend on θ, we conclude that the risk does not depend on θ. We may
therefore omit the subscript θ in the last expression:

R(θ, T ) = EL0[T (ε)].

Since for θ = 0, we have the equality X = ε we may alternatively write

R(θ, T ) = E0L0[T (X)] = R(0, T ).

Definition An equivariant statistic T is called uniform minimum risk equivari-
ant (UMRE) if

R(θ, T ) = min
d equivariant

R(θ, d), ∀ θ,

or equivalently,

R(0, T ) = min
d equivariant

R(0, d).

Lemma 4.1.1 Let Yi := Xi − Xn, i = 1, . . . , n, and Y := (Y1, . . . , Yn). We
have

T equivariant ⇔ T (X) = T (Y) +Xn.

Proof.
(⇒) Trivial.
(⇐) Replacing X by X + c leaves Y unchanged (i.e. Y is invariant). So
T (X + c) = T (Y) +Xn + c = T (X) + c. tu
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Theorem 4.1.1 Let Yi := Xi−Xn, i = 1, . . . , n, Y := (Y1, . . . , Yn), and define

T ∗(Y) := arg min
v
E

(
L0[v + εn]

∣∣∣∣Y).
Moreover, let

T ∗(X) := T ∗(Y) +Xn.

Then T ∗ is UMRE.

Proof. First, note that the distribution of Y does not depend on θ, so that T ∗

is indeed a statistic. It is also equivariant, by the previous lemma.

Let T be an equivariant statistic. Then T (X) = T (Y) +Xn. So

T (X)− θ = T (Y) + εn.

Hence

R(0, T ) = EL0[T (Y) + εn] = E

[
E

(
L0[T (Y) + εn]

∣∣∣∣Y)].
But

E

(
L0[T (Y) + εn]

∣∣∣∣Y) ≥ min
v
E

(
L0[v + εn]

∣∣∣∣Y) = E

(
L0[T ∗(Y) + εn]

∣∣∣∣Y).
Hence,

R(0, T ) ≥ E
[
E

(
L0[T ∗(Y) + εn]

∣∣∣∣Y)] = R(0, T ∗).

tu

Corollary 4.1.1 If we take quadratic loss

L(θ, a) := (a− θ)2,

we get L0[a] = a2, and so, for Y = X−Xn,

T ∗(Y) = arg min
v
E

(
(v + εn)2

∣∣∣∣Y)
= −E(εn|Y),

and hence

T ∗(X) = Xn − E(εn|Y).

This estimator is called the Pitman estimator.

To investigate the case of quadratic risk further, we:

Note If (X,Z) has density f(x, z) w.r.t. Lebesgue measure, then the density
of Y := X − Z is

fY (y) =

∫
f(y + z, z)dz.
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Lemma 4.1.2 Consider quadratic loss. Let p0 be the density of ε = (ε1, . . . , εn)
w.r.t. Lebesgue measure. Then a UMRE statistic is

T ∗(X) =

∫
zp0(X1 − z, . . . ,Xn − z)dz∫
p0(X1 − z, . . . ,Xn − z)dz

.

Proof. Let Y = X−Xn. The random vector Y has density

fY(y1, . . . , yn−1, 0) =

∫
p0(y1 + z, . . . , yn−1 + z, z)dz.

So the density of εn given Y = y = (y1, . . . , yn−1, 0) is

fεn(u) =
p0(y1 + u, . . . , yn−1 + u, u)∫
p0(y1 + z, . . . , yn−1 + z, z)dz

.

It follows that

E(εn|y) =

∫
up0(y1 + u, . . . , yn−1 + u, u)du∫
p0(y1 + z, . . . , yn−1 + z, z)dz

.

Thus

E(εn|Y) =

∫
up0(Y1 + u, . . . , Yn−1 + u, u)du∫
p0(Y1 + z, . . . , Yn−1 + z, z)dz

=

∫
up0(X1 −Xn + u, . . . ,Xn−1 −Xn + u, u)du∫
p0(X1 −Xn + z, . . . ,Xn−1 −Xn + z, z)dz

= Xn −
∫
zp0(X1 − z, . . . ,Xn−1 − z,Xn − z)dz∫
p0(X1 + z, . . . ,Xn−1 + z,Xn + z)dz

.

Finally, recall that T ∗(X) = Xn − E(εn|Y). tu

Example 4.1.1 Suppose X1, . . . , Xn are i.i.d. Uniform[θ−1/2, θ+1/2], θ ∈ R.
Then

p0(x) = l{|x| ≤ 1/2}.

We have

max
1≤i≤n

|xi − z| ≤ 1/2 ⇔ x(n) − 1/2 ≤ z ≤ x(1) + 1/2.

So

p0(x1 − z, . . . , xn − z) = l{x(n) − 1/2 ≤ z ≤ x(1) + 1/2}.

Thus, writing

T1 := X(n) − 1/2, T2 := X(1) + 1/2,

the UMRE estimator T ∗ is

T ∗ =

(∫ T2

T1

zdz

)/(∫ T2

T1

dz

)
=
T1 + T2

2
=
X(1) +X(n)

2
.



4.1. EQUIVARIANCE IN THE LOCATION MODEL 89

We now consider more general invariant statistics Y.

Definition A map Y : Rn → Rn is called maximal invariant if

Y(x) = Y(x′) ⇔ ∃ c : x = x′ + c.

(The constant c may depend on x and x′.)

Example The map Y(x) := x− xn is maximal invariant:
(⇐) is clear
(⇒) if x− xn = x′ − x′n, we have x = x′ + (xn − x′n).

More generally:

Example Let d(X) be equivariant. Then Y := X−d(X) is maximal invariant.

Theorem 4.1.2 Suppose that d(X) is equivariant. Let Y := X− d(X), and

T ∗(Y) := arg min
v
E

(
L0[v + d(ε)]

∣∣∣∣Y).
Then

T ∗(X) := T ∗(Y) + d(X)

is UMRE.

Proof. Let T be an equivariant estimator. Then

T (X) = T (X− d(X)) + d(X)

= T (Y) + d(X).

Hence

E

(
L0[T (ε)]

∣∣∣∣Y) = E

(
L0[T (Y) + d(ε)]

∣∣∣∣Y)
≥ min

v
E

(
L0[v + d(ε)]

∣∣∣∣Y).
Now, use the iterated expectation lemma. tu

Special case
For quadratic loss (L0[a] = a2), the definition of T ∗(Y) in the above theorem
is

T ∗(Y) = −E(d(ε)|Y) = −E0(d(X)|X− d(X)),

so that

T ∗(X) = d(X)− E0(d(X)|X− d(X)).

So for a equivariant estimator T , we have

T is UMRE ⇔ E0(T (X)|X− T (X)) = 0.

From the right hand side, we conclude that E0T = 0 and hence Eθ(T ) = θ
∀ θ. Thus, in the case of quadratic loss, an UMRE estimator is unbiased.
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Conversely, suppose we have an equivariant and unbiased estimator T . If T (X)
and X− T (X) are independent, it follows that

E0(T (X)|X− T (X)) = E0T (X) = 0.

So then T is UMRE.

To check independence, Basu’s lemma can be useful.

Basu’s lemma Let X have distribution Pθ, θ ∈ Θ. Suppose T is sufficient
and complete, and that Y = Y (X) has a distribution that does not depend on
θ. Then, for all θ, T and Y are independent under Pθ.

Proof. Let A be some measurable set, and

h(T ) := P (Y ∈ A|T )− P (Y ∈ A).

Notice that indeed, P (Y ∈ A|T ) does not depend on θ because T is sufficient.
Because

Eθh(T ) = 0, ∀ θ,

we conclude from the completness of T that

h(T ) = 0, Pθ−a.s., ∀ θ,

in other words,

P (Y ∈ A|T ) = P (Y ∈ A), Pθ−a.s., ∀ θ.

Since A was arbitrary, we thus have that the conditional distribution of Y given
T is equal to the unconditional distribution:

P (Y ∈ ·|T ) = P (Y ∈ ·), Pθ−a.s., ∀ θ,

that is, for all θ, T and Y are independent under Pθ. tu

Basu’s lemma is intriguing: it proves a probabilistic property (independence)
via statistical concepts.

Example 4.1.2 LetX1, . . . , Xn be independentN (θ, σ2), with σ2 known. Then
T := X̄ is sufficient and complete, and moreover, the distribution of Y := X−X̄
does not depend on θ. So by Basu’s lemma, X̄ and X − X̄ are independent.
Hence, X̄ is UMRE.
Remark Indeed, Basu’s lemma is peculiar: X̄ and X − X̄ of course remain
independent if the mean θ is known and/or the variance σ2 is unknown!
Remark As a by-product, one concludes the independence of X̄ and the sample
variance S2 =

∑n
i=1(Xi − X̄)2/(n− 1), because S2 is a function of X− X̄.
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4.2 Equivariance in the location-scale model

Location-scale model
We assume

Xi = µ+ σεi, i = 1, . . . , n.

The unknown parameter is θ = (µ, σ), with µ ∈ R a location parameter and
σ > 0 a scale parameter. The parameter space Θ and action space A are both
R × R+ (R+ := (0,∞)). The distribution of ε = (ε1, . . . , εn) is assumed to be
known.

Definition A statistic T = T (X) = (T1(X), T2(X)) is called location-scale
equivariant if for all constants b ∈ R, c ∈ R+, and all x = (x1, . . . , xn),

T (b+ cx1, . . . , b+ cxn) = b+ cT (x1, . . . , xn)

and
T2(b+ cx1, . . . , b+ cxn) = cT2(x1, . . . , xn).

Definition A loss function L(µ, σ, a1, a2) is called location-scale invariant if for
all (µ, a1, b) ∈ R3, (σ, a2, c) ∈ R3

+

L(b+ cµ, cσ, b+ ca1, ca2) = L(µ, σ, a1, a2).

In this section we abbreviate location-scale equivariance (invariance) to simply
equivariance (invariance), and we assume throughout that the loss L(θ, a) is
invariant.

Corollary If T is equivariant (and L(θ, a) is invariant), then

R(θ, T ) = EθL(µ, σ, T1(X), T2(X)) = EθL

(
0, 1,

T1(X)− µ
σ

,
T2(X)

σ

)
= EθL(0, 1, T1(ε), T2(ε)) = EθL0(T (ε)),

where L0(a1, a2) := L(0, 1, a1, a2). We conclude that the risk does not depend
on θ. We may therefore omit the subscript θ in the last expression:

R(θ, T ) = EL0(T (ε)).

Definition An equivariant statistic T is called uniform minimum risk equivari-
ant (UMRE) if

R(θ, T ) = min
d equivariant

R(θ, d), ∀ θ,

or equivalently,

R(0, 1, T1, T2) = min
d equivariant

R(0, 1, d1, d2).
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Theorem 4.2.1 Suppose that d(X) is equivariant. Let

Y :=
X− d1(X)

d2(X)
,

and

T ∗(Y) := arg min
a1∈R, a2∈R+

E

[
L0

(
d1(ε) + d2(ε)a1, d2(ε)a2

)∣∣∣∣Y].
Then

T ∗(X) :=

(
d1(X) + d2(X)T ∗1 (Y)

d2(X)T ∗2 (Y)

)
is UMRE.

Proof. We have

Y =
X− d1(X)

d2(X)
=
ε− d1(ε)

d2(ε)
.

So
ε = d1(ε) + d2(ε)Y.

Let T be an equivariant estimator. Then

EL0

(
T1(ε), T2(ε)

)
= EL0

(
T1(d1(ε) + d2(ε)Y), T2(d1(ε) + d2(ε)Y)

)
= EL0

(
d1(ε) + d2(ε)T1(Y), d2(ε)T2(Y)

)
= EE

[
L0

(
d1(ε) + d2(ε)T1(Y), d2(ε)T2(Y)

)∣∣∣∣Y]
≥ E min

a1∈R, a2∈R+

E

[
L0

(
d1(ε) + d2(ε)a1, d2(ε)a2

)∣∣∣∣Y]
= EE

[
L0

(
d1(ε) + d2(ε)T ∗1 (Y), d2(ε)T ∗2 (Y)

)∣∣∣∣Y].
tu

Special case
For quadratice loss (L0(a1, a2) := a2

1), the definition of T ∗(Y) in the above
theorem is

T ∗(Y) = arg min
a1∈R

E

[(
d1(ε) + d2(ε)a1

)2∣∣∣∣Y].
We then have:

Lemma 4.2.1 Suppose that d is equivariant, and sufficient and complete. Then

T ∗(X) := d1(X)− d2(X)
Ed1(ε)d2(ε)

Ed2
2(ε)

is UMRE.



4.2. EQUIVARIANCE IN THE LOCATION-SCALE MODEL 93

Proof. By Basu’s lemma, d and Y are independent. Hence

E

[(
d1(ε) + d2(ε)a1

)2∣∣∣∣Y] = E

(
d1(ε) + d2(ε)a1

)2

.

Moreover

arg min
a1∈R

E

(
d1(ε) + d2(ε)a1

)2

= −Ed1(ε)d2(ε)

Ed2
2(ε)

.

tu

Example 4.2.1 Let X1, . . . , Xn be i.i.d. and N (µ, σ2)-distributed. Define

d1(X) := X̄, d2(X) := S,

where S2 is the sample variance

S2 :=
1

n− 1

n∑
i=1

(Xi − X̄)2.

It is easy to see that d is equivariant. We moreover know from Example 2.10.12
that d is sufficient, and an application of Lemma 3.2.4 shows that d is also
complete. We furthermore have

Ed1(ε) = Eε̄ = 0,

and, from the last remark in Section 4.1 (a consequence of Basu’s lemma), we
know that d1(X) = X̄ and d2(X) = S are independent. So

Ed1(ε)d2(ε) = Ed1(ε)Ed2(ε) = 0.

It follows that T ∗(X) = X̄ is UMRE.
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Chapter 5

Proving admissibility and
minimaxity

Bayes estimators are quite useful, also for obdurate frequentists. They can be
used to construct estimators that are minimax (admissible), or for verification
of minimaxity (admissibility).

Let us first recall the definitions. Let X ∈ X have distribution Pθ, θ ∈ Θ. Let
T = T (X) be a statistic (estimator, decision), L(θ, a) be a loss function, and
R(θ, T ) := EθL(θ, T (X)) be the risk of T .

◦ T is minimax if ∀ T ′ supθ R(θ, T ) ≤ supθ R(θ, T ′).

◦ T is inadmissible if ∃ T ′: {∀ θ R(θ, T ′) ≤ R(θ, T ) and ∃ θ R(θ, T ′) < R(θ, T )}.

◦ T is Bayes (for the prior density w on Θ) if ∀ T ′, rw(T ) ≤ rw(T ′).

Recall also that Bayes risk for w is

rw(T ) =

∫
R(ϑ, T )w(ϑ)dµ(ϑ).

