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Generalized Additive Modelling (GAM)
Motivation:
We require a flexible regression method, similar to 1-dimensional 
smoothing, that also works in multiple regression setting.  

Background:
The generic multiple regression formula is:

As we have argued before, this is a too challenging problem, as 
there are just too many functions        . While in simple regression, 
visualization of the function is feasible, this is no longer the case in 
a multiple regression where           (“curse of dimensionality”).
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Solution 1: Linear Modelling with OLS
The canoncical approach for solving the multiple regression 
problem lies in using parametric linear models such as:

As we know, the predictors      may be transformed in any 
arbitrary way. However, there is no way around exactly 
specifying these transformations.

Since these models are linear in the parameters                   ,
there is (under some mild conditions) an analytical and unique 
solution if the OLS algorithm is used.
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Solution 2: GAM
A Generalized Linear Model is based on the following:

Here,          are smooth, flexible, 1-dimensional functions that 
don’t need to be explicitly defined by the user, but can be 
determined from the data in an explorative fashion. 

There are several approaches to determine the         . Some are 
better, some are worse. The most popular approach is based on 
cubic splines, as explained on the next few slides… 
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Simple (1-dimensional) GAM
We first explain the concept in 1-dimension, i.e. we only require 
to fit        . This is somewhat similar to smooting, but here we 
actually require a formula and not just visualization.

A very powerful approach is to express         using some simple 
basis functions (i.e. transformations of     ):

Here,      are some unknown coefficients that are to be estimated 
from data. Moreover,         are arbitrary but explicitly specified 
basis functions. The choice of      and the complexity of
controls the fit to the data. 
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Polynomial Basis Functions
A simple, yet intuitive choice for the basis functions          is given 
by powers of     , i.e. fitting a polynomial. In particular:

, resp. 

Polynomial basis functions have the following properties:

• They allow for a flexible, data-adaptive fit!!!

• Since each of the basis functions                    extends over
the entire range of predictor     , we may observe some erratic 
behavior, especially at the boundaries. 

• Some simulations results illustrate these drawbacks…
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Example 1
True functional relation:  33sin(2 )y x E 



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

f(x
)

8Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2015 – Generalized Additive Modelling

Example 2
True function relation: Density function of   2(0.5,0.15 )N
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Smoothing with Polynomial Basis Functions
Funktionale Form: Dichtefunktion 2(0.5,0.15 )N
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Smoothing with Polynomial Basis Functions
Funktionale Form: Dichtefunktion 2(0.5,0.15 )N
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Resampling on Example 1
Funktionale Form: Dichtefunktion 2(0.5,0.15 )N
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Resampling on Example 2
Funktionale Form: Dichtefunktion 2(0.5,0.15 )N
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What is a Better Alternative?
As the simulation results have shown us, using polynomial basis 
functions has some severe drawbacks and will not results in a 
fruitful generalized multiple regression approach. 

Idea: why not using basis functions that minimize

This criterion implements a trade-off between goodness-of-fit 
and smoothness of the function. Attractive, but how can we 
find a solution?

 The solution will always be a cubic B-spline!!!
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Regression Splines
We define a basis consisting of cubic B-splines on the interval

by imposing the following conditions on the knots, which 
are fixed at the observations               :

1) Each of the basis functions must be different from zero only 
over a range of 4 knots, so that its influence remains local. 

2) The basic form of          is a local polynomial of third order. 

3) These basis functions are twice continuously differentiable
at each of the knots. This implies smoothness of the fit
consisting of numerous local functions.

4) The integral over all basis functions shall be equal to 1.  
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Generating a Spline Basis
In R, such a regression spline basis can be generated conveniently:   

> set.seed(21)
> library (splines)
> funky <- function(x) sin(2*pi*x^3)^3
> xx <- seq (0, 1, by=0.01)
> yy <- funky(xx) + 0.1*rnorm (101)
> kn <-c(0,0,0,0,.2,.4,.5,.6,.7,.8,.85,.9,1,1,1,1)
> bx <- splineDesign (kn, xx)
> gs <- lm (yy ~ bx)
> matplot(xx, bx, type="l")
> matplot(xx, cbind (yy, gs$fit), type="pl")
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Spline Basis and Resulting Fit
Funktionale Form: Dichtefunktion 2(0.5,0.15 )N
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GAM Using a Spline Basis
In practice, we will rarely be satisfied with simple models, but 
require fitting multiple predictor GAMs. The idea is as follows:

The principle is that for each predictor     , we will have a flexible 
and exploratively determined contribution         that is rooted on
a basis consisting of cubic B-splines with correct complexity.
There is an excellent implementation in R…

How can this model be estimated?

How can one determine the correct smoothness of         ?  
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Backfitting-Algorithm
There is no single step solution to a multiple predictor GAM. 
We pursue an iterative approach that is based on stepwise
solution of 1-dimensional problems:

1) Initialize             and                for all

2) Repeat for all                  until convergence:
- Compute
- Solve the 1-dimensional problem for          on
- Center  

Note: the solution will only be identifiable if 
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Implementation in library(mgcv)
• The backfitting-algorithm and in particular R function gam()

also allows for having parametric terms in the model.

• The estimation in R package mgcv is not based on the 
backfitting algorithm specified above, but on the more 
sophisticated Lanczos approach (w/o details here…).

