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1 Introduction 

1.1 What is Regression? 

Regression analysis can be seen as the duct tape of statistics. The reason why it 
is widely used is because it may yield the answer to an everyday question, namely 
how a target value of special interest depends on several other factors or causes. 
Examples are numerous and include: 

 how fertilizer and soil quality affects the growth of plants 

 how size, location, furnishment and age affect apartment rents 

 how age, sex, experience and nationality affect car insurance premiums 

In all quantitative settings, regression techniques can provide an answer to these 
questions. They describe the relation between some explanatory or predictor 
variables and a variable of special interest, called the response or target variable. 
Regression techniques are of high practical importance, and probably the most 
widely used statistical methodology. 

Example 

In an applied research project at ZHAW, we tried to understand and manage the 
fresh water consumption on board of      Edelweiss Air planes. Fresh water is 
mostly used in the toilet. Minimizing the carried amount was identified as 
important, because this reduces the weight of the airplane, and thereby fuel 
consumption and cost. The project goal was to relate the consumption on the 
number of passengers and flight duration, but also on less obvious parameters 
such as daytime and destination. Furthermore, it was required to quantify a well-
calculated reserve, to set up a simple prediction scheme and to perform 
operations management on the filling of the tank. 
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1.2 Regression Mathematics 

In the Edelweiss Air example, we can identify the fresh water consumption as the 
target value and denote it as the response variable y . Among the explanatory 
causes or predictors are number of passengers, and flight duration, plus a few 
more. These are denoted with 

1 2, , ..., px x x , assuming that there are p  predictors. 
The goal is linking the target to the predictors, which could happen with this model: 

 
1 2( , , ..., )py f x x x E   

The target value is obtained as the sum of some function ( )f   applied on the 
predictors, plus an error term E . Why the error? In practice, it is highly unlikely 
that 

1 2( , , ..., )pf x x x  yields an all-case perfect explanation of the fresh water 
consumption. The error is there to catch the imperfection and summarizes the 
remaining variation in the response. It is assumed to be random and can neither 
be controlled or predicted. On the other hand, 

1 2( , , ..., )pf x x x  is called the 
systematic or deterministic part of the regression equation. 

The task is thus to learn about the function ( )f  . In full generality, without any 
restrictions, this is a very difficult problem: function space is infinite-dimensional, 
thus there are just too many options such that we could come to a unique solution 
based on just a few dozens of observations. It has proven practical to be very 
restrictive with the form of functions ( )f   that are considered, i.e. normally, a linear 
model is assumed: 

 
0 1 1 2 2 ... p py x x x E          

This setup is called linear modeling. It boils down to determine some parameters 

0 1 2, , , ..., p     from observed data points, a task we call estimation in statistics. 
Please note that this is mathematically much simpler than finding ( )f   without 
imposing any conditions.  

One might of course fear that the limitation to linear modeling is too restrictive. 
However, practice proves this not to be the case, with the main reason being that 
only the parameters, but not the predictors need to enter linearly. In particular, the 
following structure is still a linear model: 

 2
0 1 1 2 1 3 2 4 1 2( ) log( )y x x x x x E           

For such models, it is possible to estimate the parameters from a relatively low 
number of data points with the least squares algorithm that will be presented 
shortly. Using variable transformations as outlined above, linear modeling 
becomes a very rich and flexible tool. Truly non-linear models are rarely absolutely 
necessary in practice and most often arise from a theory about the relation 
between the variables rather than from necessity in an empirical investigation. Of 
course, the right variable transformations need to be found, but using some simple 
guidelines and visual displays this is a manageable task, as we will see later. 
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1.3 Goals with Regression 

There are a variety of reasons to perform regression analysis. The two most 
prominent ones are: 

Understanding on the predictor-response relation, i.e. doing inference 

In the mortality example outlined in the chapter about multiple linear regression, 
one is be interested in testing whether air pollution affects mortality, under control 
of potentially confounding factors such as weather and the socio-demographic 
variables. We will see that regression, i.e. linear modeling offers tools to answer 
whether air pollution harms in statistically significant way. Drawing conclusions on 
true causal relationship, however, is a somewhat different matter. 

Target value prediction as a function of new explanatory variables 

In the fresh water consumption example from above, an airplane crew or the 
ground staff may want to determine the amount of water that is necessary for a 
particular flight, given its parameters. Regression analysis, i.e. linear modeling 
incorporates the previous experience in that matter and yields a quantitative 
prediction. It also results in prediction intervals which give a hint on the uncertainty 
such a prediction has. In practice, the latter might be very useful for the amount of 
reserve water that needs to be loaded. 
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2 Simple Regression 
The term simple regression means that there is a response and only one single 
predictor variable. This has several practical advantages: we can easily visualize 
the two variables and their relation in a scatterplot, and the involved mathematics 
is quite a bit easier. We will first address non-parametric curve fitting, also known 
as smoothing. Later, we proceed to linear modeling which in its most basic form 
amounts to laying a straight line into the scatterplot. But as we will see, linear 
modeling can also be used for fitting curves. 

2.1 Example: Zurich Airport Data 

The example we consider for developing the methodology is from Zurich Airport. 
Every month, the number of air traffic movements as well as the number of 
passengers is reported. The two variables are named ATM and Pax, with the 
former being the predictor, and the latter being the response. The goal is to predict 
passenger figures for future months based on the flight plan, and to quantify the 
uncertainty in these forecasts. The data are publicly accessible here: 
http://www.flughafen-zuerich.ch/desktopdefault.aspx/tabid-612/ 

 

 

 

 

 

 

to understand how  

 

We could display the figures in a table, but a much better solution is to visualize 
them in a scatterplot, as shown on the next page. As the first step, we need to 
import the data into R. Assuming that the data exist in form of an Excel spread 
sheet; we recommend exporting them in a comma- or tab-separated text file. In R, 
we can then use the function read.table(), respectively one of the tailored 
versions like read.csv() (for comma separation) or read.delim() (for tab 
separation), for importing the data. This will result in a so-called data frame, the 
structure which is most suitable for performing regression analysis in R. In our 
example, the Zurich Airport Data are stored in a data frame named unique2010. 
For producing a scatterplot, we can employ the generic plot() function, where 
several additional arguments can be set. 
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> plot(Pax ~ ATM, data=unique2010) 
> title("Zurich Airport Data: Pax vs. ATM") 

 

The question is how the systematic relation between Pax and ATM can be 
described. We could imagine that an arbitrary, smooth function ( )f   that fits well to 
the data points, without following them too closely, is a good solution. Another 
viable and popular option would be to use a straight line for capturing the relation. 

The advantages of smoothing are its flexibility and the fact that less assumptions 
are made on the form of the relation. This comes with the price that the functional 
form generally remains unknown, and that we can overfit, i.e. adapt too much to 
the data. With linear modeling, we have the benefit that formal inference on the 
relation is possible and that the efficiency is better, i.e. less data are required for a 
good estimate. The downside of the parametric approach is that it is only sensible 
if the relation is linear, and that it might falsely imply causality. 

2.2 Scatterplot Smoothing 

We start out with the smoothing approach. The goal here is to visualize the 
relation between Pax and ATM, but we are not after the functional form of ( )f  . 
Because there is no parametric function that describes the response-predictor 
relation, smoothing is also known as non-parametric regression analysis.  

2.2.1 Running Mean Estimation 

A simple yet intuitive smoother is the running mean. In colloquial language it 
involves taking a fixed width window on the x -axis, and compute the mean over all 
the within-window data point’s y -values. That value then is the estimate for the 
function value at the window center.  
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The above illustration shows the running mean estimate at 21'000ATM   with 
window width 2000  . The y -values of all the observations which fall into the 
grey highlighted region are averaged, which yields a value of 1'716'195 . The 
respective point is marked by the red symbol in the plot. The grey window is the 
slid over the x -axis which defines the running mean smooth. In mathematical 
notation, the running mean estimate for the unknown function ( )f   denoted as 
ˆ ( )f  , is defined as follows: 

 1

1

ˆ ( )

n

i i
i

n

i
i

w y
f x

w










, with weights 

1 | | / 2

0
i

i

if x x
w

else
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The parameter   is the window width and controls the amount of smoothing. Small 
values mean close adaptation to the data, while large values indicate averaging 
over more data points and thus a smoother solution. In R, running mean 
smoothing can be done with function ksmooth(): 

> fit <- ksmooth(unique2010$ATM,unique2010$Pax, kernel="box", 
                 bandwidth=1000, n.points=24, x.points= 
                 unique2010$ATM) 

The argument kernel="box" tells R to use a rectangular kernel, and the 
bandwidth=1000 argument steers the window width. Finally, n.points and 
x.points regulate at how many and which x -values the estimate is computed. 
We chose to do that for the observed ATM values. The solution can be plotted: 

> plot(Pax ~ ATM, data=unique2010, main="...") 
> title("Zurich Airport Data: Pax vs. ATM") 
> lines(fit, col="red", lwd=2) 
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Perhaps a little more smoothing is required here, because we would hardly believe 
in a (systematic) relation that shows a decrease in passengers if the number of air 
traffic movements raises from 20’500 to 21’000. However, we leave this as an 
exercise to the reader. To point out an important drawback of running mean 
estimation, we increase the number of evaluation points to 1000 that uniformly 
cover the range of ATM and then plot the result: 

> fit <- ksmooth(unique2010$ATM,unique2010$Pax, kernel="box", 
                 bandwidth=1000, n.points=1000) 
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We obtain a function that is not smooth at all, but this is not a surprise. By 
construction, due to the rectangular kernel, data points drop out of the running 
mean computation abruptly, and hence we have the jumps.  

2.2.2 Gaussian Kernel Smoothing 

We can fix the above problem by using a kernel with infinite support, i.e. none of 
the weights should be exactly zero. An obvious choice for a weighting scheme that 
puts emphasis on nearby data points, down weighs distant observations and is 
never zero is the probability density function of the Gaussian distribution. The 
definition is: 

 1

1

ˆ ( )

n

i i
i

n

i
i

w y
f x

w










 with weights 

2( )
exp i

i

x x
w


 

  
 

. 

Thus, there is no longer a window that determines which data points take part in 
the running mean computation. But we use a Gaussian bell curve that determines 
the weights for the observations – no matter where, always all of them are used to 
compute the estimate. As we can easily imagine, this solves the issue with the 
data points that are lost abruptly, and the result is a smooth function 

 

Above, computing a Gaussian Kernel Smoother is illustrated. At 21'000x  , a 
weighted average over all data points’ y -values is taken. The weights come from 
the grey Gaussian bell curve. Its width is such that it corresponds to 
bandwidth=1000 in R, which means that the 25%-quantile of the distribution is at 

0.25 1'000 250     and the 75%-quantile is at 250 . Fitting in R is convenient, i.e.: 
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> fit <- ksmooth(unique2010$ATM, unique2010$Pax, 
                 kernel="normal", n.points=1000, 
                 bandwidth=1000) 

 

While visually, the solution may look more or less reasonable here, a closer 
inspection suggests that it is rather sensitive to outliers. Moreover, there is a 
severe boundary effect associated with both the running mean and the Gaussian 
kernel estimator. Because near the boundaries, we do not observe a full window, 
we have a bias. At the lower end of the x -range, the smoother overestimates, 
while at the upper end of the range, it underestimates. 

2.2.3 The LOESS Smoother 

There is a wealth of literature that suggests improvements on kernel smoothing. 
However, with this scriptum, we will not further embark in that topic. But we 
present the LOESS smoother: it is a robust procedure that has nicer mathematical 
properties than the kernel smoothers, and that should be preferred in practice. 
LOESS is based on local parametric regressions: for obtaining the estimate at x , 
linear or polynomial models are fitted using data points in a neighborhood of x , 
weighted by their distance from x . The type of models used (linear or polynomial), 
the size of the neighborhood and also the type of fitting algorithm (least squares or 
robust) can be controlled in R. We do here without giving any theoretical details 
about the LOESS estimator. This is beyond the scope of our course, and it also 
requires intimate knowledge of linear modeling, which we do not yet have. 
However, as we will encounter LOESS smoothers throughout our studies in linear 
modeling, and it is a handy tool for visualizing the relation between two variables, 
we provide the necessary R commands: 

> smoo <- loess.smooth(unique2010$ATM, unique2010$Pax) 
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For the loess.smooth() function, we need to specify the x  and y  variables. 
There are some further adjustments that can be made, but this is rarely necessary, 
because the default settings usually yield good results. Argument span controls 
the amount of smoothing and is set to 2/3. Per default, we have degree=1 which 
means local linear fitting, setting this to 2 means more flexibility through local 
polynomial fitting. Finally, argument family is set to "symmetric", thus robust 
fitting is applied. A least squares fitting routine can be invoked by using 
"gaussian". Lastly, we can control the number of points at which the smoother 
is evaluated. Mostly, the default of evaluation=50 is fine, though it may 
sometimes be required to increase that number for relations with high curvature. 
We leave it to the reader to experiment with those settings and focus on displaying 
the result. 

> plot(Pax ~ ATM, data=unique2010, main="...") 
> lines(smoo, col="red", lwd=2) 

 

We observe that the LOESS fit is almost, but not exactly a straight line, as it shows 
some progressive increase. Surely, when comparing to the Running Mean and the 
Gaussian Kernel Smoother, this is the most trustworthy result so far.  
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2.3 Simple Linear Regression 

Instead of the non-parametric smoothing approaches, we will now turn our 
attention to linear modeling in the case where there is a response variable y  and 
only one single predictor x . This problem is known as simple linear regression. 

2.3.1 The Model 

In our example, it seems logical that the more air traffic movements we have, the 
more passengers there are – at least on average. Also, it seems plausible that the 
systematic relation is well represented by a straight line. It is of the form: 

 0 1Pax ATM    , respectively 1( ) of x x    

While this is the mathematically simplest way of describing the relation, it proves 
itself as very useful in many applications. And as we will see later, just some slight 
modifications to this concept render it to a very powerful tool when it comes to 
describing predictor-response relations. The two parameters 0 1,   are called 
intercept and slope. The former is the expected value of y  when 0x  , and the 
latter describes the increase in y  when x  increases by 1 unit. 

We now bring the data into play. It is obvious from the scatterplot that there is no 
straight line that runs through all the data points. It may describe the systematic 
relation well, but there is scatter around it, due to various reasons. We attribute 
these to randomness, and thus enhance the model equation by the error term: 

 0 1i i iy x E    , for all 1,...,i n . 