Whenever we say that a statistic T is Bayes, without referring to an explicit
prior on Θ, we mean that there exists a prior for which T is Bayes. Of course,
if the risk R(θ, T ) = R(T ) does not depend on θ, then Bayes risk of T does not
depend on the prior.

Especially in cases where one wants to use the uniform distribution as prior,
but cannot do so because Θ is not bounded, the notion extended Bayes is useful.

Definition A statistic T is called extended Bayes if there exists a sequence
of prior densities {wm}∞m=1 (w.r.t. dominating measures that are allowed to
depend on m), such that rwm(T )− infT ′ rwm(T ′)→ 0 as m→∞.

95
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5.1 Minimaxity

Lemma 5.1.1 Suppose T is a statistic with risk R(θ, T ) = R(T ) not depending
on θ. Then
(i) T admissible ⇒ T minimax,
(ii) T Bayes ⇒ T minimax,
and in fact more generally,
(iii) T extended Bayes ⇒ T minimax.

Proof.
(i) T is admissible, so for all T ′, either there is a θ with R(θ, T ′) > R(T ), or
R(θ, T ′) ≥ R(T ) for all θ. Hence supθ R(θ, T ′) ≥ R(T ).
(ii) Since Bayes implies extended Bayes, this follows from (iii). We nevertheless
present a separate proof, as it is somewhat simpler than (iii).
Note first that for any T ′,

rw(T ′) =

∫
R(ϑ, T ′)w(ϑ)dµ(θ) ≤

∫
sup
ϑ
R(ϑ, T ′)w(ϑ)dµ(θ) (5.1)

= sup
ϑ
R(ϑ, T ′),

that is, Bayes risk is always bounded by the supremum risk. Suppose now that
T ′ is a statistic with supθ R(θ, T ′) < R(T ). Then

rw(T ′) ≤ sup
ϑ
R(ϑ, T ′) < R(T ) = rw(T ),

which is in contradiction with the assumption that T is Bayes.
(iii) Suppose for simplicity that a Bayes decision Tm for the prior wm exists, for
all m, i.e.

rwm(Tm) = inf
T ′
rwm(T ′), m = 1, 2, . . . .

By assumption, for all ε > 0, there exists an m sufficiently large, such that

R(T ) = rwm(T ) ≤ rwm(Tm) + ε ≤ rwm(T ′) + ε ≤ sup
θ
R(θ, T ′) + ε,

because, as we have seen in (5.1), the Bayes risk is bounded by supremum risk.
Since ε can be chosen arbitrary small, this proves (iii). tu

Example 5.1.1 Consider a Binomial(n, θ) random variable X. Let the prior
on θ ∈ (0, 1) be the Beta(r, s) distribution. Then Bayes estimator for quadratic
loss is

T =
X + r

n+ r + s
.

Its risk is
R(θ, T ) = Eθ(T − θ)2

= varθ(T ) + bias2
θ(T )

=
nθ(1− θ)

(n+ r + s)2
+

[
nθ + r

n+ r + s
− (n+ r + s)θ

n+ r + s

]2
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=
[(r + s)2 − n]θ2 + [n− 2r(r + s)]θ + r2

(n+ r + s)2
.

This can only be constant in θ if the coefficients in front of θ2 and θ are zero:

(r + s)2 − n = 0, n− 2r(r + s) = 0.

Solving for r and s gives

r = s =
√
n/2.

Plugging these values back in the estimator T gives

T =
X +

√
n/2

n+
√
n

is minimax. The minimax risk is

R(T ) =
1

4(
√
n+ 1)2

.

We can compare this with the supremum risk of the unbiased estimator X/n:

sup
θ
R(θ,X/n) = sup

θ

θ(1− θ)
n

=
1

4n
.

So for large n, this does not differ much from the minimax risk.

Example 5.1.2 We consider again the Pitman estimator (see Lemma 4.1.2)

T ∗ =

∫
zp0(X1 − z, . . . ,Xn − z)dz∫
p0(X1 − z, . . . ,Xn − z)dz

.

Lemma 5.1.2 T ∗ is extended Bayes (for quadratic loss).

Proof. Let wm be (the density of) the uniform distribution on the interval
[−m,m]:

wm = l[−m,m]/2m.

The posterior density is then

wm(ϑ|x) =
p0(x− ϑ)l[−m,m](ϑ)∫m
−m p0(x− ϑ)dϑ

.

Bayes estimator is thus

Tm =

∫m
−m ϑp0(x− ϑ)dϑ∫m
−m p0(x− ϑ)dϑ

.

We now compute R(θ, Tm) = Eθ(Tm − θ)2. Let

Ta,b(x) :=

∫ b
a zp0(x− z)dz∫ b
a p0(x− z)dz

.
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Then for all x, Ta,b(x) → T (x) as a → −∞ and b → ∞. One can easily verify
that also

lim
a→−∞, b→∞

E0T
2
a,b(X)→ E0T

2(X).

(Note that, for any prior w, E0T
2(X) is the Bayes risk rw(T ) since the risk

R(θ, T ) = E0T
2(X) does not depend on θ.) Moreover

Ta,b(X)− θ =

∫ b
a (z − θ)p0(X − z)dz∫ b

a p0(x− z)dz
=

∫ b−θ
a−θ vp0(X − θ − v)dv∫ b−θ
a−θ p0(X − θ − v)dv

.

It follows that
Eθ(Ta,b(X)− θ)2 = E0T

2
a−θ,b−θ(X).

Hence,
R(θ, Tm) = E0T

2
−m−θ,m−θ(X).

The Bayes risk is

rwm(Tm) = Eθ∼wmR(θ, Tm) =
1

2m

∫ m

−m
E0T

2
−m−ϑ,m−ϑ(X)dϑ.

Hence, for any 0 < ε < 1, we have

rwm(Tm) ≥ inf
|ϑ|≤m(1−ε)

(1− ε)E0T
2
−m−ϑ,m−ϑ(X)

≥ inf
a≤−mε, b≥mε

(1− ε)E0T
2
a,b(X).

It follows that for any 0 < ε < 1,

lim inf
m→∞

rwm(Tm) ≥ lim inf
m→∞

inf
a≤−mε, b≥mε

(1− ε)E0T
2
a,b(X) = (1− ε)E0T

2(X).

Hence we have rwm(Tm)→ E0T
2(X), i.e., rwm(Tm)− rwm(T )→ 0.

tu

Corollary 5.1.1 T ∗ is minimax (for quadratic loss).

5.2 Admissibility

In this section, the parameter space is assumed to be an open subset of a
topological space, so that we can consider open neighborhoods of members of
Θ, and continuous functions on Θ. We moreover restrict ourselves to statistics
T with R(θ, T ) <∞.

Lemma 5.2.1 Suppose that the statistic T is Bayes for the prior density w.
Then (i) or (ii) below are sufficient conditions for the admissibility of T .
(i) The statistic T is the unique Bayes decision (i.e., rw(T ) = rw(T ′) implies
that ∀ θ, T = T ′),
(ii) For all T ′, R(θ, T ′) is continuous in θ, and moreover, for all open U ⊂ Θ,
the prior probability Π(U) :=

∫
U w(ϑ)dµ(ϑ) of U is strictly positive.
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Proof.
(i) Suppose that for some T ′, R(θ, T ′) ≤ R(θ, T ) for all θ. Then also rw(T ′) ≤
rw(T ). Because T is Bayes, we then must have equality:

rw(T ′) = rw(T ).

So then, ∀ θ, T ′ and T are equal Pθ-a.s., and hence, ∀ θ, R(θ, T ′) = R(θ, T ), so
that T ′ can not be strictly better than T .
(ii) Suppose that T is inadmissible. Then, for some T ′, R(θ, T ′) ≤ R(θ, T ) for
all θ, and, for some θ0, R(θ0, T

′) < R(θ0, T ). This implies that for some ε > 0,
and some open neighborhood U ⊂ Θ of θ0, we have

R(ϑ, T ′) ≤ R(ϑ, T )− ε, ϑ ∈ U.

But then

rw(T ′) =

∫
U
R(ϑ, T ′)w(ϑ)dν(ϑ) +

∫
Uc
R(ϑ, T ′)w(ϑ)dν(ϑ)

≤
∫
U
R(ϑ, T )w(ϑ)dν(ϑ)− εΠ(U) +

∫
Uc
R(ϑ, T )w(ϑ)dν(ϑ)

= rw(T )− εΠ(U) < rw(T ).

We thus arrived at a contradiction. tu

Lemma 5.2.2 Suppose that T is extended Bayes, and that for all T ′, R(θ, T ′)
is continuous in θ. In fact assume, for all open sets U ⊂ Θ,

rwm(T )− infT ′ rwm(T ′)

Πm(U)
→ 0,

as m→∞. Here Πm(U) :=
∫
U wm(ϑ)dµm(ϑ) is the probability of U under the

prior Πm. Then T is admissible.

Proof. We start out as in the proof of (ii) in the previous lemma. Suppose that
T is inadmissible. Then, for some T ′, R(θ, T ′) ≤ R(θ, T ) for all θ, and, for some
θ0, R(θ0, T

′) < R(θ0, T ), so that for some ε > 0, and some open neighborhood
U ⊂ Θ of θ0, we have

R(ϑ, T ′) ≤ R(ϑ, T )− ε, ϑ ∈ U.

This would give that for all m,

rwm(T ′) ≤ rwm(T )− εΠm(U).

Suppose for simplicity that a Bayes decision Tm for the prior wm exists, for all
m, i.e.

rwm(Tm) = inf
T ′
rwm(T ′), m = 1, 2, . . . .

Then, for all m,

rwm(Tm) ≤ rwm(T ′) ≤ rwm(T )− εΠm(U),

or
rwm(T )− rwm(Tm)

Πm(U)
≥ ε > 0,

that is, we arrived at a contradiction. tu
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Example 5.2.1 Let X be N (θ, 1)-distributed, and R(θ, T ) := Eθ(T − θ)2 be
the quadratic risk. We consider estimators of the form

T = aX + b, a > 0, b ∈ R.

Lemma T is admissible if and only if one of the following cases hold
(i) a < 1,
(ii) a = 1 and b = 0.

Proof.
(⇐) (i)
First, we show that T is Bayes for some prior. It turns out that this works with
a normal prior, i.e., we take θ ∼ N (c, τ2) for some c and τ2 to be specified.
With the notation

f(ϑ) ∝ g(x, ϑ)

we mean that f(ϑ)/g(x, ϑ) does not depend on ϑ. We have

w(ϑ|x) =
p(x|ϑ)w(ϑ)

p(x)
∝ φ(x− ϑ)φ

(
ϑ− c
τ

)

∝ exp

[
−1

2

{
(x− ϑ)2 +

(ϑ− c)2

τ2

}]
∝ exp

[
−1

2

{
ϑ− τ2x+ c

τ2 + 1

}2 1 + τ2

τ2

]
.

We conclude that Bayes estimator is

TBayes = E(θ|X) =
τ2X + c

τ2 + 1
.

Taking
τ2

τ2 + 1
= a,

c

τ2 + 1
= b,

yields T = TBayes.
Next, we check (i) in Lemma 5.2.1, i.e. that T is unique. For quadratic loss,
and for T = E(θ|X), the Bayes risk of an estimator T ′ is

rw(T ′) = Evar(θ|X) + E(T − T ′)2.

This follows from straightforward calculations:

rw(T ′) =

∫
R(ϑ, T ′)w(ϑ)dµ(ϑ)

= ER(θ, T ′) = E(θ − T ′)2 = E

[
E

(
(θ − T ′)2

∣∣∣∣X)]
and, with θ being the random variable,

E

(
(θ − T ′)2

∣∣∣∣X) = E

(
(θ − T )2

∣∣∣∣X)+ (T − T ′)2 = var(θ|X) + (T − T ′)2.
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We conclude that if rw(T ′) = rw(T ), then

E(T − T ′)2 = 0.

Here, the expectation is with θ integrated out, i.e., with respect to the measure
P with density

p(x) =

∫
pϑ(x)w(ϑ)dµ(ϑ).

Now, we can write X = θ+ε, with θ N (c, τ2)-distributed, and with ε a standard
normal random variable independent of θ. So X is N (c, τ2 +1), that is, P is the
N (c, τ2 + 1)-distribution. Now, E(T − T ′)2 = 0 implies T = T ′ P -a.s.. Since
P dominates all Pθ, we conclude that T = T ′ Pθ-a.s., for all θ. So T is unique,
and hence admissible.
(⇐) (ii)
In this case, T = X. We use Lemma 5.2.2. Because R(θ, T ) = 1 for all θ, also
rw(T ) = 1 for any prior. Let wm be the density of the N (0,m)-distribution.
As we have seen in the previous part of the proof, the Bayes estimator is

Tm =
m

m+ 1
X.

By the bias-variance decomposition, it has risk

R(θ, Tm) =
m2

(m+ 1)2
+

(
m

m+ 1
− 1

)2

θ2 =
m2

(m+ 1)2
+

θ2

(m+ 1)2
.

As Eθ2 = m, its Bayes risk is

rwm(Tm) =
m2

(m+ 1)2
+

m

(m+ 1)2
=

m

m+ 1
.

It follows that

rwm(T )− rwm(Tm) = 1− m

m+ 1
=

1

m+ 1
.

So T is extended Bayes. But we need to prove the more refined property of
Lemma 5.2.2. It is clear that here, we only need to consider open intervals
U = (u, u+ h), with u and h > 0 fixed. We have

Πm(U) = Φ

(
u+ h√
m

)
− Φ

(
u√
m

)

=
1√
m
φ

(
u√
m

)
h+ o(1/

√
m).

For m large,

φ

(
u√
m

)
≈ φ(0) =

1√
2π

>
1

4
(say),

so for m sufficiently large (depending on u)

φ

(
u√
m

)
≥ 1

4
.
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Thus, for m sufficiently large (depending on u and h), we have

Πm(U) ≥ 1

4
√
m
h.

We conclude that for m sufficiently large

rwm(T )− rwm(Tm)

Πm(U)
≤ 4

h
√
m
.

As the right hand side converges to zero as m → ∞, this shows that X is
admissible.
(⇒)
We now have to show that if (i) or (ii) do not hold, then T is not admissible.
This means we have to consider two cases: a > 1 and a = 1, b 6= 0. In the
case a > 1, we have R(θ, aX + b) ≥ var(aX + b) > 1 = R(θ,X), so aX + b is
not admissible. When a = 1 and b 6= 0, it is the bias term that makes aX + b
inadmissible:

R(θ,X + b) = 1 + b2 > 1 = R(θ,X).

. tu

Lemma 5.2.3 Let θ ∈ Θ = R and {Pθ : θ ∈ Θ} be an exponential family in
canonical form:

pθ(x) = exp[θT (x)− d(θ)]h(x).

Then T is an admissible estimator of g(θ) := ḋ(θ), under quadratic loss (i.e.,
under the loss L(θ, a) := |a− g(θ)|2).

Proof. Recall that

ḋ(θ) = EθT, d̈(θ) = varθ(T ) = I(θ).