• Syntax: fit <- gam(resp ~ s(p1) + s(p2) + p3, data=ex)

• The complexity of the spline basis for each component will
be estimated exploratively using cross validation. It may be 
overruled by typing s(p1, df=…).
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Example: Prestige Data 
> fit <- gam(prestige ~ s(income) + s(education), data=…)
> summary(fit)
Family: gaussian; Link function: identity 
Formula: prestige ~ s(income) + s(education)
---
Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  46.8333     0.6889   67.98   <2e-16 ***
---
Approximate significance of smooth terms:

edf Ref.df F  p-value    
s(income)    3.118  3.877 15.29 8.94e-10 ***
s(education) 3.177  3.952 38.34  < 2e-16 ***
---
R-sq.(adj) =  0.836   Deviance explained = 84.7%
GCV = 52.143  Scale est. = 48.414    n = 102
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Example: Partial Residual Plots
> plot(fit, shade=TRUE, residuals=TRUE, pch=20, main=…)
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Example: Residual Analysis
> gam.check(fit, pch=20, rep=100)

Method: GCV   Optimizer: magic

Smoothing parameter selection converged after 4 iterations
The RMS GCV score gradiant at convergence was 9.783945e-05
The Hessian was positive definite.

The estimated model rank was 19 (maximum possible: 19)
Model rank =  19 / 19 

Basis dimension (k) checking results. 
Low p-value (k-index<1) may indicate that k is too low, 
especially if edf is close to k'.

k'   edf k-index p-value
s(income)    9.000 3.118   0.981    0.36
s(education) 9.000 3.177   1.025    0.61



-10 0 10

-2
0

0
20

theoretical quantiles

de
vi

an
ce

 re
si

du
al

s

30 40 50 60 70 80

-1
5

0
10

Resids vs. linear pred.

linear predictor

re
si

du
al

s
Histogram of residuals

Residuals

Fr
eq

ue
nc

y

-20 -10 0 10 20

0
20

30 40 50 60 70 80

20
60

Response vs. Fitted Values

Fitted Values

R
es

po
ns

e

23Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2015 – Generalized Additive Modelling

Example: Residual Analysis
> gam.check(fit, pch=20, rep=100)
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Example: Visualizing the Fit
> vis.gam(fit, theta=45, phi=30)
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2-Dimensional Fit Visualization

Note: both predictors
contribute in a non-
linear fashion, but
model is additive!
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Testen for Linearity
Function gam() determines the degrees of freedom for each of 
the predictors data-adaptively. If no flexibility is required, we can 
obtain df=1. In that case, the predictor contributes linearly. 

However, in many situations one may be interested in formally 
testing whether a GAM yields a better fit than using OLS. This 
can be done on the basis of a test that gauges RSS versus the 
degrees of freedom of the respective models.
> fit
Estimated degrees of freedom:
3.12 3.18  total = 7.3 

The GAM for the Prestige data spends 7.3 degrees of freedom. 
The competing OLS model only takes 3 of them!!!



26Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2015 – Generalized Additive Modelling

Testen for Linearity
> fit.ols <- gam(prestige ~ income + education, data=…)

Family: gaussian; Link function: identity 
Formula: prestige ~ income + education
Total model degrees of freedom 3 
GCV score: 62.84693     

> deviance(fit.ols)
[1] 6038.851

> dd <- deviance(fit.ols)-deviance(fit); dd
[1] 1453.856

> 1-pchisq(dd, 7.3-3)
[1] 0

The GAM has a highly significant edge on OLS. However, we 
need to use variable transformations in the OLS model.



27Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2015 – Generalized Additive Modelling

Testen for Linearity
There is some alternative (better) functionality that carries out the 
test for linearity as a one-line-command:
> anova(fit.ols, fit, test="Chisq")
Analysis of Deviance Table

Model 1: prestige ~ income + education
Model 2: prestige ~ s(income) + s(education)

Resid. Df Resid. Dev     Df Deviance  Pr(>Chi)    
1    99.000     6038.9                              
2    94.705     4585.0 4.2951   1453.9 6.783e-06 *** 

As we can see, the computed value for the test statistic is 
identical to the one one the previous slide. There is some 
rounding-based difference in the p-value, though.
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Non-Numerical Response Variable
 So far, the response was a continuous random variable 

with infinite range, where the conditional distribution was 
a Gaussian, i.e.                                , see next slide.

 If the task is modeling binary, binary or multinomial response
(i.e. probabilities or proportions) or a count, this is not doable
correctly with the methods that were discussed yet.

 We will present some additional techniques which implement
linear modeling for these different types of responses. As we
will see, there is a generic framework that incorporates all of 
these, as well as multiple linear regression.
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Conditional Gaussian Distribution
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Binary Response / Logistic Regression
What is the question?
In toxicological studies, one tries to infer wheter a lab mouse
survives when it is given a particular dose of poisonous matter.
In human medicine, one is often interested in the question how
much of a drug is required to see an effect, i.e. pain reduction.

Mathematics:
 The response variable                  is binary
 The conditional distribution
 The fitted value is the expectation of the above conditional

distribution, and hence the probability of death/survival .

{0,1}iy 
| ~ ( )i i iy X Bernoulli p

ip



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dose per Body Weight in [mg/kg]

R
es

po
ns

e

Effect of Medication vs. Dose

31Marcel Dettling, Zurich University of Applied Sciences

Applied Statistical Regression
AS 2015 – Generalized Linear Modeling

Binary Response / Logistic Regression
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Count Response / Poisson Regression
What are predictors for the locations of starfish? 

 analyze the number of starfish at several locations, for which
we also have some covariates such as water temperature, ...

 the response variable is a count. The simplest model for this
assumes a Poisson as the conditional distribution.

We assume that the logged parameter at location i depends in 
a linear way on the covariates:

, where

i
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Generalized Linear Models
What is it?

• General framework for regression type modeling

• Many different response types are allowed

•  Notion: the responses' conditional expectation has a
monotone relation to a linear combination of the predictors.

• Some further requirements on variance and density of

 may seem complicated, but is very powerful!
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