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Solution to Series 4

1. a) > ## load data

> load("catheter.rda")

> ## histograms

> par(mfrow=c(2,2))

> hist(catheter$height, col="limegreen", main="Height")

> hist(catheter$weight, col="limegreen", main="Weight")

> hist(catheter$catlength, col="limegreen", main="Catlength")
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First of all, note that only 12 data points are available. This is the lower limit for a multiple linear
regression with two predictors as there are only four observations per parameter. Secondly, all variables
take positive values only so that log transformations would be feasible. However, we only see a skewed
distribution for the variable weight. This time we will not do a transformation even though it could
be benefitial.

> ## pairs plot

> pairs(catheter, pch=19)
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In the pairs plot we see that height and weight correlate strongly. This is not surprising as the
observations come from children. Similarly, there is a strong relation between the target catlength
and the two predictors.
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b) The predictor is highly significant in both cases:

> ## simple linear regressions

> fits1 <- lm(catlength ~ height, data=catheter)

> fits2 <- lm(catlength ~ weight, data=catheter)

> summary(fits1)

Call:

lm(formula = catlength ~ height, data = catheter)

Residuals:

Min 1Q Median 3Q Max

-7.0929 -0.7298 -0.2608 1.1652 6.6879

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.12706 4.24700 2.855 0.017090 *

height 0.23774 0.04034 5.893 0.000152 ***

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.009 on 10 degrees of freedom

Multiple R-squared: 0.7764, Adjusted R-squared: 0.7541

F-statistic: 34.73 on 1 and 10 DF, p-value: 0.0001525

> summary(fits2)

Call:

lm(formula = catlength ~ weight, data = catheter)

Residuals:

Min 1Q Median 3Q Max

-7.9676 -1.4963 -0.1386 2.0980 7.0205

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.62631 2.00264 12.796 1.59e-07 ***

weight 0.61613 0.09759 6.313 8.75e-05 ***

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.797 on 10 degrees of freedom

Multiple R-squared: 0.7994, Adjusted R-squared: 0.7794

F-statistic: 39.86 on 1 and 10 DF, p-value: 8.755e-05

c) > ## multiple regression

> fit <- lm(catlength ~ height + weight, data=catheter)

> summary(fit)

Call:

lm(formula = catlength ~ height + weight, data = catheter)

Residuals:

Min 1Q Median 3Q Max

-7.0497 -1.2753 -0.2595 1.9095 6.9933

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 21.08527 8.77037 2.404 0.0396 *

height 0.07681 0.14412 0.533 0.6070

weight 0.42752 0.36810 1.161 0.2753
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---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.94 on 9 degrees of freedom

Multiple R-squared: 0.8056, Adjusted R-squared: 0.7624

F-statistic: 18.65 on 2 and 9 DF, p-value: 0.0006301

Yes, there is an influence of the predictors on the target variable overall. This is assessed by the global
F-test. Its p-value is smaller than 0.01 so that the null hypothesis is rejected at the 1% level. At least
one of the predictors is necessary.

d) As we can see from the summary output (see above), both null hypotheses are retained, i.e. the pre-
dictors are not significant. Is this a contradiction to the results from the two simple linear regressions?
No – in multiple regression the hypotheses tests assess whether we need (e.g.) the predictor height
when we already know the predictor weight. The answer is no and the same holds vice versa. On
the other hand, the global F-test indicates that we need at least one of the two predictors. So we do
not need to include both predictors simultaneously but we need one of them. This situation occurs
when the predictors are strongly correlated. Due to the smaller p-value we would prefer the predictor
weight in this case.

e) > ## prediction intervals

> newdat <- data.frame(height=120, weight=25)

> predict(fits1, newdata=newdat, interval="prediction")

fit lwr upr

1 40.65609 31.20891 50.10327

> predict(fits2, newdata=newdat, interval="prediction")

fit lwr upr

1 41.02954 32.06162 49.99747

> predict(fit, newdata=newdat, interval="prediction")

fit lwr upr

1 40.99072 31.53989 50.44154

The predictions differ slightly. We note that the prediction interval is not shortest for the multiple
regression model which one might expect since it uses the largest amount of information. However, the
multiple model requires estimating one additional parameter based on the available 12 data points.
This is associated with a larger estimation error of each single parameter. In most practical cases
the prediction accucacy increases by including an additional parameter but in our case the increased
estimation error has a stronger, negative influence. This is due to the fact that the two predictors
are strongly correlated – adding the second predictor when the first one is already present does hardly
yield additional information.