The index i  stands for the observations, of which there are n  in total. In our 
example, we have 24n  . The interpretation of the above equation is as follows: 

iy  is the response or target variable of the 
thi  observation. In our example, 

this is the passenger number in the 
thi  month. Note that the response is a 

random variable, as it is the sum of a systematic and a random part. 

ix  is the explanatory or predictor variable, i.e. the number of air traffic 
movements in the 

thi  month. The predictor is treated as a fixed, 
deterministic value and has no randomness. 

0 1,   are unknown parameters, and are called regression coefficients. These 
are to be estimated by using the data points which are available. 0  is 
called intercept, whereas 1  is the slope. The latter indicates by how much 
the response changes, if the x -value is increased by 1 unit. 

iE  is the error term. It is a random variable, or more precisely, the random 
difference between the observed value iy  (which is seen as the realization 
of a random variable) and the model value fitted by the regression. 
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2.3.2 The Least Squares Algorithm 

The goal in simple linear regression is to lay a straight line through the data points. 
If we did this by eyeballing, the solution between different persons would perhaps 
be similar, but not identical. It is clear that we cannot leave any arbitrariness for 
the regression line. Thus, we need a clear definition for the best fitting line, as well 
as an algorithm that unveils it. 

Our paradigm for linear modeling is to determine the regression line 
such that the sum of squared residuals is minimal! 

There are a number of reasons for this paradigm which are explained below. We 
illustrate the least squares idea with the help of a very nice Java applet found at 
http://sambaker.com/courses/J716/demos/LeastSquares/LeastSquaresDemo.html: 

 

The applet allows interactive search of the solution by positioning the regression 
line according to the users wish. The squared residuals and their total sum can be 
displayed. While experimentation by hand will eventually lead to the minimum, it is 
cumbersome and laborious. Is there a mathematical procedure that finds the 
solution? The answer is yes, it is the ordinary least squares (OLS) algorithm. 

Picking up the above paradigm, the goal is to fit the regression line such that the 
sum of squared differences ir  between the observed values iy  and the regression 
line is minimal, given a fixed set of data points 

1,...,( , )i i i nx y  . We can thus define the 
following function that measures the quality of the fit: 

2 2 2
0 1 0

1 1 1

ˆ( , ) ( ) ( ( )) min!
n n n

i i i i i
i i i

Q r y y y x   
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The goal is to minimize ( , )Q   . Since the data are fixed, this has to be done with 
respect to the two regression coefficients 0 1,  . Or in other words, the parameters 
need to be found such that the sum of squared residuals is minimal. The idea for 
the solution is to set the partial derivatives to zero: 

 
0

0
Q







 and 
1

0
Q







. 

We leave the calculus as an exercise, but the result is a linear equation system 
with two equations and the two unknowns 0 1,  . In linear algebra, these are known 
as the normal equations. Under some mild conditions (in simple linear regression 
this is: we have at least two data points with different values for ix ), the solution 
exists, is unique and can be written explicitly: 

1
1 2

1

( )( )ˆ
( )

n

i ii
n

ii

x x y y

x x
 



 






 and 0 1
ˆ ˆy x   . 

We put a hat symbol (“^”) on the optimal solutions. This is to indicate that they are 
estimates, i.e. determined from a data sample. Given the data pairs 

1,...,( , )i i i nx y   
they could now be computed with a pocket calculator. Or better, and more 
conveniently, with R: 

> lm(Pax ~ ATM, data=unique2010) 
 
Call: 
lm(formula = Pax ~ ATM, data = unique2010) 
 
Coefficients: 
(Intercept)          ATM 
 -1197682.1        138.8 

The lm() command (from linear modeling) is based on the formula interface. The 
relation has to be provided in the form ~y x , and with argument data, it is 
specified in which data frame these variables can be found. The output repeats the 
function call and provides the estimates 0̂  and 1̂ .  

The interpretation of this solution is straightforward: every additional air traffic 
movement on average provides 1̂ 138.8   additional passengers. And if there 
were no air traffic movements, we would have 0

ˆ 1'197'682    passengers. While 
the solution for 1̂  is plausible, this is not the case for 0̂ . How can this happen? 

It is because the observed set of data points is very far to the right of 0x  . It tells 
us that the linear relation we identified does not hold for very small numbers of air 
traffic movements. From a practical viewpoint, this is well acceptable. If the 
demand was that much smaller at Zurich Airport, it would be serviced by smaller 
airplanes. Or in other words: the regression line (at best) holds for the data we 
observed, and not for hypothetical values far beyond the range of observed 
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x -values. Thus, we do not need to worry much about the negative value for 0̂ . 
Some further explanations on this as well as a potential remedy are provided later 
in this script. Using the estimated parameters, we obtain the fitted values, defined 
as: 

 0 1
ˆ ˆˆi iy x    for all 1,...,i n . 

These can of course be interconnected by the regression line. We here address 
the issue how the fitted values are accessed in R, and how the regression line is 
visualized: 

> fit <- lm(Pax ~ ATM, data=unique2010) 
> fitted(fit) 
      1       2       3       4       5       6       7  
1654841 1808312 2165068 2156465 2184911 2250545 2108731  
      8       9      10      11      12      13      14  
2062107 1493184 1902115 1456135 1679680 1637219 1718394  
     15      16      17      18      19      20      21  
2008267 1994391 2088333 2074873 1947490 1935418 1791799  
     22      23      24  
1733381 1406597 1566867 
 
> plot(Pax ~ ATM, data=unique2010, pch=20) 
> title("Zurich Airport Data: Pax vs. ATM") 
> abline(fit, col="red", lwd=2) 

 

The next issue that needs to be addressed is the quality of the solution. The OLS 
algorithm could be applied to any set of data points, even if the relation is curved 
instead of linear. In that case, it would not provide a good solution. The next 
section digs deeper and goes beyond the obvious. 
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2.3.3 Assumptions for OLS Estimation 

The negative value for the estimated intercept had raised some doubts as to 
whether the OLS solution is trustworthy. We argued that 0x   is far beyond the 
range of observed data, and that there is no guarantee that the regression line 
holds there. We can generalize this: on any dataset we perform regression, it 
remains (at best) unclear whether we can extrapolate the straight line, but most 
likely it is not the case. Within the range of observed data, we can make more 
statements. The OLS estimates are trustworthy, if: 

[ ] 0iE E   

The expectation (we could also say the best guess if we need to predict) for the 
errors is zero. This means that the relation between predictor and response is a 
linear function, or in our example: a straight line is the correct fit, there is no 
systematic deviation. Next, we require constant scatter for the error term, i.e.  

2( )i EVar E  . 

Finally, there must not be any correlation among the errors for different instances, 
which boils down to the fact that the observations do not influence each other, and 
that there are no latent variables (e.g. time) that do so. In particular, 

( , ) 0i jCov E E   for all i j .  

Last, we require that the errors are (at least approximately) normally distributed: 

2~ (0, )i EE N   

The OLS algorithm will not yield a good solution under the presence of severe 
outliers or with a skewed error distribution. Moreover, all significance tests and 
confidence intervals that are presented later strictly rely on the Gaussian 
assumption. 

2.3.4 Residual Plots 

Before the regression line is used, we need to check if the assumptions from 
section 2.3.3 are met. Some investigations on expectation, variance and 
distribution of the errors can be performed with the usual y  vs. x  scatterplot. 
However, it has proven more powerful to inspect residual plots that are directed 
towards identifying potential violations. As it turns out, the human eye is easily 
deceived when it needs to judge if some data points follow an inclined straight line. 
However, it is much better in detecting deviations from the horizon. This is utilized 
in the first residual plot, where the effect of the regression line is subtracted. This 
means that the residuals are plotted against the predictor. The visualization can be 
enhanced by adding a horizontal line and a scatterplot smoother (we choose a 
LOESS). 
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> ## Residuals vs. Predictor 
> xx <- unique2010$ATM 
> yy <- residuals(fit) 
> plot(xx, yy, xlab="ATM", ylab="Residuals", pch=20) 
> title("Residuals vs. Predictor ATM") 
> lines(loess.smooth(xx,yy),col="red") 
> abline(h=0, col="grey") 

Another option is to plot the residuals versus the fitted values. This is known as the 
Tukey-Anscombe plot, according to the researchers who made it popular. As can 
be seen below, the two plots are one and the same except for the different x -axis. 
This is no surprise, because the fitted value 0 1

ˆ ˆŷ x    stems from a linear 
transformation of x . While plotting residuals vs. predictor is perhaps the more 
natural way of doing it in simple regression, the Tukey-Anscombe plot provides a 
simple and intuitive summary in multiple regression, where several predictors 
exists. Thus, it is often also applied for simple regression. 

> ## Tukey-Anscombe Plot 
> uu <- fitted(fit) 
> plot(uu, yy, xlab="Fitted", ylab="Residuals", pch=20) 
> title("Residuals vs. Fitted Values") 
> lines(loess.smooth(uu,yy),col="red") 
> abline(h=0, col="grey") 

 

The smoother deviates from the horizon, and there is quite a clear kink in the 
relation. It seems as if the residuals for low and high ATM (resp. fitted) values are 
systematically positive, and negative for medium ATM values. If that is the case, it 
is a violation of the [ ] 0iE E   assumption; a straight line is not the correct fit and 
improving the model is mandatory. For the moment however, we keep in mind that 
some doubts are raised by this residual plot, but continue with developing theory. 
The constant variance assumption can also be judged from the above plot. It 
seems as if the scatter is more or less constant for the entire range of ATM values. 
Or maybe better: there is no obvious violation.  
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We proceed to checking if the residuals follow a Gaussian distribution. This can be 
done with a so-called Normal Plot, sometimes also named QQ-Plot, where the 
ordered residuals are shown versus quantiles of the Gaussian distribution. The 
data must more or less follow a straight line. This is sufficiently met here in our 
case; the residuals are even slightly short-tailed with respect to the Gaussian. An 
in-depth discussion about what still fits within the assumption and what does not is 
again postponed to later. 

> qqnorm(residuals(fit)) 
> qqline(residuals(fit)) 

 

One last assumption has not been verified yet, namely the one whether the errors 
are uncorrelated. In many regression problems, this is the most difficult to verify. 
Also here, we could ask ourselves whether events such as the 9/11 terror attacks, 
or the SARS lung disease might have unduly influence. They could have led to 
back-to-back months with lower seat load factors, thus less passengers than 
expected by the air traffic movements during normal periods, and by this induce 
correlated errors. Because none of these events falls within our period of 
observation, we do not pursue the issue here. It will be addressed in detail when 
we talk about multiple linear regression. 

2.3.5 History of Least Squares 

You may find it somewhat arbitrary that we chose the sum of squares residuals as 
the criterion to minimize. We might as well optimize the absolute values’ sum of 
the residuals, the so-called 1L -regression. There are a number of reasons to prefer 
the former. The first one lies in history, least squares was simply the first such 
algorithm that was used in practice. The English Wikipedia site on the term least 
squares holds the following information: 
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On January 1, 1801, the Italian astronomer Giuseppe Piazzi discovered the dwarf 
planet Ceres and was able to track its path for 40 days before it was lost in the 
glare of the sun. Based on these data, astronomers desired to determine the 
location of Ceres after it emerged from behind the sun without solving the 
complicated Kepler's nonlinear equations of planetary motion. The only predictions 
that successfully allowed relocating Ceres were those performed by the 24-year-
old Carl Friedrich Gauss using the least squares algorithm. 

Gauss did not publish the method until 1809, when it appeared in volume two of 
his work on celestial mechanics, together with a mathematical optimality result, the 
Gauss-Markov theorem (see below). In the meantime, the OLS algorithm was 
independently formulated by Adrian Marie Legendre, who was the first to publish it 
in 1806 as an appendix to his book on the paths of comets. Below, see a table of 
Piazzi’s observations, and portraits of Gauss (left) and Legendre (right).  

 

 

 

 

 

 

Was it by coincidence that OLS was invented first? The answer is no: the quality 
function ( , )Q    is differentiable, so that a unique solution can be found and written 
in explicit form. This is not possible with 1L -regression, because the absolute value 
function is not continuously differentiable. While this problem can nowadays be 
circumvented with numerical methods, this was not yet feasible at the beginning of 
the 19th  century. The reason why OLS is still popular today is because there are 
mathematical optimality results, and because under Gaussian errors, the exact 
distribution of the estimated coefficients and a number of test statistics is known. 

2.3.6 Mathematical Optimality of OLS 

The main result is the Gauss-Markov theorem (GMT) that dates back to 1809: 

Under the model assumptions from section 2.3.3 (zero expected value, 
constant variance and uncorrelatedness for the errors), the OLS estimates 

0 1
ˆ ˆ,   are unbiased (i.e. 0 0

ˆ[ ]E    and 1 1
ˆ[ ]E   ). Moreover, they have 

minimal variance among all unbiased, linear estimators, meaning that they 
are most precise. Please note that Gaussian errors are not required. 

This theorem does not tell us to use OLS all the time, but it strongly suggests 
doing so if the assumptions are met. In cases where the errors are correlated or 
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have unequal variance, we will do better with other algorithms than OLS. Also, 
note that even though normality is not required for the GMT, there will be non-
linear or biased estimates that do better than OLS under non-Gaussian errors. 

As we have seen just before, the regression coefficients are unbiased if the 
assumptions from section 2.3.3 are met. It is also very instructive to study the 
variance of the estimates. It can be shown that: 
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These results also show how a good experimental design can help to improve the 
quality of the estimates, or in other words, how we can obtain a more precisely 
determined regression line. Namely: 

- we can increase the number of observations n . 
- we have to make sure that the predictors ix  scatter well. 
- by using a suitably-chosen predictor, we can keep 2

E  small. 
- for 0̂  it helps, if the average predictor value x  is close to zero. 

If the errors are Gaussian, then 0 1
ˆ ˆ,   are normally distributed, too. With their 

expectation and variance specified as above, the distribution is fully known. 
Additionally, the OLS solution is also the maximum likelihood estimator under 
Gaussian errors. Some further useful properties of the OLS solution (that are 
independent of the error distribution) are: 

- the regression line runs through the center of gravity ( , )x y . 
- the sum of residuals adds up to zero: 0ir  . 

The last property also implies that the mean value of the residuals is always zero. 

2.3.7 Estimating the Error Variance 

Besides the regression coefficients, we also need to estimate the error variance. It 
is a necessary ingredient for all tests and confidence intervals. The estimate is 
based on the residual sum of squares (abbreviation: RSS). 