Now, let T ′ be some estimator, with expectation

EθT
′ := q(θ).

the bias of T ′ is
b(θ) = q(θ)− g(θ),

or
q(θ) = b(θ) + g(θ) = b(θ) + ḋ(θ).

This implies
q̇(θ) = ḃ(θ) + I(θ).

By the Cramer Rao lower bound

R(θ, T ′) = varθ(T
′) + b2(θ)

≥ [q̇(θ)]2

I(θ)
+ b2(θ) =

[ḃ(θ) + I(θ)]2

I(θ)
+ b2(θ).

Suppose now that
R(θ, T ′) ≤ R(θ, T ),∀ θ.
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Because R(θ, T ) = I(θ) this implies

[ḃ(θ) + I(θ)]2

I(θ)
+ b2(θ) ≤ I(θ),

or

I(θ){b2(θ) + 2ḃ(θ)} ≤ −[ḃ(θ)]2 ≤ 0.

This in turn implies

b2(θ) + 2ḃ(θ) ≤ 0,

and hence, b(θ) is decreasing and when b(θ) 6= 0,

ḃ(θ)

b2(θ)
≤ −1

2
,

so
d

dθ

(
1

b(θ)

)
− 1

2
≥ 0,

or
d

dθ

(
1

b(θ)
− θ

2

)
≥ 0.

In other words, 1/b(θ)− θ/2 is an increasing function.

We will now show that this gives a contradiction, implying that b(θ) = 0 for all
θ.

Suppose instead b(θ0) < 0 for some θ0. Then also b(ϑ) < 0 for all ϑ > θ0 since
b(·) is decreasing. It follows that

1

b(ϑ)
≥ 1

b(θ0)
+
ϑ− θ0

2
→∞, ϑ→∞

i.e.,

b(ϑ)→ 0, ϑ→∞.

This is not possible, as b(θ) is a decreasing function.

Similarly, if b(θ0) > 0, take θ0 ≥ ϑ→ −∞, to find again

b(ϑ)→ 0, ϑ→ −∞,

which is not possible.

We conclude that b(θ) = 0 for all θ, i.e., T ′ is an unbiased estimator of θ. By
the Cramer Rao lower bound, we now conclude

R(θ, T ′) = varθ(T
′) ≥ R(θ, T ) = I(θ).

tu

Example Let X be N (θ, 1)-distributed, with θ ∈ R unknown. Then X is an
admissible estimator of θ.
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Example Let X be N (0, σ2), with σ2 ∈ (0,∞) unknown. Its density is

pθ(x) =
1√

2πσ2
exp

[
− x2

2σ2

]
= exp[θT (x)− d(θ)]h(x),

with

T (x) = −x2/2, θ = 1/σ2, d(θ) = (log σ2)/2 = −(log θ)/2,

ḋ(θ) = − 1

2θ
= −σ

2

2
,

d̈(θ) =
1

2θ2
=
σ4

2
.

Observe that θ ∈ Θ = (0,∞), which is not the whole real line. So Lemma 5.2.3
cannot be applied. We will now show that T is not admissible. Define for all
a > 0,

Ta := −aX2.

so that T = T1/2. We have

R(θ, Ta) = varθ(Ta) + bias2
θ(Ta)

= 2a2σ4 + [a− 1/2]2σ4.

Thus, R(θ, Ta) is minimized at a = 1/6 giving

R(θ, T1/6) = σ4/6 < σ4/2 = R(θ, T ).

5.3 Inadmissibility in higher-dimensional settings

Let (for i = 1, . . . , p) Xi ∼ N (θi, 1) and let X1, . . . , Xp be independent. The
vector θ := (θ1, . . . , θp) ∈ Rp is unknown. For an estimator T = (T1, . . . , Tp) ∈
Rp, we define the risk

R(θ, T ) :=

p∑
i=1

Eθ(Ti − θi)2.

Note that R(θ,X) = p where X := (X1, . . . , Xp). One can moreover show
(in a similar way as for the case p = 1) that X is minimax, extended Bayes,
UMRE and that is reaches the Cramer-Rao lower bound. But for p > 2, X is
inadmissible. This follows from the lemma below, which shows that X can be
improved by Stein’s estimator. We use the notation ‖X‖2 :=

∑p
i=1X

2
i .

Definition Let p > 2 and let 0 < b < 2(p − 2) be some constant. Stein’s
estimator is

T ∗ :=

(
1− b

‖X‖2

)
X.
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Lemma We have

R(θ, T ∗) = p−
[
2b(p− 2)− b2

]
Eθ

1

‖X‖2
.

Proof. We first calculate

Eθ(T
∗
i − θi)2 = Eθ

[(
1− b

‖X‖2

)
Xi − θi

]2

= Eθ

[
(Xi − θi)−

b

‖X‖2
Xi

]2

= Eθ

[
(Xi − θi)2 + b2

X2
i

‖X‖4
− 2b

Xi(Xi − θi)
‖X‖2

]
= 1 + b2Eθ

X2
i

‖X‖4
− 2bEθ

Xi(Xi − θi)
‖X‖2

.

Consider now the expectation in the last term, with i = 1 (say):

Eθ
X1(X1 − θ1)

‖X‖2
=

∫
x1(x1 − θ1)

‖x‖2
p∏
i=1

{
φ(xi − θi)dxi

}

=

∫
x1(x1 − θ1)

‖x‖2
φ(x1 − θ1)dx1

p∏
i=2

{
φ(xi − θi)dxi

}

= −
∫

x1

‖x‖2
dφ(x1 − θ1)

p∏
i=2

{
φ(xi − θi)dxi

}

=

∫
φ(x1 − θ1)d

(
x1

‖x‖2

) p∏
i=2

{
φ(xi − θi)dxi

}

=

∫
φ(x1 − θ1)

(
1

‖x‖2
− 2

x2
1

‖x‖4

)
dx1

p∏
i=2

{
φ(xi − θi)dxi

}

=

∫ (
1

‖x‖2
− 2

x2
1

‖x‖4

) p∏
i=1

{
φ(xi − θi)dxi

}

= Eθ

[
1

‖X‖2
− 2

X2
1

‖X‖4

]
.

The same calculation can be done for all other i. Inserting the result in our
formula for Eθ(T

∗
i − θi)2 gives

Eθ(T
∗
i − θi)2 = 1 + b2Eθ

X2
i

‖X‖4
− 2bEθ

[
1

‖X‖2
− 2

X2
i

‖X‖4

]

= 1 + (b2 + 4b)Eθ
X2
i

‖X‖4
− 2bEθ

1

‖X‖2
.
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It follows that

R(θ, T ∗) = p+ (b2 + 4b)Eθ

∑p
i=1X

2
i

‖X‖4
− 2bpEθ

1

‖X‖2

= p−
[
2b(p− 2)− b2

]
Eθ

1

‖X‖2
.

tu

We thus have the surprising fact that Stein’s estimator of θi uses also the
observations Xj with j 6= i, even though these observations are independent of
Xi and have a distribution which does not depend on θi.

Note that [2b(p − 2) − b2] is maximized for b = p − 2. So the value b = p − 2
gives the maximal improvement over X. Stein’s estimator is then

T ∗ =

[
1− p− 2

‖X‖2

]
X.

Remark It turns out that Stein’s estimator is also inadmissible!

Remark Let g(θ) := Eθ1/‖X‖2. One can show that g(0) = 1/(p − 2). More-
over, g(θ) ↓ 0 as ‖θ‖ ↑ ∞, so R(θ, T ∗) ≈ R(θ,X) for ‖θ‖ large.

Remark Let us take an empirical Bayesian point of view. Suppose θ1, . . . , θp
are i.i.d. with the N (0, τ2)-distribution. If τ2 is known, Bayes estimator is

Ti,Bayes =
τ2

1 + τ2
Xi, i = 1, . . . , p

(see Example 5.2.1). Given θi, Xi ∼ N (θi, 1) (i = 1, . . . , p). So uncondi-
tionally, Xi ∼ N (0, 1 + τ2) (i = 1, . . . , p). Thus, unconditionally, X1, . . . , Xp

are identically distributed, each having the N (0, σ2)-distribution with σ2 =
1 + τ2. As estimator of the variance σ2 we may use the the sample version
σ̂2 :=

∑p
i=1X

2
i /p = ‖X‖2/p (we need not center with the sample average as

the unconditional mean of the Xi is known to be zero). That is, we estimate
τ2 by

τ̂2 := σ̂2 − 1 = ‖X‖2/p− 1.

This leads to the empirical Bayes estimator

Ti,emp. Bayes :=
τ̂2

1 + τ̂2
X =

[
1− p

‖X‖2

]
X.

This shows that when p > 4, then Stein’s estimator with b = p is an empirical
Bayes estimator.



Chapter 6

Asymptotic theory

In this chapter, the observations X1, . . . , Xn are considered as the first n of
an infinite sequence of i.i.d. random variables X1, . . . , Xn, . . . with values in X
and with distribution P . We say that the Xi are i.i.d. copies, of some random
variable X ∈ X with distribution P . We let IP = P ×P ×· · · be the distribution
of the whole sequence {Xi}∞i=1.

The model class for P is P := {Pθ : θ ∈ Θ}. When P = Pθ, we write
IP = IPθ = Pθ × Pθ × · · ·. The parameter of interest is

γ := g(θ) ∈ Rp,

where g : Θ→ Rp is a given function. We let

Γ := {g(θ) : θ ∈ Θ}

be the parameter space for γ.

An estimator of γ, based on the data X1, . . . , Xn, is some function Tn =
Tn(X1, . . . , Xn) of the data. We assume the estimator is defined for all n,
i.e., we actually consider a sequence of estimators {Tn}∞n=1.

Remark Under the i.i.d. assumption, it is natural to assume that each Tn is a
symmetric function of the data, that is

Tn(X1, . . . , Xn) = Tn(Xπ1 , . . . Xπn)

for all permutations π of {1, . . . , n}. In that case, one can write Tn in the form
Tn = Q(P̂n), where P̂n is the empirical distribution (see also Subsection 1.9.1).

6.1 Types of convergence

Definition Let {Zn}∞n=1 and Z be Rp-valued random variables defined on the
same probability space.1 We say that Zn converges in probability to Z if for all

1Let (Ω,A, IP) be a probability space, and X : Ω→ X and Y : Ω→ Y be two measurable
maps. ThenX and Y are called random variables, and they are defined on the same probability
space Ω.

107
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ε > 0,

lim
n→∞

IP(‖Zn − Z‖ > ε) = 0.

Notation: Zn
IP−→Z.

Remark Chebyshev’s inequality can be a tool to prove convergence in proba-
bility. It says that for all increasing functions ψ : [0,∞)→ [0,∞), one has

IP(‖Zn − Z‖ ≥ ε) ≤
IEψ(‖Zn − Z‖)

ψ(ε)
.

Definition Let {Zn}∞n=1 and Z be Rp-valued random variables. We say that
Zn converges in distribution to Z, if for all continuous and bounded functions
f ,

lim
n→∞

IEf(Zn) = IEf(Z).

Notation: Zn
D−→Z.

Remark Convergence in probability implies convergence in distribution, but
not the other way around.

Example Let X1, X2, . . . be i.i.d. real-valued random variables with mean µ
and variance σ2. Let X̄n :=

∑n
i=1Xi/n be the average of the first n. Then by

the central limit theorem (CLT),

√
n(X̄n − µ)

D−→N (0, σ2),

that is

IP

(√
n

(X̄n − µ)

σ
≤ z
)
→ Φ(z), ∀ z.

The following theorem says that for convergence in distribution, one actually
can do with one-dimensional random variables. We omit the proof.

Theorem 6.1.1 (Cramér-Wold device) Let ({Zn}, Z) be a collection of Rp-
valued random variables. Then

Zn
D−→Z ⇔ aTZn

D−→aTZ ∀ a ∈ Rp.

Example LetX1, X2, . . . be i.i.d. copies of a random variableX = (X(1), . . . , X(p))T

in Rp. Assume EX := µ = (µ1, . . . , µp)
T and Σ := Cov(X) := EXXT − µµT

exist. Then for all a ∈ Rp,

EaTX = aTµ, var(aTX) = aTΣa.

Define

X̄n = (X̄(1)
n , . . . , X̄(p)

n )T .
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By the 1-dimensional CLT, for all a ∈ Rp,

√
n(aT X̄n − aTµ)

D−→N (0, aTΣa).

The Cramér-Wold device therefore gives the p-dimensional CLT

√
n(X̄n − µ)

D−→N (0,Σ).

We recall the Portmanteau Theorem:

Theorem 6.1.2 Let ({Zn}, Z) be a collection of Rp-valued random variables.
Denote the distribution of Z by Q and let G = Q(Z ≤ ·) be its distribution
function. The following statements are equivalent:

(i) Zn
D−→Z (i.e., IEf(Zn)→ IEf(Z) ∀ f bounded and continuous).

(ii) IEf(Zn)→ IEf(Z) ∀ f bounded and Lipschitz.2

(iii) IEf(Zn)→ IEf(Z) ∀ f bounded and Q-a.s. continuous.
(iv) IP(Zn ≤ z)→ G(z) for all G-continuity points z.

6.1.1 Stochastic order symbols

Let {Zn} be a collection of Rp-valued random variables, and let {rn} be strictly
positive random variables. We write

Zn = OIP(1)

(Zn is bounded in probability) if

lim
M→∞

lim sup
n→∞

IP(‖Zn‖ > M) = 0.

This is also called uniform tightness of the sequence {Zn}. We write Zn =
OIP(rn) if Zn/rn = OIP(1).

If Zn converges in probability to zero, we write this as

Zn = oIP(1).

Moreover, Zn = oIP(rn) (Zn is of small order rn in probability) if Zn/rn = oIP(1).

6.1.2 Some implications of convergence

Lemma 6.1.1 Suppose that Zn converges in distribution. Then Zn = OIP(1).

2A real-valued function f on (a subset of) Rp is Lipschitz if for a constant C and all (z, z̃)
in the domain of f , |f(z)− f(z̃)| ≤ C‖z − z̃‖.
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Proof. To simplify, take p = 1 (Cramér-Wold device). Let Zn
D−→Z, where Z

has distribution function G. Then for every G-continuity point M ,

IP(Zn > M)→ 1−G(M),

and for every G-continuity point −M ,

IP(Zn ≤ −M)→ G(−M).

Since 1 − G(M) as well as G(−M) converge to zero as M → ∞, the result
follows. tu

Example Let X1, X2, . . . be i.i.d. copies of a random variable X ∈ R with
EX = µ and var(X) <∞. Then by the CLT,

X̄n − µ = OIP

(
1√
n

)
.

Theorem 6.1.3 (Slutsky) Let ({Zn, An}, Z) be a collection of Rp-valued ran-

dom variables, and a ∈ Rp be a vector of constants. Assume that Zn
D−→Z,

An
IP−→a. Then

ATnZn
D−→aTZ.

