Dr. Marcel Dettling

Solution to Series 8

1. Logistic Regression for Binary Data

a) We fit a logistic regression for the binary variable purchase with predictors income and age:

```
> car <- read.table("http://stat.ethz.ch/Teaching/Datasets/car.dat",header=T)</pre>
> fit <- glm(purchase ~ income + age, data=car, family=binomial)
> summary(fit)
Call:
glm(formula = purchase ~ income + age, family = binomial, data = car)
Deviance Residuals:
   Min
          1Q Median
                              30
                                      Max
-1.6189 -0.8949 -0.5880 0.9653
                                   2.0846
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.73931 2.10195 -2.255 0.0242 *
income 0.06773 0.02806 2.414
                                       0.0158 *
           0.59863 0.39007 1.535
                                       0.1249
age
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 44.987 on 32 degrees of freedom
Residual deviance: 36.690 on 30 degrees of freedom
AIC: 42.69
```

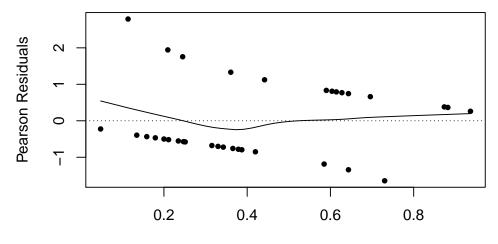
Number of Fisher Scoring iterations: 4

We can read off the coefficients from the regression output. The regression equation is: $\log(\frac{\hat{p}}{1-\hat{w}}) = -4.74 + 0.068 \cdot income + 0.599 \cdot age.$

- b) $\exp(\hat{\beta}_{income}) = e^{0.068} = 1.07$ and $\exp(\hat{\beta}_{age}) = e^{0.599} = 1.82$ are the relative changes of the odds of buying a new car for an increase of one unit in income and age respectively. I.e. the odds for buying a new car increase by 7% for each increase of income by 1000 USD. The odds increase by 82% for each additional year of age of the oldest car.
- c) > predict(fit, data.frame(age=3,income=50),type="response")

1 0.6090245

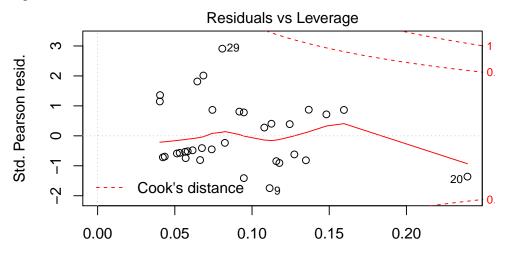
d) We first look at the Tukey-Anscombe plot with Pearson residuals:



Fitted Probabilities

There is no evidence that assumptions aren't satisfied: the expectation does not seem to deviate much from zero. Also, most residuals have an absolute value that is smaller than 2. Finally, we check for influential observations:

> plot(fit, which=5)



Leverage

There seem to be no influential data points, just one outlier without influence. e) We perform deviance-based significance tests using the function drop1:

```
> drop1(fit, test="Chisq")
Single term deletions
```

```
Model:
purchase ~ income + age
                              LRT Pr(>Chi)
       Df Deviance
                       AIC
            36.690 42.690
<none>
                                   0.00397 **
            44.987 48.987 8.2976
income
        1
            39.305 43.305 2.6149
                                   0.10586
age
        1
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The p-value for age is quite high, so it might not be a significant predictor in this model. However, these tests are only approximate, so the results should not be overestimated.

 ${f f}$) We first fit a new model with an interaction term, and then perform an Anova:

```
> fit2 = glm(purchase ~ income + age + income:age, data=car, family=binomial)
> summary(fit2)
```