 2 2
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1
ˆ ˆ( )
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E i i
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In the R summary, an estimate for the error’s standard deviation ˆE  is given as the 
Residual standard error.  
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2.4 Inference 

The goal in this section is to infer the response-predictor relation with performance 
indicators and statistical tests. Note that except for 2.4.1, the assumption of 
independent, identically distributed Gaussian errors is central to derive the results. 

2.4.1 The Coefficient of Determination 

An intuitive way of measuring the goodness-of-fit of a simple linear regression 
model is with the coefficient of determination 2R , also called multiple R-squared. It 
measures which portion of the total variation is accounted for by the regression. 

 

If we needed to predict the Pax number without any knowledge of the ATM value, 
the best guess is the average number of passengers over the last two years. The 
scatter around that prediction is visualized by the blue arrow. However, since we 
know ATM and the regression line, we can come up with a more accurate 
forecast. The then remaining scatter is indicated by the orange arrow. It is obvious 
that the regression line is more useful, the smaller the orange arrow is compared 
to the blue. This can be measured by taking one minus the quotient of the two: 
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In the numerator, the orange arrow is represented by the scatter of the data points 
around the fitted values, i.e. the RSS. The denominator has the scatter of the data 
points around their mean. This is the total sum of squares (TSS). 
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The maximum value is 2 1R  . It is attained if all data points are on the regression 
line. The other extreme case is 2 0R   and means that the blue and orange arrows 
have the same size. Then, the regression line is flat ( 1̂ 0  ) and does not have 
any explanatory power. The actual value can be read from the R summary: 

> summary(fit) 
Coefficients: Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.198e+06  1.524e+05  -7.858 7.94e-08 *** 
ATM          1.388e+02  6.878e+00  20.176 1.11e-15 *** 
--- 
Residual standard error: 59700 on 22 degrees of freedom 
Multiple R-squared: 0.9487,  Adjusted R-squared: 0.9464 
F-statistic: 407.1 on 1 and 22 DF, p-value: 1.11e-15 

The result here is 2 0.9487R  , thus most of the variation in the Pax variable is 
explained by ATM. It is important to note that for simple linear regression, 2R  is 
equal to the squared Pearson correlation coefficient between predictor and 
response. Moreover, the summary reports the adjusted R-squared. Its value is 
always smaller but usually close to 2R , because: 
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An important question is now: what is a good value for 2R ? Unfortunately, it 
remains without an answer. There are no general guidelines as to which value 
needs to be met for a regression to be useful, and there are no formal tests for 2R . 
And please note that a high value for 2R  does not automatically mean that we 
have a good fit that we can rely on – often, further improvement by alternative 
models (i.e. by using transformations) is still possible. 

2.4.2 Confidence Interval for the Slope 

The estimated slope 1̂  is a random variable and has variability. If the assumptions 
for the OLS algorithm are met, we have the Gauss-Markov theorem telling us its 
value will be close to the truth 1 , but not right there. Also, the value 1̂  was 
computed from a sample. Had we had a different one, or would we just omit one 
single data point from our current one, 1̂  would turn out different. The goal is to 
reflect that uncertainty with a 95% confidence interval (CI). The formula is: 

 
1̂

1 0.975; 2
ˆ ˆnqt


   , resp. 2 2

1 0.975; 2 1
ˆ ˆ ( )

n

n E ii
qt x x  

   ,  

where 
0.975; 2nqt   is the 97.5% quantile of Student’s t-distribution with 2n   degrees 

of freedom. The colloquial interpretation is that the interval holds all values which, 
besides the point estimate 1̂ , are plausible for 1 . In R, one types: 

> confint(fit, "ATM") 
       2.5 %  97.5 % 
ATM 124.4983 153.025 
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We estimated the increase in passengers per additional air traffic movement as 

1̂ 138.8  . That is the best guess given the data, but values between 124.5 and 
153.0 are also plausible. This reflects the uncertainty and variability in our 
regression analysis. If the 95%-CI seems unacceptably wide, all we can do is 
trying to bring 

1̂

ˆ


  down, i.e. have more or better data, see section 2.3.6. 

2.4.3 Testing the Slope 

For finding out whether an arbitrary value b  is plausible for the slope, we can 
check whether it is contained in the 95%-CI from above. Alternatively, there is a 
test for the null hypothesis 0 1:H b  . The most popular variant is 0 1: 0H   : this 
is asking if the slope could be zero, which would mean that the regression line 
runs horizontally and the predictor x  has no influence on the response y . The 
natural goal is to reject the null for gaining evidence that the relation between y  
and x  exists. One usually tests two-sided on the 95% level, i.e. the alternative is 

1:AH b  . The test statistic and its distribution are as follows: 
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Student’s t-distribution with 2n   degrees of freedom can be used to determine 
acceptance and rejection regions, as well as the p-value. In fact, both the test 
statistic (t value) and the p-value (Pr(>|t|)) for 0 1: 0H    are routinely given 
in the R summary output: 

> summary(fit) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.198e+06  1.524e+05  -7.858 7.94e-08 *** 
ATM          1.388e+02  6.878e+00  20.176 1.11e-15 *** 
--- 
Residual standard error: 59700 on 22 degrees of freedom 
Multiple R-squared: 0.9487,  Adjusted R-squared: 0.9464 
F-statistic: 407.1 on 1 and 22 DF, p-value: 1.11e-15 

We have very strong evidence for 1 0   here, and thus the null hypothesis is 
rejected with a p-value of 151.1 10 . The fact of rejection was already clear from the 
95%-CI which contains all null hypotheses that are not rejected – and zero was not 
therein – with a huge margin, that is, and hence the extreme p-value.  

It is very important to stress again, that all confidence intervals and test results are 
only to be trusted if the assumptions for OLS fitting (i.e. zero expectation, constant 
variance, Gaussian distribution and uncorrelatedness of the errors) are closely 
met. If any clear deficiencies were found from the residuals plots, it is mandatory 
to improve the model before these results are reassessed! 
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2.4.4 Testing the Intercept 

In many simple linear regression problems, theory dictates that we have a 
response of 0y   whenever 0x  . That is the case with the Zurich Airport Data, 
too. If there were no air traffic movements, we would not see any passengers. 
However, it is hardly ever a good idea to fit a model without an intercept term. This 
forces the regression line to go through the origin which is a very strong restriction, 
that in most cases leads to a poor fit. 

Commonly, the reason for the poor fit is because the data points are far off 0x  . 
This leads to very high leverage with respect to 0 , and just some slight non-
linearity between response and predictor results in an intercept that is markedly 
different from zero. This happens in our example where 0

ˆ 1'197'682   . In 
analogy to sections 2.4.2 and 2.4.3, tests and confidence intervals for 0  exist. For 
the Zurich Airport data, the null hypothesis 0 0: 0H   is strongly rejected with a p-
value of 87.9 10 , and the confidence interval is: 

> confint(fit, "(Intercept)") 
               2.5 %    97.5 % 
(Intercept) -1513786 -881578.2 

However, both test and confidence interval for 0  are of relatively low practical 
importance. As a general rule, we should not fit regression models without an 
intercept term. If the null is not rejected and thus zero is a plausible value, it is still 
better and safer to keep it in the model. If it turns out to be significantly different 
from zero, take it as evidence for either some non-linearity or calibration errors in 
the data. In these latter cases, the results will be clearly worse (i.e. strongly 
biased) without the intercept. We close here with the remark that for many 
regression problems which need to run through the origin, using the log-log-model 
displayed in section 2.6.4 is the best choice. 

2.5 Prediction 

One of the primary goals with linear regression is to generate a prediction for y , 
given the value of x . The result is the conditional expectation for y  given x , i.e. 
what we expect for y  if the predictor value x  is known: 

 0 1
ˆ ˆˆ[ | ]E y x y x     

For 24‘000 air traffic movements, we expect 1'197'682 24'000 138.8 2'133'518     
passengers. Please note that only a prediction within the range of x -values that 
were present for fitting is sensible. This is called interpolation. On the other hand, 
extrapolation, i.e. a prediction beyond the boundaries of the x -values previously 
observed, has to be treated with great care: there is no guarantee that the 
regression line holds in non-observed regions of the predictor space. Thus, we 
must not predict the Pax figure for ATM values such as 50’000, 5’000 or 0. 
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In R, we can obtain the fitted values for the training data points by just typing 
predict(fit). If we want to use the regression line for forecasting with new 
x -values, they have to be provided in a data frame, where the column(s) are 
named equally to the predictor(s): 

> fit <- lm(Pax ~ ATM, data=unique2010) 
> dat <- data.frame(ATM=c(24000))  
> predict(fit, newdata=dat) 
1 2132598 

2.5.1 Confidence Interval for the Regression Line 

As we had seen above in section 2.4.2, the regression coefficients are random 
variables. Thus, also the regression line is a random variable, and might have 
turned out to be different with another sample (even if from the same population). 
Thus, it is important to understand, quantify and visualize the variability of the fitted 
value. This is done on the basis of a 95%-CI for the conditional expectation. The 
formula is: 

 95%-CI for [ | ]E y x : 
2

0 1 0.975; 2 2

1

1 ( )ˆ ˆ ˆ
( )

n E n

ii

x x
x qt

n x x
  




    


 

The formula itself is of relatively little importance for the practitioner, because that 
functionality is pre-existing in R. The syntax is: 

> predict(fit, newdata=dat, interval="confidence") 
           fit     lwr     upr 
     1 2132598 2095450 2169746 

The meaning of this output is as follows: for an ATM value of 24'000 , we expect 
2'132'598  passengers. A 95%-CI for that conditional expectation ranges from 
2 '095'450  to 2'169'746 .  

2.5.2 Prediction Interval for Future Data Points 

While the above 95%-CI tells characterizes the variability in the fitted value, it does 
not tell us where the (future) y -value will be, i.e. what number of passengers we 
will observe for a given ATM value. The reason is that (also within the training 
data), the observed y -values scatter around the regression line (i.e. their 
conditional expectation). Taking this into account, we can derive a 95% prediction 
interval (PI) for y . The formula is: 

 95%-PI for y : 
2

0 1 0.975; 2 2

1

1 ( )ˆ ˆ ˆ 1
( )

n E n

ii

x x
x qt

n x x
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The difference in the formula is that another unit of ˆE  is included to account for 
the scatter of the data points around the regression line. Again, the formula is 
implemented in R: 

> predict(fit, newdata=dat, interval="prediction") 
           fit     lwr     upr 
     1 2132598 2003343 2261853 

Because we are still predicting for an ATM value of 24'000 , we the conditional 
expectation remains at 2'132'598  passengers. A 95% prediction interval for a 
future observation when there are 24'000  air traffic movements ranges from 
2'003'343  to 2'261'853 . 

2.5.3 Visualizing Confidence and Prediction Intervals 

It is very instructive to compute point-wise CIs and PIs and to display them in the 
xy -scatterplot, along with the regression line. There is no straightforward 
procedure in R to do so, but some rather tedious handwork is required. A possible 
solution is as follows: 

> dat  <- data.frame(ATM=seq(18000, 26000, length=200)) 
> ci   <- predict(fit, newdata=dat, interval="confidence") 
> pi   <- predict(fit, newdata=dat, interval="prediction") 
> plot(Pax ~ ATM, data=unique2010, pch=20) 
> title("Pax vs. ATM with 95%-CI and 95%-PI") 
> lines(dat$ATM, ci[,2], col="green") 
> lines(dat$ATM, ci[,3], col="green") 
> lines(dat$ATM, pi[,2], col="blue") 
> lines(dat$ATM, pi[,3], col="blue") 
> abline(fit, col="red", lwd=2) 
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The result is a confidence region for the regression line, and a prediction region for 
future observations. The interpretation is that the former contains all plausible 
regression lines. The latter indicates how precisely we can forecast future 
observations. While the 95%-CI turns out to be rather small here, reflecting a high 
confidence in the estimated regression line, the 95%-PI is bigger an reflects the 
non-understood scatter of the observations due to reasons such as differing seat 
loads factors, cargo flights, et cetera. 

2.6 Model Extensions 

So far, linear regression was synonym to fitting a straight line in an xy -scatterplot. 
However, it has to offer much more: we can also fit curves, as long as we can 
describe them with a relation that is linear in the regression coefficients. The 
following example motivates why fitting curves can be a necessity. 

2.6.1 Example: Automobile Braking Distance 

An automobile magazine tests summer tires with respect to the braking 
performance that is achieved. For acquiring data, a set of 26 test drives are made, 
where at various speeds the stopping distance is measured after a “pedal-to-the 
metal” braking procedure. The goal is to estimate the deceleration parameter. 

obs speed brdist 
1 19.96 1.60 
2 24.97 2.54 
3 26.97 2.81 
4 32.14 3.58 
5 35.24 4.59 
6 39.87 6.11 
7 44.62 7.91 
8 48.32 8.76 
9 52.18 10.12 

10 55.72 11.62 
11 59.44 13.57 
12 63.56 15.45 
... ... ... 
24 111.97 51.09 
25 115.88 50.69 
26 120.35 57.77 
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Apparently, the relation between braking distance and speed is not a straight line, 
but seems to have a parabolic form. This is not surprising, as it is well known from 
physics that the energy and thus the braking distance go with the square of the 
speed, i.e. at double speed it takes four times as long to standstill. Moreover, there 
is some variability in the data. It is due to factors that have not been taken into 
account, mostly the surface conditions, tire and brake temperature, head- and 
tailwind, etc. 

 

Fitting a plain linear function, i.e. laying a straight line through the data points 
results in a poor and incorrect fit. We have a strong systematic deviation from the 
regression line, and the Tukey-Anscombe plot shows a strong violation of the zero 
error assumption. As a way out, we better fit a quadratic function: 

2
0 1i i iBrDist Speed E     , respectively 

0 1i i iy x E      , where 2 2
i i ix x Speed    

The above model still is a simple linear regression problem. There is only one 
single predictor, the coefficients 0 1,   enter linearly and can be estimated with the 
OLS algorithm. Owing to the linearity, taking partial derivatives still works as usual 
here, and an explicit solution for 0 1

ˆ ˆ,   will be found from the normal equations. 
In R, the syntax for fitting the quadratic function is as follows: 

> fit.q <- lm(brdist ~ I(speed^2), data=abd) 

When using powers as predictors, we should always use function I(). It prevents 
that the power is interpreted as a formula operator, when it in fact is an arithmetic 
operation that needs to be performed on the predictor values. It is important to 
note that the quadratic relation can either be interpreted as a straight line in a 
y  vs. 2x  plot, or as a parabola in a regular y  vs. x  scatterplot. The following code 
can be used for visualizing the result: 
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> ## Braking Distance vs. Speed^2 
> plot(brdist~speed^2, data=abd, main="...") 
> abline(fit.q, col="red", lwd=2) 
>  
> ## Braking Distance vs. Speed 
> yy <- predict(fit.q, newdata=data.frame(speed=10:130)) 
> plot(brdist ~ speed, data=abd, main="...") 
> lines(10:130, yy, col="red", lwd=2) 

 

As it seems at first impression, the parabola yields a good fit to the braking 
distance data. The regression coefficients can be used to estimate the 
deceleration which turns out to be roughly 10 /m s . Some drawbacks of this 
model will be pointed out below. 