Proof. Take a bounded Lipschitz function f , say

|f | ≤ CB, |f(z)− f(z̃)| ≤ CL‖z − z̃‖.

Then ∣∣∣∣IEf(ATnZn)− IEf(aTZ)

∣∣∣∣
≤
∣∣∣∣IEf(ATnZn)− IEf(aTZn)

∣∣∣∣+

∣∣∣∣IEf(aTZn)− IEf(aTZ)

∣∣∣∣.
Because the function z 7→ f(aT z) is bounded and Lipschitz (with Lipschitz
constant ‖a‖CL), we know that the second term goes to zero. As for the first
term, we argue as follows. Let ε > 0 and M > 0 be arbitrary. Define Sn :=
{‖Zn‖ ≤M, ‖An − a‖ ≤ ε}. Then∣∣∣∣IEf(ATnZn)− IEf(aTZn)

∣∣∣∣ ≤ IE

∣∣∣∣f(ATnZn)− f(aTZn)

∣∣∣∣
= IE

∣∣∣∣f(ATnZn)− f(aTZn)

∣∣∣∣l{Sn}+ IE

∣∣∣∣f(ATnZn)− f(aTZn)

∣∣∣∣l{Scn}
≤ CLεM + 2CBIP(Scn). (6.1)

Now
IP(Scn) ≤ IP(‖Zn‖ > M) + IP(‖An − a‖ > ε).

Thus, both terms in (6.1) can be made arbitrary small by appropriately choosing
ε small and n and M large. tu
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6.2 Consistency and asymptotic normality

Definition A sequence of estimators {Tn} of γ = g(θ) is called consistent if

Tn
IPθ−→γ.

Definition A sequence of estimators {Tn} of γ = g(θ) is called asymptotically
normal with asymptotic covariance matrix Vθ, if

√
n(Tn − γ)

Dθ−→N (0, Vθ).

Example Suppose P is the location model

P = {Pµ,F0(X ≤ ·) := F0(· − µ), µ ∈ R, F0 ∈ F0}.

The parameter is then θ = (µ, F0) and Θ = R×F0. We assume for all F0 ∈ F0∫
xdF0(x) = 0, σ2

F0
:=

∫
x2dF0(x) <∞.

Let g(θ) := µ and Tn := (X1 + · · · + Xn)/n = X̄n. Then Tn is a consistent
estimator of µ and, by the central limit theorem

√
n(Tn − µ)

Dθ−→N (0, σ2
F0

).

6.2.1 Asymptotic linearity

As we will show, for many estimators, asymptotic normality is a consequence
of asymptotic linearity, that is, the estimator is approximately an average, to
which we can apply the CLT.

Definition The sequence of estimators {Tn} of γ = g(θ) is called asymptoti-
cally linear if for a function lθ : X → Rp, with Eθlθ(X) = 0 and

Eθlθ(X)lTθ (X) := Vθ <∞,

it holds that

Tn − γ =
1

n

n∑
i=1

lθ(Xi) + oIPθ(n
−1/2).

Remark. We then call lθ the influence function of (the sequence) Tn. Roughly
speaking, lθ(x) approximately measures the influence of an additional observa-
tion x.

Example Assuming the entries of X have finite variance, the estimator Tn :=
X̄n is a linear and hence asymptotically linear estimator of the mean µ, with
influence function

lθ(x) = x− µ.
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Example 6.2.1 Let X be real-valued, with EθX := µ, varθ(X) := σ2 and
κ := Eθ(X − µ)4 (assumed to exist). Consider the estimator

σ̂2
n :=

1

n

n∑
i=1

(Xi − X̄n)2,

of σ2. We rewrite

σ̂2
n =

1

n

n∑
i=1

(Xi − µ)2 + (X̄n − µ)2 − 2

n

n∑
i=1

(Xi − µ)(X̄n − µ)

=
1

n

n∑
i=1

(Xi − µ)2 − (X̄n − µ)2.

Because by the CLT, X̄n − µ = OIPθ(n
−1/2), we get

σ̂2
n =

1

n

n∑
i=1

(Xi − µ)2 +OIPθ(1/n).

So σ̂2
n is asymptotically linear with influence function

lθ(x) = (x− µ)2 − σ2.

The asymptotic variance is

Vθ = Eθ

(
(X − µ)2 − σ2

)2

= κ− σ4.

6.2.2 The δ-technique

Theorem 6.2.1 Let ({Tn}, Z) be a collection of random variables in Rp, c ∈ Rp
be a nonrandom vector, and {rn} be a nonrandom sequence of positive numbers,
with rn ↓ 0. Moreover, let h : Rp → R be differentiable at c, with derivative
ḣ(c) ∈ Rp. Suppose that

(Tn − c)/rn
D−→Z.

Then

(h(Tn)− h(c))/rn
D−→ḣ(c)TZ.

Proof. By Slutsky’s Theorem,

ḣ(c)T (Tn − c)/rn
D−→ḣ(c)TZ.

Since (Tn−c)/rn converges in distribution, we know that ‖Tn−c‖/rn = OIP(1).
Hence, ‖Tn − c‖ = OIP(rn). The result follows now from

h(Tn)− h(c) = ḣ(c)T (Tn − c) + o(‖Tn − c‖) = ḣ(c)T (Tn − c) + oIP(rn).

tu
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Corollary 6.2.1 Let Tn be an asymptotically linear estimator of γ := g(θ),
with influence function lθ and asymptotic covariance matrix Vθ. Suppose h is
differentiable at γ. Then it follows in the same way as in the previous theorem,
that h(Tn) is an asymptotically linear estimator of h(γ), with influence function
ḣ(γ)T lθ and asymptotic variance ḣ(γ)TVθḣ(γ).

Example 6.2.2 Let X1, . . . , Xn be a sample from the Exponential(θ) distri-
bution, with θ > 0. Then X̄n is a linear estimator of EθX = 1/θ := γ, with
influence function lθ(x) = x− 1/θ. The variance of

√
n(Tn − 1/θ) is 1/θ2 = γ2.

Thus, 1/X̄n is an asymptotically linear estimator of θ. In this case, h(γ) = 1/γ,
so that ḣ(γ) = −1/γ2. The influence function of 1/X̄n is thus

ḣ(γ)lθ(x) = − 1

γ2
(x− γ) = −θ2(x− 1/θ).

The asymptotic variance of 1/X̄n is

[ḣ(γ)]2γ2 =
1

γ2
= θ2.

So
√
n

(
1

X̄n
− θ
)

Dθ−→N (0, θ2).

Example 6.2.3 Consider again Example 6.2.1. Let X be real-valued, with
EθX := µ, varθ(X) := σ2 and κ := Eθ(X − µ)4 (assumed to exist). Define
moreover, for r = 1, 2, 3, 4, the r-th moment µr := EθX

r. We again consider
the estimator

σ̂2
n :=

1

n

n∑
i=1

(Xi − X̄n)2.

We have

σ̂2
n = h(Tn),

where Tn = (Tn,1, Tn,2)T , with

Tn,1 = X̄n, Tn,2 =
1

n

n∑
i=1

X2
i ,

and

h(t) = t2 − t21, t = (t1, t2)T .

The estimator Tn has influence function

lθ(x) =

(
x− µ1

x2 − µ2

)
.

By the 2-dimensional CLT,

√
n

(
Tn −

(
µ1

µ2

))
Dθ−→N (0,Σ),
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with

Σ =

(
µ2 − µ2

1 µ3 − µ1µ2

µ3 − µ1µ2 µ4 − µ2
2

)
.

It holds that

ḣ

((
µ1

µ2

))
=

(
−2µ1

1

)
,

so that σ̂2
n has influence function(

−2µ1

1

)T (
x− µ1

x2 − µ2

)
= (x− µ)2 − σ2,

(invoking µ1 = µ). After some calculations, one finds moreover that(
−2µ1

1

)T
Σ

(
−2µ1

1

)
= κ− σ4,

i.e., the δ-method gives the same result as the ad hoc method in Example 6.2.1,
as it of course should.

6.3 M-estimators

Let, for each γ ∈ Γ, be defined some loss function ργ(X). These are for instance
constructed as in Chapter 2: we let L(θ, a) be the loss when taking action a.
Then, we fix some decision d(x), and rewrite

L(θ, d(x)) := ργ(x),

assuming the loss L depends only on θ via the parameter of interest γ = g(θ).

We now require that the risk

Eθρc(X)

is minimized at the value c = γ i.e.,

γ = arg min
c∈Γ

Eθρc(X). (6.2)

Alternatively, given ρc, one may view (6.2) as the definition of γ.

If c 7→ ρc(x) is differentiable for all x, we write

ψc(x) := ρ̇c(x) :=
∂

∂c
ρc(x).

Then, assuming we may interchange differentiation and taking expectations 3 ,
we have

Eθψγ(X) = 0.

3If |∂ρc/∂c| ≤ H(·) where EθH(X) <∞, then it follows from the dominated convergence
theorem that ∂[Eθρc(X)]/∂c = Eθ[∂ρc(X)/∂c].
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Example 6.3.1 Let X ∈ R, and let the parameter of interest be the mean
µ = EθX. Assume X has finite variance σ2 Then

µ = arg min
c
Eθ(X − c)2,

as (recall), by the bias-variance decomposition

Eθ(X − c)2 = σ2 + (µ− c)2.

So in this case, we can take

ρc(x) = (x− c)2.

Example 6.3.2 Suppose Θ ⊂ Rp and that the densities pθ = dPθ/dν exist
w.r.t. some σ-finite measure ν.

Definition The quantity

K(θ̃|θ) = Eθ log

(
pθ(X)

pθ̃(X)

)
is called the Kullback Leibler information, or the relative entropy.

Remark Some care has to be taken, not to divide by zero! This can be handled
e.g., by assuming that the support {x : pθ(x) > 0} does not depend on θ (see
also condition I in the CRLB of Chapter 3).

Define now

ρθ(x) = − log pθ(x).

One easily sees that

K(θ̃|θ) = Eθρθ̃(X)− Eθρθ(X).

Lemma Eθρθ̃(X) is minimized at θ̃ = θ:

θ = arg min
θ̃
Eθρθ̃(X).

Proof. We will show that

K(θ̃|θ) ≥ 0.

This follows from Jensen’s inequality. Since the log-function is concave,

K(θ̃|θ) = −Eθ log

(
pθ̃(X)

pθ(X)

)
≥ − log

(
Eθ

(
pθ̃(X)

pθ(X)

))
= − log 1 = 0.

tu
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Definition The M-estimator γ̂n of γ is defined as

γ̂n := arg min
c∈Γ

1

n

n∑
i=1

ρc(Xi).

The “M” in “M-estimator” stands for Minimizer (or - take minus signs - Max-
imizer).

If ρc(x) is differentiable in c for all x, we generally can define γ̂n as the solution
of putting the derivatives

∂

∂c

n∑
i=1

ρc(Xi) =
n∑
i=1

ψc(Xi)

to zero. This is called the Z-estimator.

Definition The Z-estimator γ̂n of γ is defined as a solution of the equations

1

n

n∑
i=1

ψγ̂n(Xi) = 0.

Remark A solution γ̂n ∈ Γ is then assumed to exist.

6.3.1 Consistency of M-estimators

Note that γ minimizes a theoretical expectation, whereas the M-estimator γ̂n
minimizes the empirical average. Likewise, γ is a solution of putting a theoret-
ical expectation to zero, whereas the Z-estimator γ̂n is the solution of putting
an empirical average to zero.

By the law of large numbers, averages converge to expectations. So the M-
estimator (Z-estimator) does make sense. However, consistency and further
properties are not immediate, because we actually need convergence the aver-
ages to expectations over a range of values c ∈ Γ simultaneously. This is the
topic of empirical process theory.

We will borrow the notation from empirical process theory. That is, for a
function f : X → Rr, we let

Pθf := Eθf(X), P̂nf :=
1

n

n∑
i=1

f(Xi).

Then, by the law of large numbers, if Pθ|f | <∞,

(P̂n − Pθ)f → 0, IPθ−a.s..

We will need that convergence of to the minimum value also implies convergence
of the arg min, i.e., convergence of the location of the minimum. To this end,
we present the following definition.



6.3. M-ESTIMATORS 117

Definition The minimizer γ of Pθρc is called well-separated if for all ε > 0,

inf{Pθρc : c ∈ Γ, ‖c− γ‖ > ε} > Pθργ .

Theorem 6.3.1 Suppose the uniform convergence

sup
c∈Γ
|(P̂n − Pθ)ρc| → 0, Pθ−a.s..

Then

Pθργ̂n → Pθργ , IPθ−a.s..

If γ is well-separated, this implies γ̂n → γ, IPθ-a.s..

Proof. The uniform convergence implies

0 ≤ Pθ(ργ̂n − ργ) = −(P̂n − Pθ)(ργ̂n − ργ) + P̂n(ργ̂n − ργ)

≤ −(P̂n − Pθ)(ργ̂n − ργ) ≤ |(P̂n − Pθ)ργ̂n |+ |(P̂n − Pθ)ργ |

≤ sup
c∈Γ
|(P̂n − Pθ)ρc|+ |(P̂n − Pθ)ργ | ≤ 2 sup

c∈Γ
|(P̂n − Pθ)ρc|.

The second result of the theorem follows immediately from this and the well-
separated-ness. tu

In the next lemma, we give sufficient conditions for the uniform in c conver-
gence of the empirical risk P̂nρc to the theoretical risk Pθρc. Consistency of
the M-estimator is then an easy consequence, as was shown in Theorem 6.3.1.
(For consistency the assumption of a compact parameter space Γ can often be
omitted if c 7→ ρc is convex. We skip the details.)

Lemma 6.3.1 Suppose that Γ is compact, that c 7→ ρc(x) is continuous for all
x, and that

Pθ

(
sup
c∈Γ
|ρc|
)
<∞.

Then we have the uniform convergence

sup
c∈Γ
|(P̂n − Pθ)ρc| → 0, Pθ−a.s.. (6.3)

Proof. Define for each δ > 0 and c ∈ Γ,

w(·, δ, c) := sup
c̃∈Γ: ‖c̃−c‖<δ

|ρc̃ − ρc|.

Then for all x, as δ ↓ 0,

w(x, δ, c)→ 0.

So also, by dominated convergence

Pθw(·, δ, c)→ 0.
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Hence, for all ε > 0, there exists a δc such that

Pθw(·, δc, c) ≤ ε.

Let
Bc := {c̃ ∈ Γ : ‖c̃− c‖ < δc}.

Then {Bc : c ∈ Γ} is a covering of Γ by open sets. Since Γ is compact, there
exists finite sub-covering

Bc1 . . . BcN .

For c ∈ Bcj ,
|ρc − ρcj | ≤ w(·, δcj , cj).