```
Call:
      glm(formula = purchase ~ income + age + income:age, family = binomial,
          data = car)
      Deviance Residuals:
          Min 1Q Median
                                       ЗQ
                                                Max
                                            1.9924
      -1.6096 -0.8222 -0.5334
                                   0.8731
      Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
      (Intercept) -2.372993 2.862477 -0.829
                                                    0.407
                   0.001326
                             0.064770 0.020
                                                    0.984
      income
                  -0.303860
                             0.890512 -0.341
                                                    0.733
      age
      income:age 0.028860 0.026493 1.089
                                                    0.276
      (Dispersion parameter for binomial family taken to be 1)
           Null deviance: 44.987 on 32
                                         degrees of freedom
      Residual deviance: 35.404 on 29 degrees of freedom
      AIC: 43.404
      Number of Fisher Scoring iterations: 4
      > anova(fit, fit2, test="Chisq")
      Analysis of Deviance Table
      Model 1: purchase ~ income + age
      Model 2: purchase ~ income + age + income:age
        Resid. Df Resid. Dev Df Deviance Pr(>Chi)
                       36,690
               30
      1
                29
                       35.404 1
      2
                                   1.2855
                                            0.2569
      The p-value is large, so we cannot reject the null hypothesis that the two models are equal. Hence,
      there does not seem to be a significant interaction between income and age.
2. a) > hyper.tbl <- cbind(n.hyper=n.hyper, n.nohyper=n.total-n.hyper)
      > hyper.tbl
           n.hyper n.nohyper
      [1,]
                 5
                           55
      [2,]
                 2
                           15
      [3,]
                 1
                           7
      [4,]
                35
                          152
      [5,]
                13
                           72
      [6,]
                15
                           36
      [7,]
                 8
                           15
      Note that the first column denotes the number of "successes", while the second column the number
      of "failures".
   b) > glm.hyp <- glm(hyper.tbl ~ smoking+obesity+snoring,family="binomial")</pre>
      > summary(glm.hyp)
      Call:
      glm(formula = hyper.tbl ~ smoking + obesity + snoring, family = "binomial")
      Deviance Residuals:
                                  3
                                            4
                                                       5
                                                                 6
                        2
             1
                          0.02847 -0.21903 -0.63361 0.32485
       0.50780
                  0.10458
             7
       0.51753
```

```
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.6433 0.4090 -6.462 1.03e-10 ***
smokingYes
             0.5488
                       0.3132 1.752 0.07976 .
obesityYes
             0.6668
                       0.3455 1.930 0.05360 .
             1.1184
                       0.3656 3.059 0.00222 **
snoringYes
___
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 13.3181 on 6 degrees of freedom
Residual deviance: 1.0924 on 3
                                degrees of freedom
AIC: 34.011
Number of Fisher Scoring iterations: 4
```

Here, we model the expected value of the proportion of people with hypertension (using the logit function) as a function of the predictors smoking, obesity, and snoring. Now, we use the residual deviance to assess the goodness-of-fit. Note that the number of observations in every batch is larger than 5. Therefore, the Chi-square test is valid in this case.

> pchisq(deviance(glm.hyp), df.residual(glm.hyp), lower=FALSE)

[1] 0.7789051

The Chi-square test for the Residual deviance gives a p-value larger than 0.05, so we can conclude that the model fits well.

c) First we perform a Chi-squared test for the Null deviance to check whether any of the predictors have an influence on the response variable:

> pchisq(glm.hyp\$null.deviance-glm.hyp\$dev,df=(glm.hyp\$df.null-glm.hyp\$df.res),lower=FALSE)
[1] 0.006648823

The p-value is smaller than 0.05, which tells us that there is at least one significant predictor in our model.

Now we do deviance based individual tests for each of the predictors:

```
> D<- drop1(glm.hyp,test="Chisq")</pre>
> D
Single term deletions
Model:
hyper.tbl ~ smoking + obesity + snoring
                              LRT Pr(>Chi)
       Df Deviance
                      AIC
<none>
            1.0924 34.011
smoking 1 4.2010 35.120 3.1086 0.07788.
obesity 1 4.8781 35.797 3.7857 0.05169.
snoring 1 11.4062 42.325 10.3138 0.00132 **
___
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The predictor smoking does not have a significant influence on the response, the p-value for obesity is smaller but still not significant at the 5% level. The predictor snoring is significant.

d) First we exclude smoking from the model.

```
> glm.hyp2 <- glm(hyper.tbl ~ obesity+snoring,family="binomial")
> summary(glm.hyp2)
Call:
glm(formula = hyper.tbl ~ obesity + snoring, family = "binomial")
```

Deviance Residuals:

2 5 6 1 3 4 -0.28404 0.32506 -0.44798 0.13068 -1.21440 1.52066 -0.09844Coefficients: Estimate Std. Error z value Pr(>|z|)0.3121 -7.267 3.69e-13 *** -2.2676 (Intercept) obesityYes 0.7745 0.3225 2.401 0.0163 * snoringYes 0.9075 0.3240 2.801 0.0051 ** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 13.318 on 6 degrees of freedom Residual deviance: 4.201 on 4 degrees of freedom AIC: 35.12 Number of Fisher Scoring iterations: 4 > drop1(glm.hyp2,test="Chisq") Single term deletions Model: hyper.tbl ~ obesity + snoring Df Deviance AIC LRT Pr(>Chi) 4.201 35.120 <none> 10.251 39.170 6.0503 0.013904 * obesity 1 12.303 41.222 8.1021 0.004421 ** snoring 1 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 We note that smoking was covering some of the explanatory power of obesity, which is now significant. Now we check again the goodness of fit of the model without the predictor smoking. > pchisq(deviance(glm.hyp2), df.residual(glm.hyp2), lower=FALSE) [1] 0.3794888 > pchisq(glm.hyp2\$null.deviance,glm.hyp2\$df.null,lower=FALSE) [1] 0.03825404 The model without the predictor smoking fits sufficiently well. Moreover, the result of the Chi-squared test for the Null deviance and both deviance based individual tests are significant. Therefore, we only include the variables obesity and snoring in our model. e) > fitted(glm.hyp2)-n.hyper/n.total 2 1 3 4 0.010508367 -0.023805358 0.058457380 -0.003708396 5 6 7 0.051280802 -0.089895669 0.009817867 > data.frame(fit=fitted(glm.hyp2) * n.total, n.hyper, n.total) fit n.hyper n.total 1 5.630502 5 60 2 2 1.595309 17

 1
 5.050502
 5
 60

 2
 1.595309
 2
 17

 3
 1.467659
 1
 8

 4
 34.306530
 35
 187

 5
 17.358868
 13
 85

 6
 10.415321
 15
 51

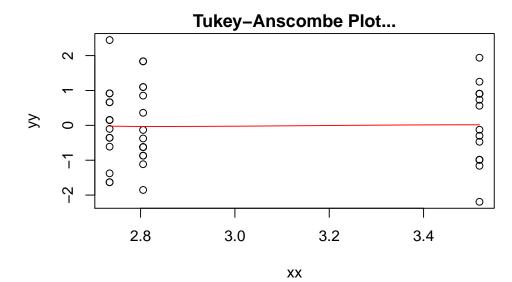
 7
 8.225811
 8
 23

3. Poisson Regression

a) Since we have discrete count data (and an unknown maximum), we fit a Poisson regression model. I.e. we model the logarithm of the rate \u03c0 as a linear function of the predictors. We start with the categorical variable sample as the only predictor, i.e. we estimate the rate in each of the three samples batches.

```
> # Read in the data
> count <- c(31,28,33,38,28,32,39,27,28,39,21,39,45,37,
           41, 14, 16, 18, 9, 21, 21, 14, 12, 13, 13, 14, 20, 24,
           15,24,18,13,19,14,15,16,14,19,25,16,16,18,9,10,9)
> probe <- factor(rep(1:3, each = 15))</pre>
> vol <- c(rep(40,15), rep(20,30))
> nema <- data.frame(probe,count,vol)</pre>
> # Fit Poisson Regression Model
> mod1 <- glm(count~probe, family=poisson, data=nema)</pre>
> summary(mod1)
Call:
glm(formula = count ~ probe, family = poisson, data = nema)
Deviance Residuals:
    Min 1Q Median
                                 30
                                          Max
-2.3580 -0.9031 -0.1267
                             0.8846
                                       2.2417
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.51849 0.04446 79.146 <2e-16 ***
                        0.07751 -9.200
                                           <2e-16 ***
probe2
            -0.71311
probe3
            -0.78412
                       0.07941 -9.875
                                          <2e-16 ***
___
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 188.602 on 44 degrees of freedom
Residual deviance: 52.528 on 42 degrees of freedom
AIC: 276.14
Number of Fisher Scoring iterations: 4
The residual deviance is on the order of the degrees of freedom, suggesting that the model fits well.
Indeed, we cannot reject the null hypothesis, that the model fits:
> pchisq(deviance(mod1), df.residual(mod1), lower=FALSE)
[1] 0.127964
Also, looking at the Tukey-Anscombe plot, it seems plausible that the Pearson residuals follow a
standard Normal distribution:
```

```
> xx <- predict(mod1, type="link")
> yy <- resid(mod1, type="pearson")
> plot(xx, yy, main="Tukey-Anscombe Plot...")
> lines(loess.smooth(xx, yy), col="red")
```