2.6.2 Curvilinear Regression 

From the automobile example, we conclude that simple linear regression is more 
than just fitting straight lines. In fact, any curvilinear relation can be fitted, e.g.: 

 •   0 1 ln( )y x E      

 •   0 1y x E      

 •   1
0 1y x E      , 

All these models, and many more, can be rewritten in the form 0 1y x E     , 
where the predictor is either ln( )x x  , x x   or 1x x  . Thus, estimating the 
parameters 0 1,   can be reduced to the well-known simple linear regression 
problem, for which the OLS algorithm can be used. While this may sound like the 
ideal solution to many regression problems, it is not, for a number of reasons. 

First, when the residuals from the quadratic model are plotted versus predictor 
speed, it turns out that the situation is far less than optimal. Clearly apparent is a 
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violation of the constant error-variance assumption. That is not so surprising, even 
without looking at the data; we might have expected that the scatter in braking 
distances becomes bigger as the speed increases. This is problematic because 
the high speed observations so (implicitly) obtain more weight in determining the 
regression coefficients. Consequently, we observe a bias for the low speed 
braking distances, because OLS focuses on the data points with large residuals on 
the right hand side, but puts less emphasis on what is going on at lower speeds. 

> plot(speed, resid(fit.q)) 
> title("Residuals vs. Speed with LOESS Smoother") 
> smoo <- loess.smooth(speed, resid(fit.q)) 
> lines(smoo, col="red") 
> abline(h=0, col="grey") 

 

Thus, while at first the parabola seemed to fit well to the data, closer inspection 
shows that we have not found a very good solution yet. Unfortunately, that is often 
the case when just single power terms are used as predictors. 

2.6.3 Example: Infant Mortality 

Our next goal is to study how infant mortality in a country depends on its wealth. 
We have observations from 105 countries; the data were first published in the New 
York Times in 1975. The infant mortality is measured as the (average) number of 
1000 live born babies that do not reach the age of 5 years. The living standard is 
given as per-capita income in US$. They data are accessible in R’s 
library(car) as data(Leinhardt). For clarity, we remove four countries with 
partly missing values and two outliers: Saudi Arabia and Lybia, both oil-exporting 
countries with an inhomogeneous population consisting of a few very rich leaders 
and mostly poor population. The data can be displayed in a scatterplot: 
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> plot(infant ~ income, data=im, pch=20) 
> title("Infant Mortality vs. Per-Capita Income") 

Since the relation between mortality and income seems to be inversely 
proportional, we might try a curvilinear regression model of the form: 

 1
0 1~ ( )infant income E      

As explained in 2.6.2, this is a simple linear regression problem where we can 
estimate the coefficients with OLS. The result is added to the scatterplot. 

> fit <- lm(infant ~ I(income^-1), data=im) 
> xx  <- data.frame(income=seq(0, 6000, length=200)) 
> yy  <- predict(fit, newdata=xx, interval="prediction") 
> lines(xx$income, yy[,1], col="red", lwd=2) 
> points(infant ~ income, data=im, pch=20) 

 

The resulting fit is poor, as the infant mortality is strongly overestimated in all rich 
countries. One might conclude that this is because we failed to identify the correct 
exponent for the income variable. Rather than just trying a few different powers, 
we might be tempted to estimate it from data, with a model such as: 

2
0 1y x E      

That however, is no longer a relation that is linear in the parameters. Least 
squares fitting, i.e. taking partial derivatives in the quality function will not lead to a 
linear equation system, because the result is of more complicated form. 
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2.6.4 The log-log Model 

In the above example, we are looking for a viable alternative to solve the 
regression problem. We could (and potentially would) resort to a numerical 
solution for minimizing the RSS, if there was not a much better analytical solution 
that is based on a simple, yet very powerful trick. The transformation 

 log( ), log( )y y x x    

is of great help, as we can see with a scatterplot in the log-log scale: 

> plot(log(infant) ~ log(income), data=im, pch=20) 
> title("log(infant) vs. log(income)") 
> fit <- lm(log(infant) ~ log(income), data=im) 
> abline(fit, col="red", lwd=2) 
> plot(fitted(fit), resid(fit), pch=20) 
> abline(h=0, col="grey") 
> smoo <- loess.smooth(fitted(fit), resid(fit)) 
> lines(smoo, col="red") 
> title("Residuals vs. Fitted Values") 

 

After the variable transformations, the relation seems to be a straight line. The 
OLS regression line fits the data well, and the Tukey-Anscombe plot does not 
show strongly violated assumptions, except for a maybe slightly non-constant 
variance (that we accept here). What has happened? If a straight line is fitted on 
the log-log-scale, i.e.: 

 0 1y x E          where log( ), log( )iy y x x    

we can derive the relation on the original scale by taking the exponential function 
on both sides. The result is a power law on the original scale: 

 1 1
0 0exp( ) exp( )y x E x E         , with 0 0exp( )   and 1 1  . 
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The slope from the log-log-scale is the exponent to x  on the original scale. 
Moreover, we have a multiplicative rather than an additive model, where the error 
term follows a log-normal distribution. Hence, the errors will scatter more the 
bigger x  is, and are skewed towards the right, i.e. bigger values. While this model 
may seem arbitrary, it fits well in many cases, even more often than the canonical, 
transformation-free approach. The coefficients are: 

> lm(log(infant) ~ log(income), data=im) 
Coefficients: 
(Intercept)  log(income)   
     7.4134      -0.5661   

The interesting part is the interpretation of the model equation. It is relative, in the 
following way: if x , i.e. the income increases by 1% , then y , i.e. the mortality 
decreases by 1̂ 0.56%  . In other words, 1  characterizes the relative change in 
the response y  per unit of relative change in x . 

For obtaining simple predictions of the infant mortality, we can use the regression 
model on the transformed scale, and then just re-exponentiate to invert the log-
transformation: 

 ˆ ˆexp( )y y  

However, some care is required: due to the skewness in the lognormal distribution, 
the above is an estimate for the median of the conditional distribution |y x , but not 
for its mean [ | ]E y x . Often, the difference is relatively small and neglecting it will 
not make much difference. However, in cases where we unbiased prediction is 
key, we need to apply a different procedure. There are two options for generating 
sound predictions. The first one is base on the theoretical correction factor that is 
motivated by the formula for the expected value of the lognormal distribution: 

 2ˆ ˆ ˆexp( / 2)Ey y    

An alternative is to apply the smearing estimator first presented by Duan (1983). 
This is a more empirically motivated back-transformation with the aim to generate 
unbiased predictions on the original scale. The formula is as follows: 

 
1

1
ˆ ˆexp( ) exp( )

n

i
i

y y r
n 

     

There is some scientific debate as to which of the two variants yields better 
results. The answer is ambiguous and depends on the true distribution of the error 
term. It is generally accepted that in case of violation of the Gaussianity 
assumption on the transformed scale, the smearing estimator will perform better. 
In both cases, owing to the exponential back-transformation, the fit on the original 
scale cannot take negative values. This is another aspect that here strongly 
speaks for fitting on the log-log-scale. A model that predicts negative values for 
infant mortality would not be plausible in practice. 



Applied Statistical Regression  2 Simple Regression 
 

 Page 34 

For the confidence and prediction intervals, we can simply compute these as usual 
on the transformed scale. Simple re-exponentiating brings them back to the 
original scale. There is no need for a correction factor as we are dealing with 
quantiles of the respective distributions: 

 [ , ] [exp( ),exp( )]lo up lo up  

> ## Predictions 
> po  <- exp(predict(fit)) 
> poc <- exp(predict(fit)+(summary(fit)$sigma^2)/2) 
>  
> ## Scatterplot with Fitted Curves 
> plot(infant ~ income, data=im, pch=20) 
> lines(sort(im$income), po[order(im$income)], col="red") 
> lines(sort(im$income), poc[order(im$income)], col="orange") 

 

Again, an important advantage of the log-log-model is that neither of these 
intervals does take negative values on the original scale. Moreover, they are no 
longer symmetric, reflecting the fact that there is more room for error towards 
bigger values, and less towards smaller errors. 

> ## Computing and Plotting the Intervals 
> ci  <- exp(predict(fit, interval="confidence")) 
> pi  <- exp(predict(fit, interval="prediction")) 
> 
> plot(infant ~ income, data=im, pch=20) 
> lines(sort(im$income), po[order(im$income)], col="red") 
> lines(sort(im$income), ci[order(im$income),2], col="green") 
> lines(sort(im$income), ci[order(im$income),3], col="green") 
> lines(sort(im$income), pi[order(im$income),2], col="blue") 
> lines(sort(im$income), pi[order(im$income),3], col="blue") 
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2.6.5 The Logged Response Model 

This far, we considered log-transformations for both variables, as well as for the 
predictor only. If one sees this as a trick, rather than having a specific model 
formulation in mind, we might try to work with a logged response but the original 
predictor. As it turns out, also this model is widely used and accepted in practice. 
We illustrate it with the following example: 

 

The data originate from a research project of the author. The goal was to study the 
daily cost in neurological rehabilitation. In seven hospitals, a random sample of 
473 patients was studied, most of whom were originally suffering from 
craniocerebral injuries or apoplectic strokes. The total (time) effort for care, 
therapy and medical examinations was measured, expressed as CHF/day and 
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serves as the response variable. Also, for each patient an ADL assessment was 
taken. It is based on about 20 items that quantify the autonomy of a patient in the 
activities of daily life, i.e. personal hygiene, feeding, etc..  

Above, the data are visualized in a scatterplot. A simple linear regression model 
had been fitted, along with a Tukey-Anscombe plot for judging the quality of the fit. 
At first impression, the straight line does not fit too badly, but a closer inspection 
shows that there is a bias (i.e. non-zero expectation for the error), and a right-
skewed error distribution. These are strong model violations, and thus, the simple 
linear model yields a poor explanation of the daily rehabilitation cost. As a way out, 
we suggest to log-transform the response variable, but to leave the predictor as is: 

 log( ),y y x x    

This simple trick yields a good fit, see below. Also, we will soon outline that the 
log-transformation is indicated for any right-skewed variable such as cost, whereas 
the uniformly distributed ADL predictor does not require action. The model is: 

 0 1log( )y y x E        , respectively, 

if we back-transform such that the response is on the original scale: 

 0 1 0 1exp( ) exp( ) exp( ) xy x E E           . 

What we obtain is an exponential function, fundamentally different from the power 
law that results from the log-log-model. The two parameters 0  and 1  control the 
scale respectively the curvature. The usual assumption for the error is 

2~ (0, )EE N  , and thus, we again have a multiplicative lognormal error term on the 
original scale. This results in right-skewed scatter that increases with increasing 
daily cost, matching what we observe in the data. We obtain the fitted coefficients 
in R: 

> lm(log(cost) ~ adl, data=rehabilitation) 
 (Intercept)          adl 
    5.75106      0.02331 

The interpretation is as follows: an increase by one unit in the predictor x  
multiplies the fitted value by 1exp( ) . In our case, one additional ADL point, 
meaning less autonomy of the patient, increases the cost on average by a factor of 
exp(0.02331) 1.023584 , i.e. 2.36%. We then display fit, diagnostics and prediction 
interval, see next page. 

It turns out that after the transformation, a straight line provides a reasonable fit. 
Still, the Tukey-Anscombe plot exhibits a slight bias. The residuals follow a 
symmetric, but prominently long-tailed distribution. Hence, not all assumptions for 
OLS fitting are 100% fulfilled, but the situation is already much, much better than 
previously, with .daily cost vs ADL . Moreover, there are no more simple tricks or 
transformations with which we could improve the model further. 
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As a side note, we remark that further model improvement is possible here by 
using advanced methods such as Box-Cox transformations, or a generalized linear 
model based on the Gamma distribution. These topics are (far) beyond the scope 
of this introductory section on simple linear regression and thus not discussed 
here. It is also important to mention that while they are beneficial to the quality of 
the prognosis interval and the parameter tests, they do not improve the precisions 
of the point forecasts much. 

2.6.6 When and How to Log-Transform 

From the above examples, it is evident that variable transformations lead to novel 
predictor-response relations, often strongly improve the fit and are of tremendous 
importance to many applied regression problems. Thus, when and how to 
transform? Long-time practical experience has led to a few simple guidelines. A 
log-transformation of a variable, i.e. log( )x x   and/or log( )y y   is indicated and 
often very beneficial for the model fit if: 
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 Practice dictates that the regression line must run through (0 / 0) . In that 
case, both predictor and response require a log-transformation. 

 Generally if a variable is “on a relative scale”, i.e. a change from 10 to 11 
does not mean the same or have the same impact as from 100 to 101, but 
we rather need to care about the relative/percentage increase. 

 Variables that are on a scale that is left-closed with zero as the smallest 
possible value, but open to the right so that it can theoretically take 
arbitrarily large values are often on a relative scale. 

 If the marginal distribution of a variable, as we can observe it from a 
histogram, is clearly skewed to the right. This is often the case for the 
above-mentioned positive variables on a relative scale. 

In summary, I dare to say that using the log-transformation is almost the norm 
rather than the exception when we talk about linear modeling. On the other hand, 
there are also variables where a transformation would be wrong, or is not possible 
at all. The latter concerns all variables that take negative values and even when 
there are zero values, we may run into problems, because the logarithm is defined 
for strictly positive values , 0x y   only. In summary: 

 For predictor/response variables that take negative values, the log-
transformation, and hence the log-log model is typically not suitable. 

 If either 0y   or 0x   appears, the log-transformation is still not possible. 
Do not exclude these data points from the analysis, this leads to a 
systematic error. One can though additively shift the variable: x x c  . 

 The usual choice for the constant is 1c  . However, this makes the 
regression model no longer invariant versus scale transformations. Thus, it 
is better (and recommended) to set c  to the smallest value 0 . 