It follows that
sup
c∈Γ
|(P̂n − Pθ)ρc| ≤ max

1≤j≤N
|(P̂n − Pθ)ρcj |

+ max
1≤j≤N

P̂nw(·, δcj , cj) + max
1≤j≤N

Pθw(·, δcj , cj)

→ 2 max
1≤j≤N

Pθw(·, δcj , cj) ≤ 2ε, IPθ−a.s..

tu

Example The above theorem directly uses the definition of the M-estimator,
and thus does not rely on having an explicit expression available. Here is
an example where an explicit expression is indeed not possible. Consider the
logistic location family, where the densities are

pθ(x) =
ex−θ

(1 + ex−θ)2
, x ∈ R,

where θ ∈ Θ ⊂ R is the location parameter. Take

ρθ(x) := − log pθ(x) = θ − x+ 2 log(1 + ex−θ).

So θ̂n is a solution of

2

n

n∑
i=1

eXi−θ̂n

1 + eXi−θ̂n
= 1.

This expression cannot be made into an explicit expression. However, we do
note the caveat that in order to be able to apply the above consistency theorem,
we need to assume that Θ is bounded. This problem can be circumvented by
using the result below for Z-estimators.

To prove consistency of a Z-estimator of a one-dimensional parameter is rela-
tively easy.

Theorem 6.3.2 Assume that Γ ⊂ R, that ψc(x) is continuous in c for all x,
that

Pθ|ψc| <∞, ∀c,

and that ∃ δ > 0 such that

Pθψc > 0, γ < c < γ + δ,
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Pθψc < 0, γ − δ < c < γ.

Then for n large enough, IPθ-a.s., there is a solution γ̂n of P̂nψγ̂n = 0, and this
solution γ̂n is consistent.

Proof. Let 0 < ε < δ be arbitrary. By the law of large numbers, for n
sufficiently large, IPθ-a.s.,

P̂nψγ+ε > 0, P̂nψγ−ε < 0.

The continuity of c 7→ ψc implies that then P̂nψγ̂n = 0 for some |γn − γ| < ε. tu

6.3.2 Asymptotic normality of M-estimators

Recall the CLT: for each f : X → Rr for which

Σ := Pθff
T − (Pθf)(Pθf)T

exists, we have
√
n(P̂n − Pθ)f

Dθ−→N (0,Σ).

Denote now

νn(c) :=
√
n(P̂n − Pθ)ψc, c ∈ Γ.

Definition The stochastic process

{νn(c) : c ∈ Γ}

is called the empirical process indexed by c. The empirical process is called
asymptotically continuous at γ if for all (possibly random) sequences {γn} in
Γ, with ‖γn − γ‖ = oIPθ(1), we have

|νn(γn)− νn(γ)| = oIPθ(1).

For verifying asymptotic continuity, there are various tools, which involve com-
plexity assumptions on the map c 7→ ψc. This goes beyond the scope of these
notes. Asymptotic linearity can also be established directly, under rather re-
strictive assumptions, see Theorem 6.3.4 below. But first, let us see what
asymptotic continuity can bring us.

We assume that

Mθ :=
∂

∂cT
Pθψc

∣∣∣∣
c=γ

exists. It is a p× p matrix. We require it to be of full rank, which amounts to
assuming that γ, as a solution to Pθψγ = 0, is well-identified.
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Theorem 6.3.3 Let γ̂n be the Z-estimator of γ, and suppose that γ̂n is a con-
sistent estimator of γ, and that νn is asymptotically continuous at γ. Suppose
moreover M−1

θ exists, and also

Jθ := Pθψγψ
T
γ .

Then γ̂n is asymptotically linear, with influence function

lθ = −M−1
θ ψγ .

Hence
√
n(γ̂n − γ)

Dθ−→N (0, Vθ),

with
Vθ = M−1

θ JθM
−1
θ .

Proof. By definition,
P̂nψγ̂n = 0, Pθψγ = 0.

So we have
0 = P̂nψγ̂n = (P̂n − Pθ)ψγ̂n + Pθψγ̂n

= (P̂n − Pθ)ψγ̂n + Pθ(ψγ̂n − ψγ)

= (i) + (ii).

For the first term, we use the asymptotic continuity of νn at γ:

(i) = (P̂n − Pθ)ψγ̂n = νn(γ̂n)/
√
n = νn(γ)/

√
n+ oIPθ(1/

√
n)

= P̂nψγ + oIPθ(1/n).

For the second term, we use the differentiability of Pθψc at c = γ:

(ii) = Pθ(ψγ̂n − ψγ) = M(γ̂n − γ) + o(‖γn − γ‖).

So we arrive at

0 = P̂nψγ + oIPθ(1/n) +M(γ̂n − γ) + o(‖γn − γ‖).

Because, by the CLT, P̂nψγ = OIPθ(1/
√
n), this implies ‖γ̂n−γ‖ = OIPθ(1/

√
n).

Hence
0 = P̂nψγ +M(γ̂n − γ) + oIPθ(1/

√
n),

or
M(γ̂n − γ) = −P̂nψγ + oIPθ(1/

√
n),

or
(γ̂n − γ) = −P̂nM−1ψγ + oIPθ(1/

√
n).

tu

In the next theorem, we assume quite a lot of smoothness for the functions
ψc (namely, derivatives that are Lipschitz), so that asymptotic linearity can be
proved by straightforward arguments. We stress however that such smoothness
assumptions are by no means necessary.
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Theorem 6.3.4 Let γ̂n be the Z-estimator of γ, and suppose that γ̂n is a consis-
tent estimator of γ. Suppose that, for all c in a neighborhood {c ∈ Γ : ‖c−γ‖ <
ε}, the map c 7→ ψc(x) is differentiable for all x, with derivative

ψ̇c(x) =
∂

∂cT
ψc(x)

(a p × p matrix). Assume moreover that, for all c and c̃ in a neighborhood of
γ, and for all x, we have, in matrix-norm4,

‖ψ̇c(x)− ψ̇c̃(x)‖ ≤ H(x)‖c− c̃‖,

where H : X → R satisfies
PθH <∞.

Then

Mθ =
∂

∂cT
Pθψc

∣∣∣∣
c=γ

= Pθψ̇γ . (6.4)

Assuming M−1 and J := Eθψγψ
T
γ exist, the influence function of γ̂n is

lθ = −M−1
θ ψγ .

Proof. Result (6.4) follows from the dominated convergence theorem.

By the mean value theorem,

0 = P̂nψγ̂n = P̂nψγ + P̂nψ̇γ̃n(·)(γ̂n − γ)

where for all x, ‖γ̃n(x)− γ‖ ≤ ‖γ̂n − γ‖. Thus

0 = P̂nψγ + P̂nψ̇γ(γ̂n − γ) + P̂n(ψ̇γ̃n(·) − ψ̇γ)(γ̂n − γ),

so that ∣∣∣∣P̂nψγ + P̂nψ̇γ(γ̂n − γ)

∣∣∣∣ ≤ P̂nH‖γ̂n − γ‖2 = OIPθ(1)‖γ̂n − γ‖2,

where in the last inequality, we used PθH < ∞. Now, by the law of large
numbers,

P̂nψ̇γ = Pθψ̇γ + oIPθ(1) = Mθ + oIPθ(1).

Thus ∣∣∣∣P̂nψγ +Mθ(γ̂n − γ) + oIPθ(‖γ̂n − γ‖)
∣∣∣∣ = OIPθ(‖γ̂n − γ‖

2).

Because P̂nψγ = OIPθ(1/
√
n), this ensures that ‖γ̂n − γ‖ = OIPθ(1/

√
n). It

follows that ∣∣∣∣P̂nψγ +Mθ(γ̂n − γ) + oIPθ(1/
√
n)

∣∣∣∣ = OIPθ(1/n).

4For a matrix A, ‖A‖ := supv 6=0 ‖Av‖/‖v‖.
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Hence
Mθ(γ̂n − γ) = −P̂nψγ + oIPθ(1/

√
n)

and so
(γ̂n − γ) = −P̂nM−1

θ ψγ + oIPθ(1/
√
n).

tu

Example 6.3.3 In this example, we show that, under regularity conditions, the
MLE is asymptotically normal with asymptotic covariance matrix the inverse
of the Fisher-information matrix I(θ). Let P = {Pθ : θ ∈ Θ} be dominated
by a σ-finite dominating measure ν, and write the densities as pθ = dPθ/dν.
Suppose that Θ ⊂ Rp. Assume condition I, i.e. that the support of pθ does not
depend on θ. As loss we take minus the log-likelihood:

ρθ := − log pθ.

We suppose that the score function

sθ =
∂

∂θ
log pθ =

ṗθ
pθ

exists, and that we may interchange differentiation and integration, so that the
score has mean zero.

Pθsθ =

∫
ṗθdν =

∂

∂θ

∫
pθdν =

∂

∂θ
1 = 0.

Recall that the Fisher-information matrix is

I(θ) := Pθsθs
T
θ .

Now, it is clear that ψθ = −sθ, and, assuming derivatives exist and that again
we may change the order of differentiation and integration,

Mθ = Pθψ̇θ = −Pθṡθ,

and

Pθṡθ = Pθ

(
p̈θ
pθ
− sθsTθ

)
=

(
∂2

∂θ∂θT
1

)
− PθsθsTθ

= 0− I(θ).

Hence, in this case, Mθ = −I(θ), and the influence function of the MLE

θ̂n := arg max
θ̃∈Θ

P̂n log pθ̃

is
lθ = I(θ)−1sθ.

So the asymptotic covariance matrix of the MLE θ̂n is

I(θ)−1

(
Pθsθs

T
θ

)
I(θ)−1 = I(θ)−1.
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Example 6.3.4 In this example, the parameter of interest is the α-quantile.
We will consider a loss function which does not satisfy regularity conditions,
but nevertheless leads to an asymptotically linear estimator.

Let X := R. The distribution function of X is denoted by F . Let 0 < α < 1
be given. The α-quantile of F is γ = F−1(α) (assumed to exist). We moreover
assume that F has density f with respect to Lebesgue measure, and that f(x) >
0 in a neighborhood of γ. As loss function we take

ρc(x) := ρ(x− c),

where
ρ(x) := (1− α)|x|l{x < 0}+ α|x|l{x > 0}.

We now first check that

arg min
c

Pθρc = F−1(α) := γ.

We have
ρ̇(x) = αl{x > 0} − (1− α)l{x < 0}.

Note that ρ̇ does not exist at x = 0. This is one of the irregularities in this
example.

It follows that
ψc(x) = −αl{x > c}+ (1− α){x < c}.

Hence
Pθψc = −α+ F (c)

(the fact that ψc is not defined at x = c can be shown not to be a problem,
roughly because a single point has probability zero, as F is assumed to be
continuous). So

Pθψγ = 0, for γ = F−1(α).

We now derive Mθ, which is a scalar in this case:

Mθ =
d

dc
Pθψc

∣∣∣∣
c=γ

=
d

dc
(−α+ F (c))

∣∣∣∣
c=γ

= f(γ) = f(F−1(α)).

The influence function is thus 5

lθ(x) = −M−1
θ ψγ(x) =

1

f(γ)

{
−l{x < γ}+ α

}
.

5Note that in the special case α = 1/2 (where γ is the median), this becomes

lθ(x) =

{
− 1

2f(γ)
x < γ

+ 1
2f(γ)

x > γ
.
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We conclude that, for

γ̂n = arg min
c

P̂nρc,

which we write as the sample quantile γ̂n = F̂−1
n (α) (or an approximation

thereof up to order oIPθ(1/
√
n)), one has

√
n(F̂−1

n (α)− F−1(α))
Dθ−→N

(
0,

α(1− α)

f2(F−1(α))

)
.

Example 6.3.5 In this example, we illustrate that the Huber-estimator is
asymptotically linear. Let again X = R and F be the distribution function
of X. We let the parameter of interest be the a location parameter. The Huber
loss function is

ρc(x) = ρ(x− c),

with

ρ(x) =

{
x2 |x| ≤ k
k(2|x| − k) |x| > k

.

We define γ as

γ := arg min
c

Pθρc.

It holds that

ρ̇(x) =

{
2x |x| ≤ k
+2k x > k
−2k x < −k

.

Therefore,

ψc(x) =

{−2(x− c) |x− c| ≤ k
−2k x− c > k
+2k x− c < −k

.

One easily derives that

Pθψc = −2

∫ k+c

−k+c
xdF (x) + 2c[F (k + c)− F (−k + c)]

−2k[1− F (k + c)] + 2kF (−k + c).

So

Mθ =
d

dc
Pθψc

∣∣∣∣
c=γ

= 2[F (k + γ)− F (−k + γ)].

The influence function of the Huber estimator is

lθ(x) =
1

[F (k + γ)− F (−k + γ)]

x− γ |x− γ| ≤ k
+k x− γ > k
−k x− γ < −k

.

For k → 0, this corresponds to the influence function of the median.
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6.4 Plug-in estimators

When X is Euclidean space, one can define the distribution function F (x) :=
Pθ(X ≤ x) and the empirical distribution function

F̂n(x) =
1

n
#{Xi ≤ x, 1 ≤ i ≤ n}.

This is the distribution function of a probability measure that puts mass 1/n at
each observation. For general X , we define likewise the empirical distribution P̂n
as the distribution that puts mass 1/n at each observation, i.e., more formally

P̂n :=
1

n

n∑
i=1

δXi ,

where δx is a point mass at x. Thus, for (measurable ) sets A ⊂ X ,

P̂n(A) =
1

n
#{Xi ∈ A, 1 ≤ i ≤ n}.

For (measurable) functions f : X → Rr, we write, as in the previous section,

P̂nf :=
1

n

n∑
i=1

f(Xi) =

∫
fdP̂n.

Thus, for sets,

P̂n(A) = P̂nlA.

Again, as in the previous section, we use the same notations for expectations
under Pθ:

Pθf := Eθf(X) =

∫
fdPθ,

so that

Pθ(A) = PθlA.

The parameter of interest is denoted as

γ = g(θ) ∈ Rp.

It can often be written in the form

γ = Q(Pθ),

where Q is some functional on (a supset of) the model class P. Assuming Q is
also defined at the empirical measure P̂n, the plug-in estimator of γ is now

Tn := Q(P̂n).

Conversely,
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Definition If a statistic Tn can be written as Tn = Q(P̂n), then it is called a
Fisher-consistent estimator of γ = g(θ), if Q(Pθ) = g(θ) for all θ ∈ Θ.

We will also encounter modifications, where

Tn = Qn(P̂n),

and for n large,

Qn(Pθ) ≈ Q(Pθ) = g(θ).

Example Let γ := h(Pθf). The plug-in estimator is then Tn = h(P̂nf).

Example The M-estimator γ̂n = arg min
c∈Γ

P̂nρc is a plug-in estimator of γ =

arg min
c∈Γ

Pθρc (and similarly for the Z-estimator).

Example Let X = R and consider the α-trimmed mean

Tn :=
1

n− 2[nα]

n−[nα]∑
i=[nα]+1

X(i).