- b) There is a large difference between probe 1 and the other two. However, probe 1 has a different volume which could account for the observed difference.
- c) We now model the log-rate as a linear function of the log-volume, i.e.

$$\lambda_i = \exp(\beta_0 + \beta_1 \log \operatorname{vol}_i) \tag{1}$$

```
> mod2 <- glm(count~log(vol), family=poisson, data=nema)</pre>
> summary(mod2)
Call:
glm(formula = count ~ log(vol), family = poisson, data = nema)
Deviance Residuals:
              1Q
                                ЗQ
   Min
                   Median
                                        Max
-2.3580 -0.7674 -0.1267
                            0.7368
                                     2.0861
Coefficients:
            Estimate Std. Error z value Pr(|z|)
(Intercept) -0.46223
                        0.30991 -1.491
                                           0.136
log(vol)
             1.07911
                        0.09197 11.733
                                          <2e-16 ***
___
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 188.602 on 44 degrees of freedom
Residual deviance: 53.131 on 43 degrees of freedom
AIC: 274.74
```

Number of Fisher Scoring iterations: 4

Again, judging from the residual deviance, the model fits well.

d) If we re-write the model equation $\left(1\right)$ from the last part, we get:

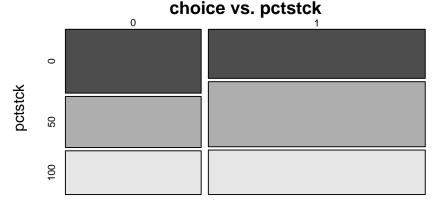
$$\lambda_i = e^{\beta_0} \cdot \operatorname{vol}_i^{\beta_1}$$

Hence, for $\beta_1 = 1$, λ is proportional to vol. We check whether $\beta_1 = 1$ is reasonable by computing its confidence interval:

The confidence interval for β_1 does include 1, so $\lambda = c \cdot \text{vol}$ seems to be a reasonable approximation (where $c = e^{\beta_0}$).

e) We now fit the model $\lambda = c \cdot \text{vol}$ by constraining β_1 to 1:

```
> mod3 <- glm(count~offset(log(vol)), family=poisson, data=nema)</pre>
      > summary(mod3)
      Call:
      glm(formula = count ~ offset(log(vol)), family = poisson, data = nema)
      Deviance Residuals:
          Min
                    1Q
                         Median
                                       ЗQ
                                                Max
      -2.2127 -0.8656 -0.1033 0.8548
                                             2.0091
      Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
      (Intercept) -0.19744 0.03186 -6.196 5.78e-10 ***
      Signif. codes:
      0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
      (Dispersion parameter for poisson family taken to be 1)
          Null deviance: 53.871 on 44 degrees of freedom
      Residual deviance: 53.871 on 44 degrees of freedom
      AIC: 273.48
      Number of Fisher Scoring iterations: 4
      We get a very similar residual deviance as before, so also this model fits well.
4. a) > library(foreign)
      > pension <- read.dta("http://fmwww.bc.edu/ec-p/data/wooldridge2k/pension.dta")
      > pension$pctstck <- factor(pension$pctstck)</pre>
      > pension$choice <- factor(pension$choice)</pre>
      > pension$female <- factor(pension$female)</pre>
      > pension$married <- factor(pension$married)</pre>
      > pension$black <- factor(pension$black)</pre>
      > pension$prftshr <- factor(pension$prftshr)</pre>
      > table(pension$choice,pension$pctstck)
            0 50 100
        0 35 28 24
        1 43 57 39
      > prop.table(table(pension$choice,pension$pctstck),1)
                   0
                            50
                                      100
        0 0.4022989 0.3218391 0.2758621
        1 0.3093525 0.4100719 0.2805755
      > mosaicplot(table(pension$choice,pension$pctstck), color=TRUE,
                   main="choice vs. pctstck",xlab="choice",ylab="pctstck")
```