2.6.7 Final Considerations 

By reflecting the previous examples, we notice that in the Leinhardt data both 
infant mortality and income are right-skewed variables which only take positive 
values. Thus, a log-transformation needs to be considered for both, and as the 
results from section 2.6.4 show, yields good results. Moreover, the daily cost in 
neurological rehabilitation is right-skewed and positive, while the predictor ADL is 
not. Hence only the response was log-transformed, again with good outcome. 
Finally, we turn our attention back to the Zurich Airport example. One aspect is 
that the residual plots in section 2.3.4 raised some doubts whether the straight line 
is a trustworthy result. And then, both Pax and ATM are positive variables what 
makes them candidates for a transformation. 

 log( ), log( )ATM ATM Pax Pax    
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The code for fitting the model and producing a scatterplot is: 

> fit        <- lm(Pax ~ ATM, data=unique2010) 
> fit.log    <- lm(log(Pax) ~ log(ATM), data=unique2010) 
> fit.y.orig <- exp(fitted(fit.log)[order(unique2010$ATM)]) 
> plot(Pax ~ ATM, data=unique2010, main="...") 
> lines(sort(unique2010$ATM), fit.y.orig, col="blue") 
> abline(fit, col="red") 

 

The result no longer corresponds to a straight line into the scatterplot, but a curve. 
Additionally, the increase in Pax is no longer linear with ATM, but relative. The 
difference between the two solutions seems to be minimal. Still, the variable 
transformations improve, as we can see from the residual plots: 

> xx <- unique2010$ATM 
> yy <- residuals(fit) 
> 
> ## Residuals vs. Predictor w/o Transformation 
> plot(xx, yy, xlab="ATM", ylab="Residuals", main="...") 
> lines(loess.smooth(xx,yy),col="red") 
> abline(h=0, col="grey") 
> 
> ## Residuals vs. Predictor w/ Transformation 
> xx <- log(unique2010$ATM) 
> yy <- residuals(fit.log) 
> plot(xx, yy, xlab="log(ATM)", ylab="Residuals", main="...") 
> lines(loess.smooth(xx,yy),col="red") 
> abline(h=0, col="grey") 
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The log-log-model manages to reduce the bias of the plain linear one, although 
there is still some kink in the residuals. But the log-log-model has another 
attractive point: it does no longer predict negative Pax values - though that does 
not mean it is safe for extrapolation! The coefficients are: 

> lm(log(Pax) ~ log(ATM), data=unique2010) 
Coefficients: 
(Intercept)     log(ATM)   
     -2.116        1.655   

Thus, the fitted relation corresponds to: 

1.655exp( 2.116)y x   , resp. 1.6550.120Pax ATM   

So, if ATM increases by 1%, then Pax increases by 1.655%. That is at least as 
plausible as an increase of 138.8 passengers per additional flight, because it is 
well known that the seat load factor is higher and bigger airplanes are used in 
busy times with more air traffic movements. 
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3 Multiple Linear Regression 
It is very rare that the variation in a response variable y  is due to one single 
predictor only. Even for the relatively trivial Pax vs. ATM example, the seat load 
factor and the amount of cargo that is handled may play an important role, too. For 
the other examples that were considered in section 1.1, the dependency on 
several input variables was clearly pointed out. We will now address the 
methodology for estimating multiple linear regression models where: 

 0 1 1 ... p py x x E       . 

We will continue using OLS for estimating the coefficients 0,..., p  . However, a 
number of new issues arise here; the most important perhaps being the fact that 
visualizing the relation is no longer easily possible. Thus, understanding the input 
and output becomes an important and challenging task. 

3.1 Example: Air Pollution and Mortality 

Since the beginning of the environmental movement, attention has focused on the 
protection of human health. Soon, air pollution was identified as a major threat to 
well-being. Therefore, researchers at General Motors collected data on 59 US 
Standard Metropolitan Statistical Areas for a study whether air pollution 
contributes to the age-adjusted mortality of the population. The apm dataset 
includes predictors measuring demographic characteristics of the cities, variables 
measuring climate parameters and finally three records for the air pollution in the 
ambient air: concentrations of hydrocarbons ( HC ), nitrous oxide ( xNO ) and sulfur 
dioxide ( 2SO ). An excerpt of the data is as follows: 

 

Most of the variables are self-explanatory: the temperatures are averages in 
degrees Fahrenheit, humidity is a percentage, the rainfall is given as annual sum 
in inches, education is the median number of years in the population, which itself 
is given as an absolute number, as well as a density per area and housing unit. 
Moreover, we have the percentages of non-white inhabitants and white collar 
workers, the median per-capita income and finally the concentrations of the 
pollutants. 

City Mortality JanTemp JulyTemp RelHum Rain Educ Dens NonWhite WhiteCllr Pop House Income HC NOx SO2
Akron, OH 921.87 27 71 59 36 11.4 3243 8.8 42.6 660328 3.34 29560 21 15 59
Albany, NY 997.87 23 72 57 35 11.0 4281 3.5 50.7 835880 3.14 31458 8 10 39
Allentown, PA 962.35 29 74 54 44 9.8 4260 0.8 39.4 635481 3.21 31856 6 6 33
Atlanta, GA 982.29 45 79 56 47 11.1 3125 27.1 50.2 2138231 3.41 32452 18 8 24
Baltimore, MD 1071.29 35 77 55 43 9.6 6441 24.4 43.7 2199531 3.44 32368 43 38 206
Birmingham, AL 1030.38 45 80 54 53 10.2 3325 38.5 43.1 883946 3.45 27835 30 32 72
Boston, MA 934.70 30 74 56 43 12.1 4679 3.5 49.2 2805911 3.23 36644 21 32 62
Bridgeport, CT 899.53 30 73 56 45 10.6 2140 5.3 40.4 438557 3.29 47258 6 4 4
Buffalo, NY 1001.90 24 70 61 36 10.5 6582 8.1 42.5 1015472 3.31 31248 18 12 37
Canton, OH 912.35 27 72 59 36 10.7 4213 6.7 41.0 404421 3.36 29089 12 7 20
Chattanooga, TN 1017.61 42 79 56 52 9.6 2302 22.2 41.3 426540 3.39 25782 18 8 27
Chicago, IL 1024.89 26 76 58 33 10.9 6122 16.3 44.9 606387 3.20 36593 88 63 278
Cincinnati, OH 970.47 34 77 57 40 10.2 4101 13.0 45.7 1401491 3.21 31427 26 26 146
Cleveland, OH 985.95 28 71 60 35 11.1 3042 14.7 44.6 1898825 3.29 35720 31 21 64
Columbus, OH 958.84 31 75 58 37 11.9 4259 13.1 49.6 124833 3.26 29761 23 9 15
Dallas, TX 860.10 46 85 54 35 11.8 1441 14.8 51.2 1957378 3.22 38769 1 1 1
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The task is to study how air pollution contributes to mortality. Thus, the influence of 
the three pollution variables is of primary interest. The remaining ones can be 
seen as potentially confounding factors, for which we try to correct. Since we know 
that mortality is affected by other causes than just the pollution alone, we have to 
correct for the effect of these covariates. Just studying the relation between 
mortality and pollution would lead to flawed results. Fortunately, with multiple 
linear regression we can incorporate all covariates and derive sound conclusions. 

3.2 Preparing the Data 

For simple regressions, we were able to visualize the data in an xy -scatterplot. 
This was beneficial for identifying the correct response-predictor relation, making 
variable transformations, detecting outliers and some further potential problems. In 
the present example, the data live in a 15-dimensional space, and there is no plot 
that can show them in full generality. Still, gaining an impression of the data and 
preparing them well for regression analysis is absolutely essential. 

3.2.1 Marginal Plots 

As a way out, we can visualize the univariate distribution of response and 
predictors with histograms (or barplots, should there be categorical predictors). As 
mentioned above, this does not give the full multivariate picture, but it still allows 
for detecting skewness in the variables, the presence of outliers and perhaps other 
important specialties such as missing values that are coded with numerical values. 

> par(mfrow=c(4,4)) 
> for (i in 1:15) hist(apm[,i], main=names(apm)[i]) 
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What immediately catches the attention is the extreme skewness of the pollution 
variables. This needs to be addressed with variable transformations; else the 
results from a multiple linear regression will be poor. Furthermore, also the 
population is right-skewed. Apart from this, there do not seem to be too many 
peculiarities in the apm data. An analysis using the R command 

> any(is.na(apm)) 
[1] FALSE 

shows that there are no missing values coded by NA. Neither do we have any 
suspicions that they might be coded by some numerical value. If that was the 
case, we urgently need to clarify the issue, and set the respective values to NA. 
Besides the histograms, one could also do scatterplots of the response variable 
vs. each of the predictors (or boxplots, in case of categorical predictors). Again, 
this does not visualize the multivariate setting in full depth, and is mostly less 
useful than the histograms shown above. 

3.2.2 Variable Transformations 

Regression results will be much easier to understand if the data are in units that 
we are well familiar with. In the context of the mortality example that means 
converting the temperatures to degrees Celsius rather than Fahrenheit, and 
rainfall in /cm year  rather than /inches year . We copy the original data frame, 
generate the new variables and drop the old ones: 

> apm$JanTemp  <- (5/9)*(apm$JanTemp-32) 
> apm$JulyTemp <- (5/9)*(apm$JulyTemp-32) 
> apm$Rain     <- (2.54)*apm$Rain 

All of the above are linear variable transformations of the form x ax b   . It is very 
important to notice that these do not change the regression output: all fitted 
values, tests and the prediction interval will remain identical. The only thing that 
changes is the coefficient j  and its standard error, but only to account for 
transformation that was made. 

This is clearly not the fact for non-linear transformations such as the log (or also 
the square root, the inverse, etc.): they ultimately change the regression relation 
and all results (fitted values, tests, confidence intervals, ...) will be different. The 
change is not necessarily for the bad, and thus we carry out the transformations 
that are indicated on the apm data. That includes taking the log( )  for the three 
pollution variables plus the population. Most other predictors are annual sums or 
averages, show sufficiently symmetrical distribution and are left alone.  

Implementation-wise, we do not carry out these transformations in the data frame, 
but choose the convenient option of writing the log(Pop), log(HC), log(NOx) 
and log(SO2) terms directly into the model equation, see below. 
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3.3 Model and Estimation 

What to do with such cases, where multiple predictor variables are available? The 
poor man’s approach would be to do many simple linear regressions on each of 
the predictors separately. This has the somewhat doubtful advantage that the 
relation between each predictor and the response can be displayed in a two-
dimensional scatterplot. However, it is very important to note that doing many 
simple linear regressions is not equivalent to a multiple linear regression. The 
findings, i.e. the regression coefficients and their p-values, will generally be 
different. The only case when they are identical is if the predictors are exactly 
orthogonal; and this is almost never the case with data from observational studies. 

As indicated above, the appropriate tool for simultaneously including the effects of 
several predictors at a time is multiple linear regression. Geometrically speaking, 
one tries to fit the least squares hyperplane in the ( 1)p  -dimensional space  
( p  is the number of predictors). Generally, this fit cannot be visualized if 2p  . 
We start our discussion with a simple example that illustrates some of the 
peculiarities of multiple linear regression. 

Example 

In this artificial example, there are only 2 predictors and 8 observations. Because 
the optimal solution is obvious, we do not need to estimate the regression 
coefficients but can guess them. The data are as follows: 

Observation x1 x2 yy 

1 0 -1 1 

2 1 0 2 

3 2 1 3 

4 3 2 4 

5 0 1 -1 

6 1 2 0 

7 2 3 1 

8 3 4 2 

The optimal solution of the multiple regression problem for the above data is 

 1 22i i iy x x   for all 1,...,8i   

We are in a very special situation and have a perfect fit, thus there are no errors. 
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Because there are only two predictors plus the response, we can visualize the fit in 
a 3d-scatterplot. As we observe below, the data points lie in a plane, the 
regression plane. 

> toy.ex <- data.frame(x1=c( 0,1,2,3, 0,1,2,3), 
                       x2=c(-1,0,1,2, 1,2,3,4), 
                       yy=c( 1,2,3,4,-1,0,1,2)) 
> library(Rcmdr) 
> attach(toy.ex) 
> scatter3d(yy ~ x1 + x2, axis.scales=FALSE) 
> detach(toy.ex) 

 

To convince ourselves that single and multiple linear regression is not one and the 
same thing, we regress 1~y x  and 2~y x . We can visualize these fits in two-
dimensional scatterplots. 
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The slope estimates from the simple regressions turn out to be 1.00 and 0.11, 
respectively. Hence they are both different than the coefficients for 1x  and 2x  in 
the (perfect) solution from multiple linear regression. Moreover, we do not achieve 
a perfect fit in neither of the two simple models. Hence, for describing the variation 
in y , we need to build on both variables 1x  and 2x  simultaneously. 

3.3.1 Notation 

We turn our attention back to the mortality example in dataset apm. In colloquial 
formulation, the multiple linear regression model is as follows: 

 0 1 2 14 2... log( )i i i iMortality JanTemp JulyTemp SO E             

More generally and technically, the multiple linear regression model specifies the 
relation between response iy  and predictors 1,...,i ipx x  for observations 1,...,i n , 
including a random error term iE . The double index notation is defined as: 

 0 1 1 ...i i p ip iy x x E       , for 1,...i n . 

The term 0  is still called intercept and corresponds to the (theoretical) mortality 
value when all predictors 1 2 ... 0i i ipx x x    . The remaining parameters 1,..., p   
are, in contrast to simple regression, no longer called slope(s), but just regression 
coefficients. The interpretation is as follows: 

The regression coefficient j  is the increase in the response y  when 
predictor jx  increases by 1 unit, but all other predictors remain unchanged. 

A more convenient way of writing down a multiple linear regression model is with 
the so-called matrix notation. It is simply: 

 y X E  , with 
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The terms in this equation are called the response vector, the design matrix, the 
coefficient vector and the error vector. If a matrix multiplication is carried out and 
the result is written down, we are back with the double index notation. This also 
illustrates the role of the particular first column of the design matrix: it is the 
intercept, which is also part of multiple linear regression. 