What is its theoretical counterpart? Because the i-th order statistic X(i) can
be written as

X(i) = F̂−1
n (i/n),

and in fact

X(i) = F̂−1
n (u), i/n ≤ u < (i+ 1)/n,

we may write, for αn := [nα]/n,

Tn =
n

n− 2[nα]

1

n

n−[nα]∑
i=[nα]+1

F̂−1
n (i/n)

=
1

1− 2αn

∫ 1−αn

αn+1/n
F̂−1
n (u)du := Qn(P̂n).

Replacing F̂n by F gives,

Qn(F ) =
1

1− 2αn

∫ 1−αn

αn+1/n
F−1(u)du

≈ 1

1− 2α

∫ 1−α

α
F−1(u)du =

1

1− 2α

∫ F−1(1−α)

F−1(α)
xdF (x) := Q(Pθ).

Example Let X = R, and suppose X has density f w.r.t., Lebesgue measure.
Suppose f is the parameter of interest. We may write

f(x) = lim
h→0

F (x+ h)− F (x− h)

2h
.
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Replacing F by F̂n here does not make sense. Thus, this is an example where
Q(P ) = f is only well defined for distributions P that have a density f . We
may however slightly extend the plug-in idea, by using the estimator

f̂n(x) =
F̂n(x+ hn)− F̂n(x− hn)

2hn
:= Qn(P̂n),

with hn “small” (hn → 0 as n→∞).

6.4.1 Consistency of plug-in estimators

We first present the uniform convergence of the empirical distribution function
to the theoretical one.

Such uniform convergence results hold also in much more general settings (see
also (6.3) in the proof of consistency for M-estimators).

Theorem 6.4.1 (Glivenko-Cantelli) Let X = R. We have

sup
x
|F̂n(x)− F (x)| → 0, IPθ − a.s..

Proof. We know that by the law of large numbers, for all x

|F̂n(x)− F (x)| → 0, IPθ−a.s.,

so also for all finite collection a1, . . . , aN ,

max
1≤j≤N

|F̂n(aj)− F (aj)| → 0, IPθ−a.s..

Let ε > 0 be arbitrary, and take a0 < a1 < · · · < aN−1 < aN in such a way that

F (aj)− F (aj−1) ≤ ε, j = 1, . . . , N

where F (a0) := 0 and F (aN ) := 1. Then, when x ∈ (aj−1, aj ],

F̂n(x)− F (x) ≤ F̂n(aj)− F (aj−1) ≤ Fn(aj)− F (aj) + ε,

and
F̂n(x)− F (x) ≥ F̂n(aj−1)− F (aj) ≥ F̂n(aj−1)− F (aj−1)− ε,

so
sup
x
|F̂n(x)− F (x)| ≤ max

1≤j≤N
|F̂n(aj)− F (aj)|+ ε→ ε, IPθ−a.s..

tu

Example Let X = R and let F be the distribution function of X. We consider
estimating the median γ := F−1(1/2). We assume F to continuous and strictly
increasing. The sample median is

Tn := F̂−1
n (1/2) :=

{
X((n+1)/2) n odd
[X(n/2) +X(n/2+1)]/2 n even

.
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So

F̂n(Tn) =
1

2
+
{

1/(2n) n odd
0 n even

.

It follows that

|F (Tn)− F (γ)| ≤ |F̂n(Tn)− F (Tn)|+ |F̂n(Tn)− F (γ)|

= |F̂n(Tn)− F (Tn)|+ |F̂n(Tn)− 1

2
|

≤ |F̂n(Tn)− F (Tn)|+ 1

2n
→ 0, IPθ−a.s..

So F̂−1
n (1/2) = Tn → γ = F−1(1/2), IPθ−a.s., i.e., the sample median is a

consistent estimator of the population median.

6.4.2 Asymptotic normality of plug-in estimators

Let γ := Q(P ) ∈ Rp be the parameter of interest. The idea in this subsection is
to apply a δ-method, but now in a nonparametric framework. The parametric
δ-method says that if θ̂n is an asymptotically linear estimator of θ ∈ Rp, and if
γ = g(θ) is some function of the parameter θ, with g being differentiable at θ,
then γ̂ is an asymptotically linear estimator of γ. Now, we write γ = Q(P ) as
a function of the probability measure P (with P = Pθ, so that g(θ) = Q(Pθ)).
We let P play the role of θ, i.e., we use the probability measures themselves as
parameterization of P. We then have to redefine differentiability in an abstract
setting, namely we differentiate w.r.t. P .

Definition
◦ The influence function of Q at P is

lP (x) := lim
ε↓0

Q((1− ε)P + εδx)−Q(P )

ε
, x ∈ X ,

whenever the limit exists.
◦ The map Q is called Gâteaux differentiable at P if for all probability measures
P̃ , we have

lim
ε↓0

Q((1− ε)P + εP̃ )−Q(P )

ε
= EP̃ lP (X).

◦ Let d be some (pseudo-)metric on the space of probability measures. The map
Q is called Fréchet differentiable at P , with respect to the metric d, if

Q(P̃ )−Q(P ) = EP̃ lP (X) + o(d(P̃ , P )).

Remark 1 In line with the notation introduced previously, we write for a
function f : X → Rr and a probability measure P̃ on X

P̃ f := EP̃ f(X).
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Remark 2 If Q is Fréchet or Gâteaux differentiable at P , then

PlP (:= EP lP (X)) = 0.

Remark 3 If Q is Fréchet differentiable at P , and if moreover

d((1− ε)P + εP̃ , P ) = o(ε), ε ↓ 0,

then Q is Gâteaux differentiable at P :

Q((1− ε)P + εP̃ )−Q(P ) = ((1− ε)P + εP̃ )lP + o(ε)

= εP̃ lP + o(ε).

We now show that Fréchet differentiable functionals are generally asymptoti-
cally linear.

Lemma 6.4.1 Suppose that Q is Fréchet differentiable at P with influence
function lP , and that

d(P̂n, P ) = OIP(n−1/2). (6.5)

Then
Q(P̂n)−Q(P ) = P̂nlP + oIP(n−1/2).

Proof. This follows immediately from the definition of Fréchet differentiability.
tu

Corollary 6.4.1 Assume the conditions of Lemma 6.4.1, with influence func-
tion lP satisfying VP := PlP l

T
P <∞. Then

√
n(Q(P̂n)−Q(P ))

DP−→ N (0, VP ).

An example where (6.5) holds

Suppose X = R and that we take

d(P̃ , P ) := sup
x
|F̃ (x)− F (x)|.

Then indeed d(P̂n, P ) = OIP(n−1/2). This follows from Donsker’s theorem,
which we state here without proof:

Donsker’s theorem Suppose F is continuous. Then

sup
x

√
n|F̂n(x)− F (x)| D−→ Z,

where the random variable Z has distribution function

G(z) = 1− 2

∞∑
j=1

(−1)j+1 exp[−2j2z2], z ≥ 0.

Fréchet differentiability is generally quite hard to prove, and often not even
true. We will only illustrate Gâteaux differentiability in some examples.
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Example 6.4.1 We consider the Z-estimator. Throughout in this example, we
assume enough regularity.

Let γ be defined by the equation

Pψγ = 0.

Let Pε := (1− ε)P + εP̃ , and let γε be a solution of the equation

Pεψγε = 0.

We assume that as ε ↓ 0, also γε → γ. It holds that

(1− ε)Pψγε + εP̃ψγε = 0,

so

Pψγε + ε(P̃ − P )ψγε = 0,

and hence

P (ψγε − ψγ) + ε(P̃ − P )ψγε = 0.

Assuming differentiabality of c 7→ Pψc, we obtain

P (ψγε − ψγ) =

(
∂

∂cT
Pψc

∣∣∣∣
c=γ

)
(γε − γ) + o(|γε − γ|)

:= MP (γε − γ) + o(|γε − γ|).

Moreover, again under regularity

(P̃ − P )ψγε = (P̃ − P )ψγ + (P̃ − P )(ψγε − ψγ)

= (P̃ − P )ψγ + o(1) = P̃ψγ + o(1).

It follows that

MP (γε − γ) + o(|γε − γ|) + ε(P̃ − P )ψγ + o(ε) = 0,

or, assuming MP to be invertible,

(γε − γ)(1 + o(1)) = −εM−1
P P̃ψγ + o(ε),

which gives
γε − γ
ε
→ −M−1

P P̃ψγ .

The influence function is thus (as already seen in Subsection 6.3.2)

lP = −M−1
P ψγ .
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Example 6.4.2 The α-trimmed mean is a plug-in estimator of

γ := Q(P ) =
1

1− 2α

∫ F−1(1−α)

F−1(α)
xdF (x).

Using partial integration, may write this as

(1− 2α)γ = (1− α)F−1(1− α)− αF−1(α)−
∫ 1−α

α
vdF−1(v).

The influence function of the quantile F−1(v) is

qv(x) = − 1

f(F−1(v))

(
l{x ≤ F−1(v)} − v}

)
(see Example 6.3.4), i.e., for the distribution Pε = (1 − ε)P + εP̃ , with distri-
bution function Fε = (1− ε)F + εF̃ , we have

lim
ε↓0

F−1
ε (v)− F−1(v)

ε
= P̃ qv = − 1

f(F−1(v))

(
F̃ (F−1(v))− v

)
.

Hence, for Pε = (1− ε)P + εP̃ ,

(1− 2α) lim
ε↓0

Q((1− ε)P + εP̃ )−Q(P )

ε
= (1− α)P̃ q1−α − αP̃qα −

∫ 1−α

α
vdP̃ qv

=

∫ 1−α

α

1

f(F−1(v))

(
F̃ (F−1(v))− v

)
dv

=

∫ F−1(1−α)

F−1(α)

1

f(u)

(
F̃ (u)− F (u)

)
dF (u) =

∫ F−1(1−α)

F−1(α)

(
F̃ (u)− F (u)

)
du

= (1− 2α)P̃ lP ,

where

lP (x) = − 1

1− 2α

∫ F−1(1−α)

F−1(α)

(
l{x ≤ u} − F (u)

)
du.

We conclude that, under regularity conditions, the α-trimmed mean is asymp-
totically linear with the above influence function lP , and hence asymptotically
normal with asymptotic variance Pl2P .

6.5 Asymptotic relative efficiency

In this section, we assume that the parameter of interest is real-valued:

γ ∈ Γ ⊂ R.

Definition Let Tn,1 and Tn,2 be two estimators of γ, that satisfy

√
n(Tn,j − γ)

Dθ−→N (0, Vθ,j), j = 1, 2.
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Then

e2:1 :=
Vθ,1
Vθ,2

is called the asymptotic relative efficiency of Tn,2 with respect to Tn,1.

If e2:1 > 1, the estimator Tn,2 is asymptotically more efficient than Tn,1. An
asymptotic (1−α)-confidence interval for γ based on Tn,2 is then narrower than
the one based on Tn,1.

Example 6.5.1 Let X = R, and F be the distribution function of X. Suppose
that F is symmetric around the parameter of interest µ. In other words,

F (·) = F0(· − µ),

where F0 is symmetric around zero. We assume that F0 has finite variance
σ2, and that is has density f0 w.r.t. Lebesgue measure, with f0(0) > 0. Take
Tn,1 := X̄n, the sample mean, and Tn,2 := F̂−1

n (1/2), the sample median. Then
Vθ,1 = σ2 and Vθ,2 = 1/(4f2

0 (0)) (the latter being derived in Example 6.3.4). So

e2:1 = 4σ2f2
0 (0).

Whether the sample mean is the winner, or rather the sample median, depends
thus on the distribution F0. Let us consider three cases.

Case i Let F0 be the standard normal distribution, i.e., F0 = Φ. Then σ2 = 1
and f0(0) = 1/

√
2π. Hence

e2:1 =
2

π
≈ 0.64.

So X̄n is the winner. Note that X̄n is the MLE in this case.

Case ii Let F0 be the Laplace distribution, with variance σ2 equal to one. This
distribution has density

f0(x) =
1√
2

exp[−
√

2|x|], x ∈ R.

So we have f0(0) = 1/
√

2, and hence

e2:1 = 2.

Thus, the sample median, which is the MLE for this case, is the winner.

Case iii Suppose

F0 = (1− η)Φ + ηΦ(·/3).

This means that the distribution of X is a mixture, with proportions 1− η and
η, of two normal distributions, one with unit variance, and one with variance 32.
Otherwise put, associated with X is an unobservable label Y ∈ {0, 1}. If Y = 1,
the random variable X is N (µ, 1)-distributed. If Y = 0, the random variable
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X has a N (µ, 32) distribution. Moreover, P (Y = 1) = 1 − P (Y = 0) = 1 − η.
Hence

σ2 := var(X) = (1− η)var(X|Y = 1) + ηvar(X|Y = 0) = (1− η) + 9η = 1− 8η.

It furthermore holds that

f0(0) = (1− η)φ(0) +
η

3
φ(0) =

1√
2π

(
1− 2η

3

)
.

It follows that

e2:1 =
2

π

(
1− 2η

3

)2

(1 + 8η).

Let us now further compare the results with the α-trimmed mean. Because
F is symmetric, the α-trimmed mean has the same influence function as the
Huber-estimator with k = F−1(1− α):

lθ(x) =
1

F0(k)− F (−k)

x− µ, |x− µ| ≤ k
+k, x− µ > k
−k, x− µ < −k

.

This can be seen from Example 6.4.2. The influence function is used to compute
the asymptotic variance Vθ,α of the α-trimmed mean:

Vθ,α =

∫ F−1
0 (1−α)

F−1
0 (α)

x2dF0(x) + 2α(F−1
0 (1− α))2

(1− 2α)2
.

From this, we then calculate the asymptotic relative efficiency of the α-trimmed
mean w.r.t. the mean. Note that the median is the limiting case with α→ 1/2.

Table: Asymptotic relative efficiency of α-trimmed mean over mean

α = 0.05 0.125 0.5

η = 0.00 0.99 0.94 0.64
0.05 1.20 1.19 0.83
0.25 1.40 1.66 1.33

6.6 Asymptotic Cramer Rao lower bound

Let X have distribution P ∈ {Pθ : θ ∈ Θ}. We assume for simplicity that
Θ ⊂ R and that θ is the parameter of interest. Let Tn be an estimator of θ.

Throughout this section, we take certain, sometimes unspecified, regularity
conditions for granted.

In particular, we assume that P is dominated by some σ-finite measure ν, and
that the Fisher-information

I(θ) := Eθs
2
θ(X)
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exists for all θ. Here, sθ is the score function

sθ :=
d

dθ
log pθ = ṗθ/pθ,

with pθ := dPθ/dν.

Recall now that if Tn is an unbiased estimator of θ, then by the Cramer Rao
lower bound, 1/I(θ) is a lower bound for its variance (under regularity condi-
tions I and II, see Section 3.3).

Definition Suppose that

√
n(Tn − θ)

Dθ−→ N (bθ, Vθ), ∀ θ.

Then bθ is called the asymptotic bias, and Vθ the asymptotic variance. The
estimator Tn is called asymptotically unbiased if bθ = 0 for all θ. If Tn is
asymptotically unbiased and moreover Vθ = 1/I(θ) for all θ, and some regularity
conditions holds, then Tn is called asymptotically efficient.