In practice, a prediction error of ± 2cm would be acceptable. Thus, the data and the models do not
allow for a prediction of catlength that is sufficiently precise.

2. a) The model shows a large systematic error, i.e. in the Tukey-Anscombe plot the smoother deviates
massively from the x-axis. In addition, the distribution of the residuals is skewed.

b) For the salt content there is an optimal amount. If the cake contains too little salt the cake does not
have a lot of taste which yields a smaller score. If the cake contains too much salt, the cake does
not taste well either. Therefore, the parameter needs to be negative – if the salt content exceeds the
optimum, the score decreases and if the salt content is smaller than the optimum the score decreases
as well.

c) There are 46 degrees of freedom and four parameters are estimated (as there are three predictors).
Thus, there are 50 observations.

d) The fitted value on the scale of the logarithmic score is:
> -0.4150 + 4.0609*3.5 + (-1.0725)*3.5∧2 + 2.0109*1

[1] 2.670925

To compute the conditional median, we reverse the log transformation:
> exp(2.670925)

[1] 14.45333
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To compute the conditional expectation, we need to add 1
2σ

2
E , i.e.

> exp(2.670925 + 0.5*2.784∧2)

[1] 696.629

e) The null hypothesis is H0 : β4 = 0 and we test against the alternative HA : β4 6= 0. We use the test
statistic for the partial F-test:

F =
n− (p+ 1)

p− q
· RSSsmall −RSSbig

RSSbig
∼ Fp−q,n−(p+1)

To compute the observed value of the test statistic, we need the residual sum of squares. It can be
computed from the residual standard error. For the small model we get: 46 · 2.7842 = 356.53 and for
the big model we get: 45 · 2.72 = 328.05. For the test statistic we then get a value of 3.907. The
p-value is:
> 1-pf(3.907, 1, 45)

[1] 0.05423324

So the null hypothesis is retained as this value is (slightly) larger than 0.05. The term that was added
in the new model is not significant and does not have to be included in the model.

3. a) > ## load data

> load("conconi2.rda")

> ## preprocess

> speed <- conconi2$Speed[c(1:19,7:26)]

> puls <- c(conconi2$Marcel.Puls[1:19], conconi2$Dani.Puls[7:26])

> runner <- factor(c(rep("Marcel",19), rep("Dani",20)))

> c2 <- data.frame(puls, speed, runner)

b) > ## perform regression

> fit1 <- lm(puls ~ speed + runner, data=c2)

> summary(fit1)

Call:

lm(formula = puls ~ speed + runner, data = c2)

Residuals:

Min 1Q Median 3Q Max

-6.364 -3.340 0.217 2.992 7.411

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.3510 3.7310 17.78 <2e-16 ***

speed 5.1611 0.2169 23.80 <2e-16 ***

runnerMarcel 37.0789 1.4096 26.30 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.811 on 36 degrees of freedom

Multiple R-squared: 0.959, Adjusted R-squared: 0.9568

F-statistic: 421.5 on 2 and 36 DF, p-value: < 2.2e-16

The main effects model assumes that both runners are identical w.r.t. the increase in pulse while the
initial pulse can differ.

c) > ## residual analysis

> par(mfrow=c(1,2))

> plot(fit1, which=1:2, pch=20)
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We observe a large systematic error. In addition, the distribution of the residuals is short-tailed in
comparison to a Normal distribution. We need to fix the systematic error which can often be achieved
by a variable transformation. In this case, however, it is more plausible that the error is rooted in a
model mispecification and can be fixed by including the interaction term.

d) > ## residual analysis

> par(mfrow=c(1,1))

> plot(fitted(fit1), resid(fit1), pch=20)

> weli <- which(c2$runner=="Marcel")

> points(fitted(fit1)[weli], resid(fit1)[weli], pch=20, col="red")

> weli1 <- which(c2$runner=="Dani")

> points(fitted(fit1)[weli1], resid(fit1)[weli1], pch=20, col="blue")

> abline(h=0, col="grey", lty=2)
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In case of Dani’s run (blue points), the pulse is underestimated at small values while for Marcel’s run
it is vice versa. This indicates that we cannot use two parallel regression lines but need to consider a
more complex model with an interaction term. This allows for different slopes of the regression lines.

e) This model assumes different initial pulses as well as different slopes, i.e. two distinct regression lines
are fitted.