Our next goal is to fit a multiple linear regression model. The task which needs to 
be done is to estimate the coefficient vector   from the data; in a way that the 
solution is optimal. The criterion is still to minimize the sum of squared residuals. 
The next section illustrates the concept with an example and then focuses on the 
solution plus some technical aspects. 
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3.3.2 OLS: Method & Identifiability 

For illustrating the concept of least squares regression, we consider the mortality 
data with two predictors only: NonWhite and JanTemp. The regression coefficients 
are estimated such that the sum of squared residuals is minimal. The fitted 
regression plane with the residuals looks as follows: 

> scatter3d(Mortality~NonWhite+JanTemp, axis.scale=FALSE) 

 

We observe that the mortality decreases with higher winter temperatures, and 
increases in urban regions with more non-white population. The basis for finding 
this solution lies in the residuals, which are: 

0 1 1( ... )i i i p ipr y x x       . 

Then, we choose the parameters 0 ,..., p   such that the sum of squared residuals 
is minimal. We again formulate the quality function. 

 2 2
0 1 0 1 1

1 1

( , ,..., ) ( ( ... ))
n n

p i i i p ip
i i

Q r y x x     
 

         

We need to minimize this function, which can be tackled by taking partial 
derivatives and setting them to zero. This results in the so-called normal 
equations. We do now take full advantage of the matrix notation that was 
introduced above and can write the normal equations as 

 ( )T TX X X y  . 

If TX X  is invertible (or regular), we can obtain the least squares estimates of the 
regression coefficients by some simple matrix calculus as 1ˆ ( )T TX X X y   .  



Applied Statistical Regression  3 Multiple Linear Regression 
 

 Page 48 

If the regularity condition for TX X  is fulfilled, there is a unique and explicit solution 
for the regression coefficients ̂ , and thus no numerical optimization is needed. A 
side remark: in software packages, the inverse of TX X  is usually not computed 
for numerical reasons, but the computations will be based on a QR -decomposition 
or similar methods of simplifying TX X . In R, multiple linear least squares 
regression is carried out with command lm(). The syntax is as follows: 

fit <- lm(Mortality ~ JanTemp + JulyTemp + RelHum + Rain +  
                       Educ + Dens + NonWhite + WhiteCollar +  
                       log(Pop) + House + Income + log(HC) +  
                       log(NOx) + log(SO2), data=apm) 

As in simple linear regression, we have the response variable on the left hand 
side. It is related to the predictors on the right hand side, which are joined by ‘+’ 
signs. Note that potential log-transformations of predictors and/or response can 
directly be written into the formula, and that we need to specify the data frame 
from which the variables need to be taken.  

It is worth noting that there is a simple variant of specifying regression problems 
with many predictors in R. The notation lm(Mortality ~ ., data=apm) 
means that mortality is explained by all the other variables that exist in data frame 
apm. However, in our example these two commands will not yield identical results, 
because of the log-transformations that are missing in the short notation. Once the 
model is fitted, we can extract the regression coefficients, here rounded to two 
digits, by: 

> round(coef(fit),2) 
(Intercept)     JanTemp    JulyTemp       RelHum        Rain 
    1297.38       -2.37       -1.75         0.34        1.49 
        Educ        Dens   NonWhite  WhiteCollar    log(Pop) 
      -10.00        0.00       5.15        -1.88        4.39 
       House      Income    log(HC)     log(NOx)    log(SO2) 
      -45.74        0.00     -22.04       33.97       -3.69 

We claimed above that the normal equations have a unique solution if and only if 
TX X  is regular and thus invertible. This is the case if X  has full rank, i.e. all 

columns of the design matrix, or in other words, all predictor variables are linearly 
independent. This is often the case in practice, and whenever the full rank 
condition for X  is fulfilled, we are fine.  

On the other hand, there will also be cases where X  does not have full rank and 
TX X  is singular. Then, there are usually infinitely many solutions. Is this a 

problem? And how does it occur? The answer to the first question is “yes”. When 
the design matrix X  does not have full rank, the model is “poorly formulated”, 
such that the regression coefficients   are at least partially unidentifiable. It is 
mandatory to improve the design, in order to obtain a unique solution, and 
regression coefficients with a clear meaning. Below, we list some typical mistakes 
that lead to a singular design. 
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1) Duplicated variables 

It could be that we use a person’s height both in meters and centimeters as 
a predictor. This information is redundant, and the two variables are linearly 
dependent. One thus has to remove one of the two. 

2) Circular variables 

Another example is when the number of years of pre-university education, 
the number of years of university education and also the total number of 
years of education are recorded and included in the model. These 
predictors will be linearly dependent, thus X  does not have full rank. 

3) More predictors than cases 

Note that a necessary (but not sufficient) condition for the regularity of TX X  
is p n . Thus, we need more observations than we have predictors! This 
makes sense, because the regression is over-parameterized (or super-
saturated) else and will not have a (unique) solution. 

What does R do in non-identifiable problems? 

Generally, statistics packages handle non-identifiability differently. Some may 
return error messages; some may even fit models because rounding errors kill the 
exact linear dependence. R handles this a bit different: it recognizes unidentifiable 
models and fits the largest identifiable one by removing the excess predictors in 
reverse order of appearance in the model formula. The removed predictors will still 
appear in the summary, but all their values are NA, and a message also says 
“Coefficients: k not defined because of singularities”). While 
this still results in a fit, it is generally better in such cases to rethink the formulation 
of the regression problem, and remove the non-needed predictors manually. 

Estimation of the Error Variance 

An additional quantity that is a necessary ingredient for all tests and confidence 
intervals needs to be estimated from the data: it is the error variance 2

E . The 
estimate can be obtained by standardizing the sum of squared residuals with the 
appropriate degrees of freedom, which is the number of observations n  minus the 
number of estimated parameters. With p  predictor variables and an intercept, this 
amounts to 1p  , and the error variance estimate is: 

 2 2

1

1
ˆ

( 1)

n

E i
i

r
n p





   . 

In the next section, we will discuss if and when the OLS results are a good 
solution. The assumptions are identical to the ones we had in simple linear 
regression, as is the main result, the Gauss-Markov theorem. By assuming a 
Gaussian distribution for the errors, we can show even more and lay the basis for 
inference in multiple linear regression. 
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3.3.3 Properties of the Estimates 

The use of the least squares procedure is attractive due to its simplicity and the 
explicit solution that can be found without any numerical optimization. Additionally, 
there are some mathematical optimality results that further justify its application. 
However, we require some conditions for being able to derive them, namely: 

[ ] 0iE E  . 

Again this means that there is no systematic error, i.e. the true relation between 
predictors and response is the linear function that we imposed. Or in other words: 
the hyper plane is the correct fit. Additionally, we require constant variance of the 
error term, i.e.  

2( )i EVar E  . 

Finally, there must not be any correlation among the errors for different instances, 
which boils down to the fact that the observations, respectively their errors, do not 
influence each other, and that there are no latent variables (e.g. time/sequence of 
the measurements) that do so. In particular, 

( , ) 0i jCov E E  for all i j .  

Under these three conditions, we can derive that the coefficient estimates are 
unbiased and find their covariance matrix. The Gauss-Markov theorem states that 
there is no other linear, unbiased estimator that is more efficient. 

 ˆ[ ]E    and 2 1( ) ( )T
ECov X X    ,  

As in simple linear regression, the precision of the regression coefficients depends 
on the design and the number of observations which are present. While the 
Gauss-Markov theorem does not require the assumption of normally distributed 
errors iE , be careful in case of clearly non-Gaussian distribution. On one hand, 
there may be non-linear estimators that are clearly more efficient than OLS, and 
even more importantly, all inference results (i.e. tests, confidence intervals, 
prediction interval) to be discussed below ultimately require independent Gaussian 
errors. Hence it is standard to also require 

 iE  i.i.d. 2~ (0, )EN   

for OLS regression. Then, and only then, the estimators for the regression 
coefficients will follow an exact Gaussian distribution, as will the distribution of the 
fitted values. The specifications are as follows: 

  2 1ˆ ~ , ( )T
EN X X     and 2 1ˆ ~ ( , ( ) )T T

Ey N X X X X X    

For error distributions that deviate from the Gaussian, we can rely on the central 
limit theorem. It tells us that asymptotically (i.e. for large samples) the normal 
distribution of the estimates will still hold. Thus, small deviations from Gaussian 
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errors may be tolerable in practice. It is generally an expert call what is alarming 
and what is acceptable, but the bigger the dataset and the less extreme the error 
distribution deviates, the more tolerable one can be. Also, deviations from normal 
errors are usually less worrying if the task is prediction, but more so if one is after 
inference with exact p-value reporting. 

As mentioned above, both ̂  and ŷ  are unbiased estimates and since their 
covariance matrices and distribution is known, confidence intervals and tests can 
be determined. Another important result from mathematical statistics is also that 
under Gaussian distribution, OLS is the maximum likelihood estimator (MLE). 
Hence there cannot be any other unbiased estimator that is asymptotically more 
efficient than OLS. Please note that this statement is stronger than the Gauss-
Markov theorem, but it requires more, namely normal errors. 

In summary, there are very good reasons to prefer OLS over other methods to 
estimate the linear regression coefficients. However, we require that the four 
assumptions made are at least roughly fulfilled. This needs to be verified by a 
number of model diagnostic plots, as shown in section 3.7 of this scriptum. In case 
of clear violations, one usually tries to improve the model with variable 
transformations, which rightly done serves to achieve better behaved errors. 
Alternatively, more complicated estimation procedures that require fewer 
assumptions can sometimes be used instead. 

Hat Matrix 

For the mathematically interested, we will now take further advantage of the matrix 
notation and study the solution of the OLS algorithm. We can write the fitted 
values ŷ  very simply as 

 ˆŷ X  . 

We now do some further calculus and plug-in the solution for ̂  from above. We 
then observe that the fitted values ŷ  are obtained by a matrix product, namely the 
hat matrix H , with the observed response values y : 

 1ˆˆ ( )T Ty X X X X X y Hy     

The matrix H  is called hat matrix, because “it puts a hat on the y ’s”, i.e. 
transforms the observed values into fitted values. This clarifies that the OLS 
estimator is linear and opens the door to a geometrical interpretation of the 
procedure: the hat matrix H  is the orthogonal projection of the response y  onto 
the space spanned by the columns of the design matrix X . Please note that 
(except for some rare cases with perfect fit), we cannot linearly combine the 
columns of the design matrix to generate the response y . The OLS solution then 
is the best approximation, in the sense of an orthogonal projection.  

Disclaimer: do not worry if this geometric notion of OLS regression is hard to 
grasp. It is a nice interpretation for those with imagination and the necessary 
background in linear algebra , but it is of little practical importance. 
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3.4 Inference 

Here, we will discuss some methods for inferring the relation between response 
and predictor. While a few topics are a repetition to the inference topics in simple 
linear regression, quite a number of novel aspects pop up, too. Please note that 
except for the coefficient of determination, the assumption of independent, 
identically distributed Gaussian errors is central to derive the results. 

3.4.1 The Coefficient of Determination 

In simple linear regression, we had presented the coefficient of determination 2R
as an intuitive goodness-of-fit measure that compares the scatter in y -direction 
with and without knowing the regression line. Though visualization is no longer 
possible with multiple linear regression, the idea (and formula) behind is identical: 

2R  expresses which portion of the total variation in the response y  is accounted 
for by the regression hyperplane. The definition is as follows: 
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In the numerator, we measure the scatter of the data points around the fitted 
values, i.e. the RSS. The denominator has the scatter of the data points around 
their mean. This is the total sum of squares (TSS). Again, the maximum value is 

2 1R  . It is attained if all data points are on the regression hyperplane. The other 
extreme case is 2 0R   and means that there is no explanatory power in the 
regression fit, and 1 2

ˆ ˆ ˆ... 0p      . The actual value is provided in the R 
summary in the second to last row: 

> summary(fit) 
 
Call: 
lm(formula = Mortality ~ JanTemp + JulyTemp + RelHum + Rain +  
    Educ + Dens + NonWhite + WhiteCollar + log(Pop) + House +  
    Income + log(HC) + log(NOx) + log(SO2), data = apm) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.297e+03  2.934e+02   4.422 6.32e-05 *** 
JanTemp     -2.368e+00  8.851e-01  -2.676   0.0104 *   
JulyTemp    -1.752e+00  2.031e+00  -0.863   0.3931     
[output partly ommitted...] 
log(SO2)    -3.687e+00  7.359e+00  -0.501   0.6189     
--- 
Residual standard error: 34.48 on 44 degrees of freedom 
Multiple R-squared: 0.7685,  Adjusted R-squared: 0.6949 
F-statistic: 10.43 on 14 and 44 DF,  p-value: 8.793e-10 
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The result is 2 0.7685R  , hence a good portion of the response variation is 
explained by the predictors. However, the raw 2R  should be interpreted with care: 
the more predictors that are added to a multiple linear regression model, the 
smaller its residual sum of squares becomes, and the higher 2R  is. This 
improvement may be bigger or smaller according to the predictive power of the 
added predictor, but the goodness-of-fit never gets worse. This makes the multiple 
R-squared a cumbersome tool for comparing models with different number of 
predictors. However, one can overcome this by using the adjusted R-squared. The 
definition is: 

 2 21
1 (1 ) [0,1]

( 1)

n
adjR R

n p


    

 
 

As we can see, there is a penalty term for more complex models, i.e. models 
where the number of predictors p  is higher. Consequently, the adjusted R-
squared is always smaller than the multiple R-squared. The difference is most 
pronounced when there are few observations, many predictors and a poor signal. 
Vice versa, it becomes almost nil if we have lots of observations, just few 
predictors and strong signal. Final advice in this topic: for not privileging models 
with excess predictors, we recommend the use of the adjusted R-squared only.  

3.4.2 Confidence Intervals for the Coefficients 

The confidence intervals for the regression coefficients j , 0,...,j p  provide a 
way of expressing the uncertainty in these estimates. They contain all the null 
hypotheses j b   which the corresponding individual hypothesis test fails to 
reject and hence all values which are plausible for j . A quick but approximate 
way of computing these confidence intervals is: 

 2Coefficient Estimate Standard Error   

The necessary information can be found in the R summary and it is valuable to 
know about his ad-hoc method for quickly assessing the precision of the estimated 
coefficients. The actual, precise formula for computing a 95% confidence interval 
for the regression coefficient j  is: 

 1
ˆ0.975; ( 1) 0.975; ( 1)

ˆ ˆˆ ˆ ( )
j

T
j n p j n p E iiqt qt X X


    

          

Knowing this exact formula by heart is somewhat less important for the 
practitioner. However, it is important to be familiar with the command confint() 
that computes the exact confidence intervals in R: 

> round(confint(fit),2) 
              2.5 %  97.5 % 
(Intercept)  706.15 1888.61 
JanTemp       -4.15   -0.58 
JulyTemp      -5.84    2.34 
... 
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[output partially omitted] 
... 
log(NOx)       5.26   62.68 
log(SO2)     -18.52   11.14 

As it has been mentioned above, the confidence intervals contain all values which 
can be seen as plausible for the regression coefficients. If in particular zero lies 
within the intervals, it is a plausible value, too. Hence it might be that the predictor 
in question does not contribute to the variation in the response and thus it is non-
significant. This leads us to the individual hypothesis tests that will be discussed in 
the next section. 