Remark 1 The assumptions in the above definition, are for all θ. Clearly, if
one only looks at one fixed given θ0, it is easy to construct a super-efficient es-
timator, namely Tn = θ0. More generally, to avoid this kind of super-efficiency,
one does not only require conditions to hold for all θ, but in fact uniformly
in θ, or for all sequences {θn}. The regularity one needs here involves the
idea that one actually needs to allow for sequences θn the form θn = θ+h/

√
n.

In fact, the regularity requirement is that also, for all h,

√
n(Tn − θn)

Dθn−→ N (0, Vθ).

To make all this mathematically precise is quite involved. We refer to van der
Vaart (1998). A glimps is given in Le Cam’s 3rd Lemma, see the next subsection.

Remark 2 Note that when θ = θn is allowed to change with n, this means that
distribution of Xi can change with n, and hence Xi can change with n. Instead
of regarding the sample X1, . . . , Xn are the first n of an infinite sequence, we
now consider for each n a new sample, say X1,1, . . . , Xn,n.

Remark 3 We have seen that the MLE θ̂n generally is indeed asymptotically
unbiased with asymptotic variance Vθ equal to 1/I(θ), i.e., under regularity
assumptions, the MLE is asymptotically efficient.

For asymptotically linear estimators, with influence function lθ, one has asymp-
totic variance Vθ = Eθl

2
θ(X). The next lemma indicates that generally 1/I(θ)

is indeed a lower bound for the asymptotic variance.

Lemma 6.6.1 Suppose that

(Tn − θ) =
1

n

n∑
i=1

lθ(Xi) + oIPθ(n
−1/2),
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where Eθlθ(X) = 0, Eθl
2
θ(X) := Vθ <∞. Assume moreover that

Eθlθ(X)sθ(X) = 1. (6.6)

Then

Vθ ≥
1

I(θ)
.

Proof. This follows from the Cauchy-Schwarz inequality:

1 = |covθ(lθ(X), sθ(X))|2

≤ varθ(lθ(X))varθ(sθ(X)) = VθI(θ).

tu

It may look like a coincidence when in a special case, equality (6.6) indeed
holds. But actually, it is true in quite a few cases. This may at first seem like
magic.

We consider two examples. To simplify the expressions, we again write short-
hand

Pθf := Eθf(X).

Example 6.6.1 This example examines the Z-estimator of θ. Then we have,
for P = Pθ,

Pψθ = 0.

The influence function is
lθ = −ψθ/Mθ,

where

Mθ :=
d

dθ
Pψθ.

Under regularity, we have

Mθ = Pψ̇θ =

∫
ψ̇θpθdν, ψ̇θ =

d

dθ
ψθ.

We may also write

Mθ = −
∫
ψθṗθdν, ṗθ =

d

dθ
pθ.

This follows from the chain rule

d

dθ
ψθpθ = ψ̇θpθ + ψθṗθ,

and (under regularity)∫
d

dθ
ψθpθdν =

d

dθ

∫
ψθpθdν =

d

dθ
Pψθ =

d

dθ
0 = 0.

Thus

Plθsθ = −M−1
θ Pψθsθ = −M−1

θ

∫
ψθṗθdν = 1,

that is, (6.6) holds.
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Example 6.6.2 We consider now the plug-in estimator Q(P̂n). Suppose that
Q is Fisher consistent (i.e., Q(Pθ) = θ for all θ). Assume moreover that Q is
Fréchet differentiable with respect to the metric d, at all Pθ, and that

d(Pθ̃, Pθ) = O(|θ̃ − θ|).

Then, by the definition of Fréchet differentiability

h = Q(Pθ+h)−Q(Pθ) = Pθ+hlθ + o(|h|) = (Pθ+h − Pθ)lθ + o(|h|),

or, as h→ 0,

1 =
(Pθ+h − Pθ)lθ

h
+ o(1) =

∫
lθ(pθ+h − pθ)dν

h
+ o(1)

→
∫
lθṗθdν = Pθ(lθsθ).

So (6.6) holds.

6.6.1 Le Cam’s 3rd Lemma

The following example serves as a motivation to consider sequences θn depend-
ing on n. It shows that pointwise asymptotics can be very misleading.

Example 6.6.3 (Hodges-Lehmann example of super-efficiency) LetX1, . . . , Xn

be i.i.d. copies of X, where X = θ + ε, and ε is N (0, 1)-distributed. Consider
the estimator

Tn :=

{
X̄n, if |X̄n| > n−1/4

X̄n/2, if |X̄n| ≤ n−1/4 .

Then
√
n(Tn − θ)

Dθ−→
{
N (0, 1), θ 6= 0
N (0, 1

4), θ = 0
.

So the pointwise asymptotics show that Tn can be more efficient than the sample
average X̄n. But what happens if we consider sequences θn? For example, let
θn = h/

√
n. Then, under IPθn , X̄n = ε̄n + h/(

√
n) = OIPθn

(n−1/2). Hence,

IPθn(|X̄n| > n−1/4)→ 0, so that IPθn(Tn = X̄n)→ 0. Thus,
√
n(Tn − θn) =

√
n(Tn − θn)l{Tn = X̄n}+

√
n(Tn − θn)l{Tn = X̄n/2}

Dθn−→ N (−h
2
,
1

4
).

The asymptotic mean square error AMSEθ(Tn) is defined as the asymptotic
variance + asymptotic squared bias:

AMSEθn(Tn) =
1 + h2

4
.

The AMSEθ(X̄n) of X̄n is its normalized non-asymptotic mean square error,
which is

AMSEθn(X̄n) = MSEθn(X̄n) = 1.

So when h is large enough, the asymptotic mean square error of Tn is larger
than that of X̄n.
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Le Cam’s 3rd lemma shows that asymptotic linearity for all θ implies asymptotic
normality, now also for sequences θn = θ+ h/

√
n. The asymptotic variance for

such sequences θn does not change. Moreover, if (6.6) holds for all θ, the
estimator is also asymptotically unbiased under IPθn .

Lemma 6.6.2 (Le Cam’s 3rd Lemma) Suppose that for all θ,

Tn − θ =
1

n

n∑
i=1

lθ(Xi) + oIPθ(n
−1/2),

where Pθlθ = 0, and Vθ := Pθl
2
θ <∞. Then, under regularity conditions,

√
n(Tn − θn)

Dθn−→ N
(
{Pθ(lθsθ)− 1}h, Vθ

)
.

We will present a sketch of the proof of this lemma. For this purpose, we need
the following auxiliary lemma.

Lemma 6.6.3 (Auxiliary lemma) Let Z ∈ R2 be N (µ,Σ)-distributed, where

µ =

(
µ1

µ2

)
, Σ =

(
σ2

1 σ1,2

σ1,2 σ2
2

)
.

Suppose that

µ2 = −σ2
2/2.

Let Y ∈ R2 be N (µ+ a,Σ)-distributed, with

a =

(
σ1,2

σ2
2

)
.

Let φZ be the density of Z and φY be the density of Y . Then we have the
following equality for all z = (z1, z2) ∈ R2:

φZ(z)ez2 = φY (z).

Proof. The density of Z is

φZ(z) =
1

2π
√

det(Σ)
exp

[
−1

2
(z − µ)TΣ−1(z − µ)

]
.

Now, one easily sees that

Σ−1a =

(
0
1

)
.

So
1

2
(z − µ)TΣ−1(z − µ) =

1

2
(z − µ− a)TΣ−1(z − µ− a)

+aTΣ−1(z − µ)− 1

2
aTΣ−1a
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and

aTΣ−1(z − µ)− 1

2
aTΣ−1a =

(
0
1

)T
(z − µ)− 1

2

(
0
1

)T
a

= z2 − µ2 −
1

2
σ2

2 = z2.

tu

Sketch of proof of Le Cam’s 3rd Lemma. Set

Λn :=
n∑
i=1

[
log pθn(Xi)− log pθ(Xi)

]
.

Then under IPθ, by a two-term Taylor expansion,

Λn ≈
h√
n

n∑
i=1

sθ(Xi) +
h2

2

1

n

n∑
i=1

ṡθ(Xi)

≈ h√
n

n∑
i=1

sθ(Xi)−
h2

2
I(θ),

as
1

n

n∑
i=1

ṡθ(Xi) ≈ Eθṡθ(X) = −I(θ).

We moreover have, by the assumed asymptotic linearity, under IPθ,

√
n(Tn − θ) ≈

1√
n

n∑
i=1

lθ(Xi).

Thus, (√
n(Tn − θ)

Λn

)
Dθ−→ Z,

where Z ∈ R2, has the two-dimensional normal distribution:

Z =

(
Z1

Z2

)
∼ N

((
0

−h2

2 I(θ)

)
,

(
Vθ hPθ(lθsθ)

hPθ(lθsθ) h2I(θ)

))
.

Thus, we know that for all bounded and continuous f : R2 → R, one has

IEθf(
√
n(Tn − θ),Λn)→ IEf(Z1, Z2).

Now, let f : R→ R be bounded and continuous. Then, since

n∏
i=1

pθn(Xi) =
n∏
i=1

pθ(Xi)e
Λn ,

we may write

IEθnf(
√
n(Tn − θ)) = IEθf(

√
n(Tn − θ))eΛn .
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The function (z1, z2) 7→ f(z1)ez2 is continuous, but not bounded. However,
one can show that one may extend the Portmanteau Theorem to this situation.
This then yields

IEθf(
√
n(Tn − θ))eΛn → IEf(Z1)eZ2 .

Now, apply the auxiliary Lemma, with

µ =

(
0

−h2

2 I(θ)

)
, Σ =

(
Vθ hPθ(lθsθ)

hPθ(lθsθ) h2I(θ)

)
.

Then we get

IEf(Z1)eZ2 =

∫
f(z1)ez2φZ(z)dz =

∫
f(z1)φY (z)dz = IEf(Y1),

where

Y =

(
Y1

Y2

)
∼ N

((
hPθ(lθsθ)
h2

2 I(θ)

)
,

(
Vθ hPθ(lθsθ)

hPθ(lθsθ) h2I(θ)

))
,

so that
Y1 ∼ N (hPθ(lθsθ), Vθ).

So we conclude that

√
n(Tn − θ)

Dθn−→ Y1 ∼ N (hPθ(lθsθ), Vθ).

Hence

√
n(Tn − θn) =

√
n(Tn − θ)− h

Dθn−→ N (h{Pθ(lθsθ)− 1}, Vθ).

tu

6.7 Asymptotic confidence intervals and tests

Again throughout this section, enough regularity is assumed, such as existence
of derivatives and interchanging integration and differentiation.

Intermezzo: the χ2 distribution Let Y1, . . . , Yp be i.i.d. N (0, 1)-distributed.
Define the p-vector

Y :=

Y1
...
Yp

 .

Then Y is N (0, I)-distributed, with I the p × p identity matrix. The χ2-
distribution with p degrees of freedom is defined as the distribution of

‖Y ‖2 :=

p∑
j=1

Y 2
j .
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Notation: ‖Y ‖2 ∼ χ2
p.

For a symmetric positive definite matrix Σ, one can define the square root Σ1/2

as a symmetric positive definite matrix satisfying

Σ1/2Σ1/2 = Σ.

Its inverse is denoted by Σ−1/2 (which is the square root of Σ−1). If Z ∈ Rp is
N (0,Σ)-distributed, the transformed vector

Y := Σ−1/2Z

is N (0, I)-distributed. It follows that

ZTΣ−1Z = Y TY = ‖Y ‖2 ∼ χ2
p.

Asymptotic pivots Recall the definition of an asymptotic pivot (see Section
1.7). It is a function Zn(γ) := Zn(X1, . . . , Xn, γ) of the data X1, . . . , Xn and
the parameter of interest γ = g(θ) ∈ Rp, such that its asymptotic distribution
does not depend on the unknown parameter θ, i.e., for a random variable Z,
with distribution Q not depending on θ,

Zn(γ)
Dθ−→Z, ∀ θ.

An asymptotic pivot can be used to construct approximate (1− α)-confidence
intervals for γ, and tests for H0 : γ = γ0 with approximate level α.

Consider now an asymptotically normal estimator Tn of γ, which is asymptot-
ically unbiased and has asymptotic covariance matrix Vθ, that is

√
n(Tn − γ)

Dθ−→N (0, Vθ), ∀ θ.

(assuming such an estimator exists). Then, depending on the situation, there
are various ways to construct an asymptotic pivot.

1st asymptotic pivot
If the asymptotic covariance matrix Vθ is non-singular, and depends only on
the parameter of interest γ, say Vθ = V (γ) (for example, if γ = θ), then an
asymptotic pivot is

Zn,1(γ) := n(Tn − γ)TV (γ)−1(Tn − γ).

The asymptotic distribution is the χ2-distribution with p degrees of freedom.

2nd asymptotic pivot
If, for all θ, one has a consistent estimator V̂n of V (θ), then an asymptotic pivot
is

Zn,2(γ) := n(Tn − γ)T V̂ −1
n (Tn − γ).

The asymptotic distribution is again the χ2-distribution with p degrees of free-
dom.
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Estimators of the asymptotic variance
◦ If θ̂n is a consistent estimator of θ and if θ 7→ Vθ is continuous, one may insert
V̂n := Vθ̂n .
◦ If Tn = γ̂n is the M-estimator of γ, γ being the solution of Pθψγ = 0, then
(under regularity) the asymptotic covariance matrix is

Vθ = M−1
θ JθM

−1
θ ,

where
Jθ = Pθψγψ

T
γ ,

and

Mθ =
∂

∂cT
Pθψc

∣∣∣∣
c=γ

= Pθψ̇γ .

Then one may estimate Jθ and Mθ by

Ĵn := P̂nψγ̂nψ
T
γ̂n =

1

n

n∑
i=1

ψγ̂n(Xi)ψ
T
γ̂n(Xi),

and

M̂n := P̂nψ̇γ̂n =
1

n

n∑
i=1

ψ̇γ̂n(Xi),

respectively. Under some regularity conditions,

V̂n := M̂−1
n ĴnM̂

−1
n .

is a consistent estimator of Vθ
6.

6.7.1 Maximum likelihood

Suppose now that P = {Pθ : θ ∈ Θ} has Θ ⊂ Rp, and that P is dominated by
some σ-finite measure ν. Let pθ := dPθ/dν denote the densities, and let

θ̂n := arg max
ϑ∈Θ

n∑
i=1

log pϑ(Xi)

be the MLE. Recall that θ̂n is an M-estimator with loss function ρϑ = − log pϑ,
and hence (under regularity conditions), ψϑ = ρ̇θ is minus the score function
sϑ := ṗϑ/pϑ. The asymptotic variance of the MLE is I−1(θ), where I(θ) :=
Pθsθs

T
θ is the Fisher information:

√
n(θ̂n − θ)

Dθ−→N (0, I−1(θ)), ∀ θ.
6From most algorithms used to compute the M-estimator γ̂n, one easily can obtain M̂n

and Ĵn as output. Recall e.g. that the Newton-Raphson algorithm is based on the iterations

γ̂new = γ̂old −

(
n∑
i=1

ψ̇γ̂old

)−1 n∑
i=1

ψγ̂old .
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Thus, in this case
Zn,1(θ) = n(θ̂n − θ)I(θ)(θ̂n − θ),

and, with În being a consistent estimator of I(θ)

Zn,2(θ) = n(θ̂n − θ)În(θ̂n − θ).