People with freedom to choose their investment strategy avoid portfolios mainly consisting on obligations.

```
b) > pension$inc <- rep(NA,226)
   > pension$inc[pension$finc25==1] <- 1</pre>
   > pension$inc[pension$finc35==1 | pension$finc50==1] <- 2</pre>
   > pension$inc[pension$finc75==1 | pension$finc100==1 | pension$finc101==1] <- 3
   > pension$inc <- factor(pension$inc,labels=
                           c("below 25'000","25'000 to 50'000", "above 50'000"))
   > table(pension$inc,pension$pctstck)
                        0 50 100
     below 25'000
                      22 9 14
     25'000 to 50'000 28 37
                            28
     above 50'000
                      19 33 15
   > prop.table(table(pension$inc,pension$pctstck),1)
                               0
                                         50
                                                  100
     below 25'000
                      0.4888889 0.2000000 0.3111111
     25'000 to 50'000 0.3010753 0.3978495 0.3010753
     above 50'000
                      0.2835821 0.4925373 0.2238806
   > mosaicplot(table(pension$inc,pension$pctstck), color=TRUE,
               main="income vs. pctstck",xlab="income",ylab="pctstck")
                                income vs. pctstck
                  below 25'000
                                    25'000 to 50'000
                                                          above 50'000
              0
         pctstck
              50
              00
```

income

From the mosaic plots we can clearly see that people with a higher income are more likely to have mixed investment strategies.

```
c) > library(nnet)
  > pension$pct <- factor(pension$pctstck, levels = c("50", "0", "100"),</pre>
                         ordered = FALSE)
  > str(pension)
  'data.frame':
                      226 obs. of 21 variables:
          : int 38 152 152 182 222 226 233 233 253 314 ...
   $ id
   $ pyears : int 1 6 25 20 35 13 2 10 26 5 ...
   $ prftshr : Factor w/ 2 levels "0","1": 1 2 2 2 1 2 1 2 1 1 ...
   $ choice : Factor w/ 2 levels "0","1": 2 2 2 1 2 1 2 1 1 2 ...
   $ female : Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 2 2 1 ...
   $ married : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 ...
             : int 64 56 56 63 67 64 64 64 69 60 ...
   $ age
             : int 12 13 12 12 12 11 12 12 12 14 ...
   $ educ
   $ finc25 : int 0 0 0 1 0 0 1 1 0 0 ...
   $ finc35 : int 0 0 0 0 1 0 0 0 1 0 ...
   $ finc50 : int 100000000...
   $ finc75 : int 0 1 1 0 0 1 0 0 0 0 ...
   $ finc100 : int 0000000000 ...
   $ finc101 : int 0 0 0 0 0 0 0 0 1 ...
   $ wealth89: num 77.9 154.9 154.9 232.5 179 ...
   $ black : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 ...
   $ stckin89: int 1 1 1 1 0 1 0 0 0 1 ...
   $ irain89 : int 1 1 1 1 1 0 1 1 0 1 ...
   $ pctstck : Factor w/ 3 levels "0","50","100": 1 2 2 3 3 1 3 3 2 2 ...
           : Factor w/ 3 levels "below 25'000",..: 2 3 3 1 2 3 1 1 2 3 ...
   $ inc
   $ pct
             : Factor w/ 3 levels "50","0","100": 2 1 1 3 3 2 3 3 1 1 ...
   - attr(*, "datalabel")= chr ""
   - attr(*, "time.stamp")= chr " 3 Dec 2001 14:45"
   - attr(*, "formats")= chr "%9.0g" "%9.0g" "%9.0g" "%9.0g" ...
   - attr(*, "types")= int 105 98 98 98 98 98 98 98 98 ...
   - attr(*, "val.labels")= chr "" "" "" "" ...
   - attr(*, "var.labels")= chr "family identifier" "years in pension plan" "=1 if profit shari
   - attr(*, "version")= int 6
```