3.4.3 Individual Hypothesis Test 

For finding out whether an arbitrary value b  is plausible for the regression 
coefficient j , we can check whether it is contained in the 95%-CI from above. 
Alternatively, there is a test for the null hypothesis 0 : jH b  . The most popular 
variant is 0 1: 0H   : this is asking if the coefficient could be zero, which would 
mean that the predictor 

jx  has no influence on the response y . The natural goal is 
to reject the null for gaining evidence that the relation between y  and the predictor 
exists. One usually tests two-sided on the 95% level, i.e. the alternative is 

1:AH b  . The test statistic and its distribution are as follows: 

 
0: ( 1)

ˆ

ˆ
~

ˆj

j

j
H b n p

b
T t




  


 . 

On this basis, it is straightforward to determine acceptance and rejection regions, 
as well as p-values. All the necessary ingredients together with the test statistic (t 
value) and the p-value (Pr(>|t|)) for 0 : 0jH    are routinely given in the R 
summary output: 

> summary(fit) 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.297e+03  2.934e+02   4.422 6.32e-05 *** 
JanTemp     -2.368e+00  8.851e-01  -2.676   0.0104 *   
JulyTemp    -1.752e+00  2.031e+00  -0.863   0.3931     
... 
[output partially omitted] 
... 
log(NOx)     3.397e+01  1.425e+01   2.384   0.0215 *   
log(SO2)    -3.687e+00  7.359e+00  -0.501   0.6189     

As an additional example, we test 1 5   . The value of the test statistic is 
( 2.368 5) / 0.8851 2.973675   . The acceptance region is easily computed from R: 

> qt(0.975,df=44) 
[1] 2.015368 
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Hence, we reject the null hypothesis, if the observed value of the test statistic 
exceeds 2.015  in absolute value. This is the case, and hence 0 1: 5H     is 
rejected. The p-value with which this happens is computed by: 

> 2*pt(-abs((-2.368+5)/0.8851),df=44) 
[1] 0.004760858 

We conclude that our null hypothesis is quite clearly rejected. While these tests 
are simply carried out and are useful in practice, their interpretation is a bit tricky 
and has a few traps that one must not fall victim to, namely: 

1) The multiple testing problem: if we repeatedly do hypothesis testing on the 
 =5% significance level, our total type I error increases. In particular, for p  
hypothesis tests, it is 1 (1 ) p  . Note that for example with 30 predictors, 
the chance of making at least one false rejection in the individual 
hypothesis tests is already 0.785, a pretty high value! 

2) It can happen that all individual hypothesis tests fail to reject the null 
hypothesis (say at the 5% significance level), although it is in fact true that 
some predictor variables have a known effect on the response. This does 
often occur due to correlation among the predictor variables, so that the 
predictive power is distributed and none seems too important in the 
presence of the others. 

Another important point is the interpretation of the individual hypothesis test: it 
verifies the effect of predictor jx  on the response in the presence of all the other 
predictors. As a consequence, any change in the predictor set leads to 
(sometimes drastically) different test results. This is especially important because 
decisions about the omitting of variables are often based on the individual 
hypothesis tests. Due to the above, one must not drop more than one non-
significant variable at a time – this need be done step-by-step. 

3.4.4 Comparing Hierarchical Models 

The idea behind the test presented in this section is a correct comparison of two 
multiple linear regression models when the smaller has more than one predictor 
less than the bigger. This can be useful in practice, i.e. for evaluating whether air 
pollution (which appears as 3 predictors) has an effect on mortality. Moreover, the 
test will also be required for correct handling of categorical predictors, the so-
called factor variables (see in section 3.6). We assume that there are two models. 

 Big model: 0 1 1 1 1... ...q q q q p py x x x x             

 Small model: 0 1 1 ... q qy x x       

The big model must contain all the predictors that are in the small model, else the 
models cannot be considered as being hierarchical and the test which is presented 
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below does not apply. The null hypothesis is that the excess predictors in the big 
model do not bring any benefit, hence: 

 0 1 2: ... 0q q pH         

We test against the alternative that at least one of the excess predictors has an 
effect, i.e. 0, 1,...j j q p    . The comparison of the two models will be based on 
the residual sum of squares (RSS). This quantity will always be smaller for the big 
model; the question is just by how much. If the difference is small, then one might 
not accept the additional variables, if it is big, then one should. The method for 
quantifying this is as follows: 

 , ( 1)

( 1)
~Small Big

p q n p
Big

RSS RSSn p
F F

p q RSS   

 
 


 

Apparently, we have a relative comparison of the model adequacy, and also the 
number of observations, the total number of predictors and the difference in the 
number of predictors are taken into account. Under the null hypothesis, i.e. if the 
excess predictors do not contribute, the test statistic has an F-distribution with 
p q  and ( 1)n p   degrees of freedom. Using that distribution, we can decide if 
the difference between the models is of significance or not. As an example, we 
consider the mortality data. Here, we want to test if the three predictors that are 
linked to air pollution can be omitted from the multiple linear regression model 
without any loss. We do this in R: 

> fit.small <- update(fit, .~.-log(HC)-log(NOx)-log(SO2)) 
> anova(fit.small, fit) 
Analysis of Variance Table 
 
Model 1: Mortality ~ JanTemp + JulyTemp + RelHum + Rain + 
                     Educ + Dens + NonWhite + WhiteCollar + 
                     log(Pop) + House + Income 
Model 2: Mortality ~ JanTemp + JulyTemp + RelHum + Rain + 
                     Educ + Dens + NonWhite + WhiteCollar + 
                     log(Pop) + House + Income + log(HC) + 
                     log(NOx) + log(SO2) 
  Res.Df   RSS Df Sum of Sq      F  Pr(>F)   
1     47 61142                               
2     44 52312  3    8829.3 2.4755 0.07388 . 

Note that the small model was defined with an update from the big model. It is not 
required to do so, we could also write it explicitly using the lm() command. The R 
function for the hierarchical model comparison is anova(). As input, it takes the 
small and big models. In the output, the two model formulas are repeated, before 
the quantitative result is presented. We recognize the RSS for the two models, 
also the degrees of freedom and the value of the test statistic are given. This is 
gauged against the F  distribution, which in this particular case looks as follows: 
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If the excess predictors (i.e. the air pollution) do not have an effect and hence 
under the null hypothesis, we expect the test statistic to be smaller than: 

> qf(0.95,3,44) 
[1] 2.816466 

This is the case, hence we are in the acceptance region and the null hypothesis 
cannot be rejected. The p-value is provided in the R output, it is 0.074. In 
conclusion, it might be that the air pollution, in the way it was measured here, does 
not affect mortality. At least we failed to reject the null that it does not have 
influence on the outcome with the current data and model. We finish this section 
by remarking that if a hierarchical model comparison is done for two models where 
the difference is only one single predictor, it coincides with the individual 
hypothesis test. 

3.4.5 Global F-Test 

The global F-test is another special case of a hierarchical model comparison, but 
an important one. The null hypothesis is 0 1 2: ... 0pH       , i.e. all regression 
coefficients are simultaneously zero. This means that none of the predictors (or 
also, the set of predictors as a whole) has a significant impact on the response. 
That, of course, would be a very bad sign in practice, and acceptance of the global 
null hypothesis would make a regression analysis mostly worthless. The 
alternative is that at least one 0j  , i.e. there is a least one predictor that yields a 
significant contribution, potentially also more than one. 

Technically, the global F-test is a hierarchical model comparison. We are here 
comparing against the simplest conceivable model that is only made up of the 
intercept term 0 . For that model, all fitted values correspond to the average  
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y -value. We then take the usual test statistic, but since here 0q   (i.e. there are 
no predictors in the small modell!), it simplifies to: 

, ( 1)

( 1)
~Small Big

p n p
Big

RSS RSSn p
F F

p RSS  

 
   

Hence the value for that test statistic can be computed and the p-value can be 
derived. It will hardly ever be required to do so manually, since both quantities are 
printed in the last line of R’s regression summary output. In particular: 

F-statistic: 10.43 on 14 and 44 DF, p-value: 8.793e-10 

The value of the test statistic lies far from the acceptance region, hence we reject 
the null hypothesis with a small p-value. For our example this means strong 
evidence that the mortality is affected by at least one of the variables which we 
gathered for the different metropolitan areas. 

3.5 Prediction 

Besides inference, the other very important application of the multiple regression 
fit is prediction. As soon as we are given the predictor values 1,..., px x   for a new 
observation that was not part of the fitting and where the response is potentially 
unknown, we can provide its predicted value, i.e. the conditional expectation: 

1 0 1 1
ˆ ˆ ˆˆ[ | ,..., ] ...p p pE y x x y x x            

In simple regression, we had explained that a prediction within the range of 
observed x -values is safe if the regression line does not have a systematic error. 
The very same can be said about multiple regression, however here it is much 
more difficult to say what is within the range of observed x -values, and what is 
beyond. For understanding this, it is important to keep in mind that (usually, except 
for a few special cases) cannot overlook and visualize the p -dimensional 
predictor space. Moreover, even when all individual values in the new 
observations’ predictors jx  lie within the values of the observed 1 ,...,j njx x  in that 
predictor, it is not guaranteed that we are still not extrapolating. This phenomenon 
is known as the curse of dimensionality: the p -dimensional predictor space is 
huge and even when staying within the hypercube defined by the observed 
predictor values, the new observation can be in a location where no data were 
present for the fitting process. However, as long as the fit is free of a systematic 
error, and when the new observation is within that hypercube, the predictions are 
usually safe. Besides producing predictions, it is also very important to understand 
their precision. As in simple regression, we can provide both a 95% confidence 
interval for the conditional expectation 1[ | ,..., ]pE y x x   , as well as the 95% 
prediction interval for the future observation. The meaning of these two intervals is 
exactly the same as in simple regression. The formulae are best written in matrix 
notation, in particular: 
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 95% confidence interval:   1

0.975; ( 1)ˆ ˆ T T
n p Ey t x X X x



       

 95% prediction interval:   1

0.975; ( 1)ˆ ˆ 1 T T
n p Ey t x X X x



        

In this notation, 1(1, ,..., )T
px x x    is the predictor vector for the new observation, 

including the intercept term. The computation of these intervals is implemented in 
R’s predict() function. As input for this routine, we need to provide the 
regression fit, the new predictor values 1,..., px x   in form of a data frame with 
column names that are identical to the ones that were used for the fit. We illustrate 
with the following example, where we predict the mortality in a fictional city: 

> new.x <- data.frame(JanTemp=32, JulyTemp=75, RelHum=55, 
           Rain=51, Educ=10, Dens=3500, NonWhite=8.7, 
           WhiteCollar=42, Pop=1200000, House=3, 
           Income=41000, HC=22, NOx=18, SO2=38) 
> 
> predict(fit, newdata=new.x, interval="confidence") 
       fit      lwr     upr 
1 979.4028 936.9754 1021.83 
> 
> predict(fit, newdata=new.x, interval="prediction") 
       fit      lwr      upr 
1 979.4028 897.9834 1060.822 

We observe that the predicted mortality is 979.4, with a 95% confidence interval 
ranging from 937.0 to 1021.8. The 95% prediction interval is (as always) wider and 
marks the range where we would expect a new observation. The numerical value 
of this interval is 898.0 to 1060.8. 

3.6 Categorical Predictors 

The variables we considered so far were all continuous, i.e. temperature, distance, 
pressure, et cetera. While the response must be continuous, it is perfectly valid to 
use categorical predictors, such as e.g. sex (male or female), status variables 
(employed or unemployed), shifts (day, evening, night). In general, these 
categorical variables have no natural scale of measurement. Thus, we must 
assign a set of levels to a categorical variable to account for the effect that the 
variable may have on the response. This is done through the use of indicator 
variables. In the regression context, they are better known as dummy variables. In 
the following sections, we will study the use of categorical predictors. 

3.6.1 Example with 1 Categorical Predictor 

The simplest case is a model where we have a continuous response y  and one 
single categorical predictor x . The example that we consider is from a lathe (in 
German: “Drehbank”), where y  is the lifetime of the cutting tool and the 
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categorical predictor x  refers to two different tool types A and B. A typical way of 
displaying observed lifetimes in relation to the two tool types is with boxplots: 

> boxplot(hours ~ tool, data=lathe) 

 

We observe that the lifetimes of tools of type B are considerably higher than the 
ones of type A. The usual question in this setting is to estimate the expected 
lifetimes for the two tool types and answering the question whether the two means 
are identical. The boxplots let us assume that this is not the case. We can 
quantitatively undermine this by performing a Student’s t-Test for non-paired data. 
The R command is as follows: 

> t.test(hours ~ tool, var.equal=TRUE, data=lathe) 
Two Sample t-test 
data:  hours by tool 
t = -6.435, df = 18, p-value = 4.681e-06 
alternative hypothesis: true diff in means is not equal to 0 
95 percent confidence interval: 
-19.655814  -9.980186 
sample estimates: 
mean in group A mean in group B  
         17.110          31.928 

What does this have to do with regression analysis? More than you think. We can 
achieve the very same quantitative results by fitting a regression of ~y x . 
Because regression is a technique for numerical variables, we need to replace the 
categorical predictor x  by an indicator variable that takes values 0 and 1 to 
identify the tool types – this is a so-called dummy variable. 