> ## new model

> fit2 <- lm(puls ~ speed + runner + speed:runner, data=c2)

> ## residual analysis

> par(mfrow=c(1,2))

> plot(fit2, which=1:2, pch=20)
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The model fits well. There is only a small deviation of the smoother from the x-axis which can
be tolerated. There are four outliers in the Normal plot, i.e. four observations with large negative
residuals. These deviations were already discussed previously: recall that they were caused by not
matching the required speed exactly.

f) > summary(fit2)

Call:

lm(formula = puls ~ speed + runner + speed:runner, data = c2)

Residuals:

Min 1Q Median 3Q Max

-4.4947 -0.9034 0.2667 1.0588 3.6737

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 84.2383 2.3574 35.734 < 2e-16 ***

speed 4.0932 0.1387 29.512 < 2e-16 ***

runnerMarcel 2.3722 3.1330 0.757 0.454

speed:runnerMarcel 2.3138 0.2042 11.333 2.91e-13 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.788 on 35 degrees of freedom

Multiple R-squared: 0.9912, Adjusted R-squared: 0.9905

F-statistic: 1319 on 3 and 35 DF, p-value: < 2.2e-16

The initial pulse of Dani corresponds to the intercept, i.e. 84.2. For Marcel, the coefficient β̂2 = 2.4
needs to be added, so his initial pulse is 86.6. For Dani, the pulse increases by 4.1 beats with every
additional km/h in speed. For Marcel, the coefficient β̂3 = 2.3 needs to be added so that we get a
value of 6.4. The p-value for H0 : β3 = 0 is 3 · 10−13, i.e. the difference is highly significant.

4. a) First, we check the structure of the data frame:

> ## load data

> load("farm.rda")

> ## check properties of the data

> str(farm)

'data.frame': 451 obs. of 4 variables:

$ region : int 111 111 111 111 111 111 111 111 111 111 ...

$ industry: int 3 5 2 1 2 5 2 3 3 3 ...

$ aufwand : int 115096 75443 378857 433590 347417 327745 714462 221258 241868 194837 ...

$ ertrag : int 147652 82920 442726 649628 407836 472569 576372 241864 339215 356625 ...
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All variables are of data type “int”. This is incorrect for the factor variables region and industry

and would lead to incorrect regression results. We define the factor variables as follows:

> farm$region <- factor(farm$region)

> farm$industry <- factor(farm$industry, labels=c("Weizen", "Weizen_Schaf_Rind", "Schaf", "Rind", "Schaf_Rind"))

We now check whether transformations are needed and whether there are sufficiently many obser-
vations for all levels of the factor variables. The recommendation is that there are at least five
observations for each level.

> ## visualization

> par(mfrow=c(1,2))

> plot(table(farm$region), main="Region")

> plot(table(farm$industry), main="Industry")
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The number of observations are sufficient for all levels of the factor variables.

> ## visualization

> par(mfrow=c(2,2))

> hist(farm$aufwand, main="Aufwand", col="limegreen")

> hist(log(farm$aufwand), main="log(Aufwand)", col="limegreen")

> hist(farm$ertrag, main="Ertrag", col="limegreen")

> hist(log(farm$ertrag), main="log(Ertrag)", col="limegreen")
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The plots show that we need to apply a log transformations.

b) > ## fit main effects model

> fit <- lm(log(ertrag) ~ log(aufwand) + region + industry, data=farm)

> summary(fit)
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Call:

lm(formula = log(ertrag) ~ log(aufwand) + region + industry,

data = farm)

Residuals:

Min 1Q Median 3Q Max

-1.43881 -0.17143 0.03773 0.22168 1.47317

Coefficients:

Estimate Std. Error t value

(Intercept) 1.379636 0.248432 5.553

log(aufwand) 0.917954 0.018617 49.306

region121 -0.076883 0.077353 -0.994

region122 -0.082997 0.076912 -1.079

region123 -0.036680 0.076151 -0.482

region131 -0.003855 0.079775 -0.048

region132 -0.243938 0.100536 -2.426

industryWeizen_Schaf_Rind -0.155614 0.068023 -2.288

industrySchaf -0.222879 0.071421 -3.121

industryRind 0.002649 0.075844 0.035

industrySchaf_Rind -0.171106 0.072947 -2.346

Pr(>|t|)

(Intercept) 4.86e-08 ***

log(aufwand) < 2e-16 ***

region121 0.32081

region122 0.28113

region123 0.63027

region131 0.96148

region132 0.01565 *

industryWeizen_Schaf_Rind 0.02263 *

industrySchaf 0.00192 **

industryRind 0.97215

industrySchaf_Rind 0.01944 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3612 on 440 degrees of freedom

Multiple R-squared: 0.8712, Adjusted R-squared: 0.8683

F-statistic: 297.7 on 10 and 440 DF, p-value: < 2.2e-16

> ## residual analysis

> par(mfrow=c(1,2))

> plot(fit, which=1, caption="", main="Residuals vs. Fitted")

> plot(fit, which=2, caption="", main="Normal Plot")
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The Tukey-Anscombe plot does not indicate the presence of a systematic error. The Normal plot
shows that the distribution of the residuals is skewed to the left and there is one large positive outlier
(no. 43). In summary, the assumptions seem to be fulfilled to a sufficient degree but not entirely.

c) > ## predict

> newdat <- data.frame(aufwand=10^5, region="111", industry="Rind")

> predi <- predict(fit, newdata=newdat)

> exp(predi + 0.5*summary(fit)$sigma^2)

1

165357.7

Using predict() we obtain the prediction on the log scale. We thus need to transform the value
back to the original scale. So the expected revenue is 165’357.7 Dollar.

d) > drop1(fit, test="F")

Single term deletions

Model:

log(ertrag) ~ log(aufwand) + region + industry

Df Sum of Sq RSS AIC F value

<none> 57.41 -907.62

log(aufwand) 1 317.21 374.62 -63.69 2431.0923

region 5 1.36 58.77 -907.03 2.0906

industry 4 2.77 60.18 -894.39 5.3007

Pr(>F)

<none>

log(aufwand) < 2.2e-16 ***

region 0.0655074 .

industry 0.0003542 ***

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The predictor region is not significant as can be seen from the p-value 0.0655 of the partial F-test.

e) • 31 parameters are estimated as the model has 420 degrees of freedom and there are 451 observa-
tions.

• We have sufficiently many observations as there are more than five observations for every estimated
parameter.

• To test the interaction term we need to do a partial F-test. We could do this explicitly with the
command anova() but using drop1() is more convenient:

> ## option 1

> f.big <- lm(log(ertrag) ~ log(aufwand) + region + industry + region:industry, data=farm)

> f.small <- lm(log(ertrag) ~ log(aufwand) + region + industry, data=farm)

> anova(f.small, f.big)
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Analysis of Variance Table

Model 1: log(ertrag) ~ log(aufwand) + region + industry

Model 2: log(ertrag) ~ log(aufwand) + region + industry + region:industry

Res.Df RSS Df Sum of Sq F Pr(>F)

1 440 57.411

2 420 54.540 20 2.8706 1.1053 0.3404

> # option 2

> drop1(f.big, test="F")

Single term deletions

Model:

log(ertrag) ~ log(aufwand) + region + industry + region:industry

Df Sum of Sq RSS AIC F value

<none> 54.54 -890.75

log(aufwand) 1 303.467 358.01 -44.14 2336.9109

region:industry 20 2.871 57.41 -907.62 1.1053

Pr(>F)

<none>

log(aufwand) <2e-16 ***

region:industry 0.3404

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The interaction term is not significant and can be excluded from the model.

• The intuitive meaning of the interaction term is that region and industry do not influence revenue
independently and additively but that the influence of industry differs between regions. However,
as we have seen this is not the case for this data set.

f) The interaction term is not significant as we have seen above. So we exclude it and are left with
the main effects model. Also for this model, we have seen that region is not significant, so we
will exclude it as well. This leaves the model where the (logarithmic) revenue is explained with the
(logarithmic) costs and the industry. In this model both predictors are significant. That is why we
decide to use this model.