Note that one may take

În := − 1

n

n∑
i=1

ṡθ̂n(Xi) = − ∂2

∂ϑ∂ϑT
1

n

n∑
i=1

log pϑ(Xi)

∣∣∣∣
ϑ=θ̂n

as estimator of the Fisher information 7.

3rd asymptotic pivot
Define now the twice log-likelihood ratio

2Ln(θ̂n)− 2Ln(θ) := 2

n∑
i=1

[
log pθ̂n(Xi)− log pθ(Xi)

]
.

It turns out that the log-likelihood ratio is indeed an asymptotic pivot. A
practical advantage is that it is self-normalizing: one does not need to explicitly
estimate asymptotic (co-)variances.

Lemma 6.7.1 Under regularity conditions, 2Ln(θ̂n)−2Ln(θ) is an asymptotic
pivot for θ. Its asymptotic distribution is again the χ2-distribution with p de-
grees of freedom:

2Ln(θ̂n)− 2Ln(θ)
Dθ−→χ2

p ∀ θ.

Sketch of the proof. We have by a two-term Taylor expansion

2Ln(θ̂n)− 2Ln(θ) = 2nP̂n

[
log pθ̂n − log pθ

]
≈ 2n(θ̂n − θ)T P̂nsθ + n(θ̂n − θ)T P̂nṡθ(θ̂n − θ)
≈ 2n(θ̂n − θ)T P̂nsθ − n(θ̂n − θ)T I(θ)(θ̂n − θ),

where in the second step, we used P̂nṡθ ≈ Pθṡθ = −I(θ). (You may compare
this two-term Taylor expansion with the one in the sketch of proof of Le Cam’s
3rd Lemma). The MLE θ̂n is asymptotically linear with influence function
lθ = I(θ)−1sθ:

θ̂n − θ = I(θ)−1P̂nsθ + oIPθ(n
−1/2).

Hence,
2Ln(θ̂n)− 2Ln(θ) ≈ n(P̂nsθ)

T I(θ)−1(P̂nsθ).

The result now follows from

√
nP̂nsθ

Dθ−→N (0, I(θ)).

tu
7In other words (as for general M-estimators), the algorithm (e.g. Newton Raphson) for

calculating the maximum likelihood estimator θ̂n generally also provides an estimator of the
Fisher information as by-product.
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Example 6.7.1 Let X1, . . . , Xn be i.i.d. copies of X, where X ∈ {1, . . . , k} is
a label, with

Pθ(X = j) := πj , j = 1, . . . , k.

where the probabilities πj are positive and add up to one:
∑k

j=1 πj = 1,
but are assumed to be otherwise unknown. Then there are p := k − 1 un-
known parameters, say θ = (π1, . . . , πk−1). Define Nj := #{i : Xi = j}.
(Note that (N1, . . . , Nk) has a multinomial distribution with parameters n and
(π1, . . . , πk)).

Lemma For each j = 1, . . . , k, the MLE of πj is

π̂j =
Nj

n
.

Proof. The log-densities can be written as

log pθ(x) =

k∑
j=1

l{x = j} log πj ,

so that
n∑
i=1

log pθ(Xi) =
k∑
j=1

Nj log πj .

Putting the derivatives with respect to θ = (π1, . . . , πk−1), (with πk = 1 −∑k−1
j=1 θj) to zero gives,

Nj

π̂j
− Nk

π̂k
= 0.

Hence

π̂j = Nj
π̂k
Nk

, j = 1, . . . , k,

and thus

1 =
k∑
j=1

π̂j = n
π̂k
Nk

,

yielding

π̂k =
Nk

n
,

and hence

π̂j =
Nj

n
, j = 1, . . . , k.

tu

We now first calculate Zn,1(θ). For that, we need to find the Fisher information
I(θ).
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Lemma The Fisher information is

I(θ) =


1
π1

. . . 0
...

. . .
...

0 . . . 1
πk−1

+
1

πk
ιιT , 8

where ι is the (k − 1)-vector ι := (1, . . . , 1)T .

Proof. We have

sθ,j(x) =
1

πj
l{x = j} − 1

πk
l{x = k}.

So

(I(θ))j1,j2 = Eθ

(
1

πj1
l{X = j1}−

1

πk
l{X = k}

)(
1

πj2
l{X = j2}−

1

πk
l{X = k}

)

=

{
1
πk

j1 6= j2
1
πj

+ 1
πk

j1 = j2 = j
.

tu

We thus find
Zn,1(θ) = n(θ̂n − θ)T I(θ)(θ̂n − θ)

= n

 π̂1 − π1
...

π̂k−1 − πk−1

T



1
π1

. . . 0
...

. . .
...

0 . . . 1
πk−1

+
1

πk

 1 . . . 1
...

...
1 . . . 1



 π̂1 − π1

...
π̂k−1 − πk−1

 .

= n
k−1∑
j=1

(π̂j − πj)2

πj
+ n

1

πk
(
k−1∑
j=1

(π̂j − πj))2

= n

k∑
j=1

(π̂j − πj)2

πj

=
k∑
j=1

(Nj − nπj)2

nπj
.

This is called the Pearson’s chi-square∑ (observed− expected)2

expected
.

A version of Zn,2(θ) is to replace, for j = 1, . . . k, πj by π̂j in the expression for
the Fisher information. This gives

Zn,2(θ) =
k∑
j=1

(Nj − nπj)2

Nj
.

8To invert such a matrix, one may apply the formula (A+ bbT )−1 = A−1 − A−1bbTA−1

1+bTA−1b
.
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This is called the Pearson’s chi-square∑ (observed− expected)2

observed
.

Finally, the log-likelihood ratio pivot is

2Ln(θ̂n)− 2Ln(θ) = 2
k∑
j=1

Nj log

(
π̂j
πj

)
.

The approximation log(1+x) ≈ x−x2/2 shows that 2Ln(θ̂n)−2Ln(θ) ≈ Zn,2(θ):

2Ln(θ̂n)− 2Ln(θ) = −2

k∑
j=1

Nj log

(
1 +

πj − π̂j
π̂j

)

≈ −2
k∑
j=1

Nj

(
πj − π̂j
π̂j

)
+

k∑
j=1

Nj

(
πj − π̂j
π̂j

)2

= Zn,2(θ).

The three asymptotic pivots Zn,1(θ), Zn,2(θ) and 2Ln(θ̂n) − 2Ln(θ) are each
asymptotically χ2

k−1-distributed under IPθ.

6.7.2 Likelihood ratio tests

Intermezzo: some matrix algebra

Let z ∈ Rp be a vector and B be a (q×p)-matrix, (p ≥ q) with rank q. Moreover,
let V be a positive definite (p× p)-matrix.

Lemma We have

max
a∈Rp: Ba=0

{2aT z − aTa} = zT z − zTBT (BBT )−1Bz.

Proof. We use Lagrange multipliers λ ∈ Rp. We have

∂

∂a
{2aT z − aTa+ 2aTBTλ} = z − a+BTλ.

Hence for
a∗ := arg max

a∈Rp: Ba=0
{2aT z − aTa},

we have
z − a∗ +BTλ = 0,

or
a∗ = z +BTλ.

The restriction Ba∗ = 0 gives

Bz +BBTλ = 0.
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So
λ = −(BBT )−1Bz.

Inserting this in the solution a∗ gives

a∗ = z −BT (BBT )−1Bz.

Now,

aT∗ a∗ = (zT−zTBT (BBT )−1B)(z−BT (BBT )−1Bz) = zT z−zTBT (BBT )−1Bz.

So
2aT∗ z − aT∗ a∗ = zT z − zTBT (BBT )−1Bz.

tu

Lemma We have

max
a∈Rp: Ba=0

{2aT z − aTV a} = zTV −1z − zTV −1BT (BV −1BT )−1BV −1z.

Proof. Make the transformation b := V 1/2a, and y := V −1/2z, and C =
BV −1/2. Then

max
a: Ba=0

{2aT z − aTV a}

= max
b: Cb=0

{2bT y − bT b}

= yT y − yTCT (CCT )−1Cy = zTV −1z − zTV −1BT (BV −1BT )−1BV −1z.

tu

Corollary Let L(a) := 2aT z − aTV a. The difference between the unrestricted
maximum and the restricted maximum of L(a) is

max
a

L(a)− max
a: Ba=0

L(a) = zTV −1BT (BV −1BT )−1BV −1z.

Hypothesis testing

For the simple hypothesis

H0 : θ = θ0,

we can use 2Ln(θ̂n)−2Ln(θ0) as test statistic: reject H0 if 2Ln(θ̂n)−2Ln(θ0) >
χ2
p,α, where χp,α is the (1− α)-quantile of the χ2

p-distribution.

Consider now the hypothesis

H0 : R(θ) = 0,

where

R(θ) =

R1(θ)
...

Rq(θ)

 .
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Let θ̂n be the unrestricted MLE, that is

θ̂n = arg max
ϑ∈Θ

n∑
i=1

log pϑ(Xi).

Moreover, let θ̂0
n be the restricted MLE, defined as

θ̂0
n = arg max

ϑ∈Θ: R(ϑ)=0

n∑
i=1

log pϑ(Xi).

Define the (q × p)-matrix

Ṙ(θ) =
∂

∂ϑT
R(ϑ)|ϑ=θ.

We assume Ṙ(θ) has rank q.

Let

Ln(θ̂n)− Ln(θ̂0
n) =

n∑
i=1

[
log pθ̂n(Xi)− log pθ̂0n

(Xi)

]
be the log-likelihood ratio for testing H0 : R(θ) = 0.

Lemma 6.7.2 Under regularity conditions, and if H0 : R(θ) = 0 holds, we
have

2Ln(θ̂n)− 2Ln(θ̂0
n)

Dθ−→χ2
q .

Sketch of the proof. Let

Zn :=
1√
n

n∑
i=1

sθ(Xi).

As in the sketch of the proof of Lemma 6.7.1, we can use a two-term Taylor
expansion to show for any sequence ϑn satisfying ϑn = θ +OIPθ(n

−1/2), that

2
n∑
i=1

[
log pϑn(Xi)−log pθ(Xi)

]
= 2
√
n(ϑn−θ)TZn−n(ϑn−θ)2I(θ)(ϑn−θ)+oIPθ(1).

Here, we also again use that
∑n

i=1 ṡϑn(Xi)/n = −I(θ) + oIPθ(1). Moreover, by
a one-term Taylor expansion, and invoking that R(θ) = 0,

R(ϑn) = Ṙ(θ)(ϑn − θ) + oIPθ(n
−1/2).

Insert the corollary in the above matrix algebra, with z := Zn, B := Ṙ(θ), and
V = I(θ). This gives

2Ln(θ̂n)− 2Ln(θ̂0
n)

= 2
n∑
i=1

[
log pθ̂n(Xi)− log pθ(Xi)

]
− 2

n∑
i=1

[
log pθ̂0n

(Xi)− log pθ(Xi)

]
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= ZTn I(θ)−1ṘT (θ)

(
Ṙ(θ)I(θ)−1Ṙ(θ)T

)−1

Ṙ(θ)I(θ)−1Zn + oIPθ(1)

:= YT
nW

−1Yn + oIPθ(1),

where Yn is the q-vector

Yn := Ṙ(θ)I(θ)−1Zn,

and where W is the (q × q)-matrix

W := Ṙ(θ)I(θ)−1Ṙ(θ)T .

We know that

Zn
Dθ−→N (0, I(θ)).

Hence

Yn
Dθ−→N (0,W ),

so that

YT
nW

−1Yn
Dθ−→χ2

q .

tu

Corollary 6.7.1 From the sketch of the proof of Lemma 6.7.2, one sees that
moreover (under regularity),

2Ln(θ̂n)− 2Ln(θ̂0
n) ≈ n(θ̂n − θ̂0

n)T I(θ)(θ̂n − θ̂0
n),

and also

2Ln(θ̂n)− 2Ln(θ̂0
n) ≈ n(θ̂n − θ̂0

n)T I(θ̂0
n)(θ̂n − θ̂0

n).

Example 6.7.2 Let X be a bivariate label, say X ∈ {(j, k) : j = 1, . . . , r, k =
1, . . . , s}. For example, the first index may correspond to sex (r = 2) and the
second index to the color of the eyes (s = 3). The probability of the combination
(j, k) is

πj,k := Pθ

(
X = (j, k)

)
.

Let X1, . . . , Xn be i.i.d. copies of X, and

Nj,k := #{Xi = (j, k)}.

From Example 6.7.1, we know that the (unrestricted) MLE of πj,k is equal to

π̂j,k :=
Nj,k

n
.

We now want to test whether the two labels are independent. The null-
hypothesis is

H0 : πj,k = (πj,+)× (π+,k) ∀ (j, k).
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Here

πj,+ :=

s∑
k=1

πj,k, π+,k :=

r∑
j=1

πj,k.

One may check that the restricted MLE is

π̂0
j,k = (π̂j,+)× (π̂+,k),

where

π̂j,+ :=

s∑
k=1

π̂j,k, π̂+,k :=

r∑
j=1

π̂j,k.

The log-likelihood ratio test statistic is thus

2Ln(θ̂n)− 2Ln(θ̂0
n) = 2

r∑
j=1

s∑
k=1

Nj,k

[
log

(
Nj,k

n

)
− log

(
Nj,+N+,k

n2

)]

= 2
r∑
j=1

s∑
k=1

Nj,k log

(
nNj,k

Nj,+N+,k

)
.

Its approximation as given in Corollary 6.7.1 is

2Ln(θ̂n)− 2Ln(θ̂0
n) ≈ n

r∑
j=1

s∑
k=1

(Nj,k −Nj,+N+,k/n)2

Nj,+N+,k
.

This is Pearson’s chi-squared test statistic for testing independence. To find
out what the value of q is in this example, we first observe that the unrestricted
case has p = rs − 1 free parameters. Under the null-hypothesis, there remain
(r − 1) + (s− 1) free parameters. Hence, the number of restrictions is

q =

(
rs− 1

)
−
(

(r − 1) + (s− 1)

)
= (r − 1)(s− 1).

Thus, under H0 : πj,k = (πj,+)× (π+,k) ∀ (j, k), we have

n

r∑
j=1

s∑
k=1

(Nj,k −Nj,+N+,k/n)2

Nj,+N+,k

Dθ−→ χ2
(r−1)(s−1).

6.8 Complexity regularization (to be written)
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