Here, we re-arrange the levels because R automatically takes the first one as the baseline. The predictors **age** and **educ** are counts, therefore we transform them:

```
> pension$age <- sqrt(pension$age)</pre>
> pension$educ <- sqrt(pension$educ)</pre>
Now we fit a multinomial logit model:
> mod1 <- multinom(pct~choice+age+educ+female+married+black+inc</pre>
                   +wealth89+prftshr, data=pension)
# weights: 36 (22 variable)
initial value 202.144661
iter 10 value 184.319612
iter 20 value 182.233592
iter 30 value 182.021332
final value 182.021109
converged
> summary(mod1)
Call:
multinom(formula = pct ~ choice + age + educ + female + married +
    black + inc + wealth89 + prftshr, data = pension)
Coefficients:
    (Intercept)
                    choice1
                                              educ
                                                       female1
                                    age
      -6.506605 \ -0.4755586 \ 1.5645957 \ -1.1083136 \ -0.2291351
0
100
       5.305235 0.1169744 -0.3346569 -0.6171987 -0.2234747
                    black1 inc25'000 to 50'000
      married1
```

```
-0.7207851 -0.45888909
   0
                                          -1.274006
   100 -0.5213525 0.02713282
                                          -0.557277
       incabove 50'000
                            wealth89 prftshr1
   0
            -1.0767704 0.0008916188 0.2189576
            -0.9811298 0.0005537250 1.2438281
   100
   Std. Errors:
       (Intercept)
                                                      female1
                      choice1
                                     age
                                               educ
   0
        0.02298326 0.4197700 0.2780089 0.5681811 0.4238711
   100 0.02599240 0.4309903 0.2866715 0.5774954 0.4299014
        married1
                     black1 inc25'000 to 50'000 incabove 50'000
       0.5605508 0.6947724
                                       0.5548439
   0
                                                        0.6468224
   100 0.5507528 0.6439294
                                       0.5767501
                                                        0.6878132
           wealth89 prftshr1
       0.0008073750 0.5448665
   0
   100 0.0008984634 0.5120854
   Residual Deviance: 364.0422
   AIC: 408.0422
d) > mod2 <- multinom(pct<sup>a</sup>ge+educ+female+married+black+inc+wealth89+prftshr, data=pension)
   # weights: 33 (20 variable)
   initial value 202.144661
   iter 10 value 185.178630
   iter 20 value 183.167364
   iter 30 value 183.084823
   final value 183.084802
   converged
   > pchisq(deviance(mod2) - deviance(mod1), mod1$edf - mod2$edf, lower=FALSE)
   [1] 0.3451787
   From the deviance differences based Chi-squared test we can see that the predictor choice is not
   significant.
   Looking at the summary output of mod1, we can see that, on the one hand, the odds of an
   investment strategy consisting mainly in obligations versus a mixed one decrease by 42\% (e^{-0.53} =
   (0.58) when the people have the freedom to choose their investment strategy. On the other hand,
   the odds of investment strategies consisting mainly in stocks versus mixed one increase about
   14% (e^{0.13} = 1.14) when the people can choose their strategy.
e) > predict(mod1,type="probs",newdata=data.frame(choice="0",age=
                                  sqrt(60), educ=sqrt(13.5),
                                  female="0",married="0",
                                  black="0",inc="above 50'000",
                                  wealth89=200,prftshr="1"))
          50
                      0
                               100
   0.1775220 0.4199362 0.4025418
   > predict(mod1,type="probs",newdata=data.frame(choice="1",age=
                                  sqrt(60), educ= sqrt(13.5),
                                  female="0",married="0",
                                  black="0", inc="above 50'000",
                                  wealth89=200,prftshr="1"))
```

11

```
0.1992342 0.2929292 0.5078366
```

Ω

50

Or we can also obtain from R the level of the response for which the probability is maximized:

```
> predict(mod1,type="class",newdata=data.frame(choice="0",age=
```

100

```
sqrt(60), educ=sqrt(13.5),
female="0",married="0",
black="0",inc="above 50'000",
wealth89=200,prftshr="1"))
```

Levels: 50 0 100

For this person the probability of having a mixed investment strategy increases and the probability of having a strategy mainly consisting of obligations decreases when we specify that he had the freedom to choose his strategy.