A B

1
5

2
0

2
5

3
0

3
5

4
0

Lifetime of Cutting Tools



Applied Statistical Regression  3 Multiple Linear Regression 
 

 Page 61 

 
0

1

tool type A
x

tool type B


 


 

The choice of 0 and 1 to identify the levels of this categorical predictor is arbitrary. 
In fact, any two distinct values for x  would be satisfactory, although 0 and 1 are 
the normal choice. Then, if we consider the simple linear regression model 

 0 1i i iy x E    , 

this becomes 0i iy E   for observations i  with tool type A and hence 0ix  . 
Then, for observations j  with tool type B, 1jx   and the regression equates to 

0 1j jy E    . Consequently, 0  is the expected lifetime for tools of type A, and 

0 1   the one for tools of type B. Or we can also say that 1  is the difference in 
the two lifetime expectations. With R, fitting regression models with categorical 
predictors is straightforward. We do not even need to take care of the generating 
the dummy variable, but can just provide a factor variable, i.e. 
class(lathe$tool)= "factor ". The summary output is as follows: 

> summary(lm(hours ~ tool, data=lathe)) 
 
Call: lm(formula = hours ~ tool, data = lathe) 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   17.110      1.628  10.508 4.14e-09 *** 
toolB         14.818      2.303   6.435 4.68e-06 *** 
--- 
Residual standard error: 5.149 on 18 degrees of freedom 
Multiple R-squared: 0.697, Adjusted R-squared: 0.6802 
F-statistic: 41.41 on 1 and 18 DF, p-value: 4.681e-06 

We observe that the regression coefficients are identical to the results from the 
testing procedure above, where arithmetic means were drawn. Furthermore, the 
test for the null hypothesis 1 0   addresses exactly the same question as the t-
test for non-paired data does. However, not only the question is identical, but also 
the answer (and the methodology behind). The p-values with both approaches are 
one and the same. Hence, if we can do regression, we could in fact retire the non-
paired t-test altogether. 

3.6.2 Mix of Categorical and Continuous Predictors 

We now enhance our previous example and want to relate the lifetime y  of a 
cutting tool on the speed of the machine in rpm ( 1x ) and the type of cutting tool 
used ( 2x ). The first predictor is continuous, while the second is categorical, again 
with levels A and B. As before, it will be replaced it by an indicator or dummy 
variable that takes values 0 and 1 to identify the tool types. 
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We can display the data in a scatter plot of hours vs. rpm, and distinguish the two 
tool types by different plotting characters. 

 

The plot also shows parallel regression lines for tool types A and B. We will now 
explain how they are found. The regression model for the situation with one 
continuous and one categorical predictor is as follows: 

 0 1 1 2 2y x x E       or in R notation hours ~ rpm + tool. 

The summary output for this regression model is: 

> summary(lm(hours ~ rpm + tool, data = lathe)) 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 36.98560    3.51038  10.536 7.16e-09 *** 
rpm         -0.02661    0.00452  -5.887 1.79e-05 *** 
toolB       15.00425    1.35967  11.035 3.59e-09 *** 
--- 
Residual standard error: 3.039 on 17 degrees of freedom 
Multiple R-squared: 0.9003,  Adjusted R-squared: 0.8886  
F-statistic: 76.75 on 2 and 17 DF,   p-value: 3.086e-09 

500 600 700 800 900 1000

15
2

0
2

5
30

3
5

4
0

rpm

h
o

u
rs

A

A

A

A
A

A

A

A

A

A

B

B
B B

B
B

B

B
B

B

Durability of Lathe Cutting Tools



Applied Statistical Regression  3 Multiple Linear Regression 
 

 Page 63 

We will now turn our attention to the interpretation of this regression model. We 
first consider an observation i  where the tool is of type A. There, we have 2 0ix   
and thus the model simplifies to: 

 0 1 1 2 0 1 10i i i i iy x E x E            . 

Thus, the relation between tool life and lathe speed for tool type A is a straight line 
with intercept 0 36.99   and slope 1 0.027   . Important: note that the slope is 
generally not equal to the one we would obtain from a simple linear regression for 
tools of type A only! Now conversely, for any observation j  with tool type B, we 
have 2 1jx  , and thus: 

 0 1 1 2 0 2 1 11 ( )j j j j jy x E x E               

That is, for tool type B the relation between tool durability and lathe speed is also a 
straight line with the same slope 1 0.027   , but different intercept 0 2 51.99   . 
Thus, the model estimates a common, identical slope coefficient for the two tool 
types. The regression coefficient 2  of the dummy variable 2x  accounts for the 
additive shift in durability of tool type B vs. tool type A, i.e. measures the difference 
in mean tool life when changing from tool type A to tool type B. Note that the two 
regression lines are parallel by definition. To make the analysis complete, we 
would need to check the diagnostic plots. We leave this as an exercise, because 
there are no peculiarities for this specific example. For the diagnostic plots, it is 
helpful to use different plotting symbols for tool types A and B. 

3.6.3 Interaction Terms 

Above, the regression line for tools A and B had different intercept, but identical 
slope. In this example, the fit seemed to be pretty well even under this restriction. 
However, we can easily imagine a situation where two parallel regression lines are 
not appropriate. The question this section deals with is whether and how a model 
with two different regression lines can be fitted. It is possible to model this situation 
with a single regression equation by using indicator variables. The model is: 

 0 1 1 2 2 3 1 2y x x x x E         or hours ~ rpm + tool + rpm:tool. 

An interaction term or cross product 1 2x x  has been added to the model. To 
interpret the parameters in this model, we first consider an observation i  with tool 
type A. Remember; this means that the dummy variable 2 0ix  . 

 0 1 1 2 3 0 1 10 0i i i i iy x E x E                

Thus, this is again a regression line with intercept 0  and slope 1 . However, the 
slope 1  will generally be different to the one found with the main effect model 
from section 3.6.2. For an observation j  with tool type B, we have 2 1jx   for the 
dummy variable. Thus, the regression model becomes: 

 0 1 1 2 3 1 0 2 1 3 11 1 ( ) ( )j j j j j jy x x E x E                    
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This is a straight-line model with intercept 0 2   and slope 1 3  . Thus, the 
interaction model defines two regression lines with different intercepts and 
different slopes. Therefore the parameter 2  reflects the change in the intercept 
associated with changing from tool type A to tool type B, and 3  indicates the 
change in the slope associated with this change. 

 

The scatterplot of hours vs. rpm is shown above, together with the two regression 
lines that are no longer parallel. There is a large vertical shift between the two 
regression lines. The slope however, only differs little. An obvious question is 
whether fitting two regression lines with different slopes is necessary, i.e. whether 
the difference is statistically significant or whether we could also do with the 
simpler model that has two parallel lines. This amounts to testing 

 0 3: 0H    against 3: 0AH   . 

This is an individual parameter test for the interaction term, and the result can be 
directly read from the summary output. 

> summary(lm(hours ~ rpm + tool + rpm:tool, data = lathe)) 
Coefficients:   Estimate Std. Error t value Pr(>|t|)     
(Intercept)    32.774760   4.633472   7.073 2.63e-06 *** 
rpm            -0.020970   0.006074  -3.452  0.00328 **  
toolB          23.970593   6.768973   3.541  0.00272 **  
rpm:toolB      -0.011944   0.008842  -1.351  0.19553     
--- 
Residual standard error: 2.968 on 16 degrees of freedom 
Multiple R-squared: 0.9105, Adjusted R-squared: 0.8937 
F-statistic: 54.25 on 3 and 16 DF,  p-value: 1.319e-08 
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The p-value for our null hypothesis is 0.196, thus the interaction term is not 
statistically significant. This leads to the conjecture that if there are no further 
(practical) reasons strongly speaking for different slopes, we would (and could) fit 
parallel lines. Note that the (full) interaction model always yields the same result as 
two separate simple linear regressions on tools of type A, and tools of type B. 
Does that mean we should prefer simple regressions? The answer is definitely no, 
because with the common model we can formally test to which extent the two tools 
behave identically. From the above test, we can accept the hypothesis that the 
rpm variable has the same effect on lifetime for both tool types. Another, more 
general but equally interesting question is if there is any difference at all between 
the two tools with respect to lifetime. The associated null hypothesis is: 

 0 2 3: 0H     against 2 3: 0 / 0AH and or   . 

Under the null, both the dummy and interaction coefficient are zero, meaning that 
there would be a common regression line for both tools. Our graphical display 
shows that this is implausible, but it is helpful to formally test the claim. Because 
we are testing two coefficients simultaneously, we require a partial F-test. The  
R-code and the output are as follows: 

> fit1 <- lm(hours ~ rpm, data=lathe) 
> fit2 <- lm(hours ~ rpm + tool + rpm:tool, data=lathe) 
> anova(fit1, fit2) 
Model 1: hours ~ rpm 
Model 2: hours ~ rpm + tool + rpm:tool 
  Res.Df     RSS Df Sum of Sq      F    Pr(>F)     
1     18 1282.08                                   
2     16  140.98  2    1141.1 64.755 2.137e-08 *** 

We observe that the p-value is very small, and the partial F-test thus highly 
significant. While there is no evidence for different slopes in this example, there is 
strong evidence of a difference (in either slope or intercept). Regarding the 
scatterplot, with the pronounced vertical shift between tool types A and B, this 
does not surprise us. Finally, we conclude this section by stating that the use of 
interaction models is not restricted to a combination of continuous and categorical 
predictors. In this case, they can be visualized most easily. However, we can have 
them between any types of predictors. They are appropriate whenever there is, or 
whenever we suspect a change in the effect of one predictor on the response, 
conditional on the level of another predictor. 

3.6.4 Categorical Input with More than Two Levels 

An obvious extension to the previous example with lathe cutting tools would be to 
consider three or more types of tools instead of only two. The tool variable then is 
still categorical, but no longer binary, and we need more dummy variables. For 
example, suppose that there are three tool types A, B and C. We then require two 
dummy variables to incorporate them into the model. The coding is as follows: 
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2 3

0 0

1 0

0 1

x x

for observations of type A

for observations of type B

for observations of type C

 

In general, a qualitative variable with   levels is represented by 1  dummy 
variables, each taking values 0 and 1. Be careful, categorical variables must be 
represented in this fashion, and generally cannot be numerically coded in one 
single variable with values 0,1,..., 1 . Please also note that with the here 
presented dummy encoding, the first level (here: tool type A) is always the 
reference. This is also how R codes categorical input variables by default: the first 
factor level is the reference. There are, however, different options for coding, 
called contrasts. This is more of a topic in analysis of variance, thus we do not 
pursue that issue here. The main effects regression model with three types of tools 
and their respective dummy variables is now: 

 0 1 1 2 2 3 3y x x x E        , or in R simply hours ~ rpm + tool. 

 

This will fit three parallel regression lines, where each has a different intercept. 
However, when we closely observe the scatter plot above, we gain the impression 
that the durability of tool type C seems to depend much less on rpm than the other 
two. While at slow speeds, its lifetime seems to be inferior to the type B tools, they 
seem to last longer at faster speeds. Because the main effects model cannot deal 
with the apparently different slopes, we fit the interaction model hours ~ rpm + 
tool + rpm:tool, in mathematical annotation: 
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 0 1 1 2 2 3 3 4 1 2 5 1 3y x x x x x x x E             

The interpretation of this model is as before with binary categorical input. We leave 
it as an exercise to write down the cases for observations i , j  and k  of tool types 
A, B and C. The regression fit with R is again straightforward; we only need the 
tool variable to be a factor with multiple levels. R then generates the necessary 
encoding into dummy variables automatically in the background. 

> summary(lm(hours ~ rpm + tool + rpm:tool, data = abc.lathe) 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|) 
(Intercept) 32.774760   4.496024   7.290 1.57e-07 *** 
rpm         -0.020970   0.005894  -3.558  0.00160 ** 
toolB       23.970593   6.568177   3.650  0.00127 ** 
toolC        3.803941   7.334477   0.519  0.60876 
rpm:toolB   -0.011944   0.008579  -1.392  0.17664 
rpm:toolC    0.012751   0.008984   1.419  0.16869 
--- 
Residual standard error: 2.88 on 24 degrees of freedom 
Multiple R-squared: 0.8906, Adjusted R-squared: 0.8678 
F-statistic: 39.08 on 5 and 24 DF,  p-value: 9.064e-11 

The interpretation of this summary output now needs to be done with care. 
Individual parameter tests for dummy variable coefficients of categorical predictors 
with more than two levels are not meaningful! Thus, from the above output, we 
cannot conjecture that we can do without a different intercept for tool C on the 
basis that the test for 0 3: 0H    is not significant. Moreover, also coefficients 4  
and 5  have p-values >0.05. Does that mean that we can do without the 
interaction? No! We can only either exclude all the interaction terms at once, or we 
have to keep all of them in the model. Hence, we test the hypothesis 

 0 4 5: 0 0H and    against 4 5: 0 / 0AH and or   . 

This is again a partial F-test. Instead of using the summary function in regression 
problems with factor variables that have more than two levels, or when there are 
interaction terms so that the terms in the model have a hierarchy, we recommend 
to work with the drop1() function: 

> drop1(fit.abc, test="F") 
Single term deletions 
Model: hours ~ rpm + tool + rpm:tool 
         Df Sum of Sq    RSS    AIC F value  Pr(>F)   
<none>                199.10 68.779                   
rpm:tool  2    59.688 258.79 72.645  3.5974 0.04301 * 

As we can see, the only term which can be excluded from the current model is the 
interaction term. As long as it is part of the model, the main effects which it stems 
from have to remain. Furthermore, as mentioned above, there is no exclusion of 
single factor levels resp. dummy variables possible. R function drop1() regards 
all these rules and performs the respective tests for the variables which are 
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candidates for exclusion from the model. In our particular case, the interaction 
term is significant with a p-value 0.043. Therefore, different slopes for the three 
tool types are to be regarded as necessary. Of course we may also ask the more 
general question whether there is any difference among the tool types at all. This 
corresponds to a broader test versus a sub-model with only rpm as a predictor: 

 0 2 3 4 5: 0H         against 2 3 4 5: , , , 0AH any of      . 

We need to fit both models and compare them with the anova() function: 

> f.sma <- lm(hours ~ rpm, data=abc.lathe) 
> f.big <- lm(hours ~ rpm + tool + rpm:tool, data=abc.lathe) 
> anova(f.sma, f.big) 
Analysis of Variance Table 
Model 1: hours ~ rpm 
Model 2: hours ~ rpm + tool + rpm:tool 
  Res.Df    RSS Df Sum of Sq      F    Pr(>F)     
1     28 1681.3                                   
2     24  199.1  4    1482.2 44.665 8.811e-11 *** 

The additional terms in the big model are highly significant. In accordance to our 
visual impression from the scatterplots, it is a good idea to distinguish the different 
tool types with respect to their life time. However, please keep in mind that many 
(most!) regression problems cannot be visualized so easily, such that we have to 
rely on test results rather than visualization for being able to draw conclusions. 

3.6.5 Categorizing Quantitative Predictors 

A sometimes useful trick is to generate a categorical predictor out of a continuous 
one. In the lathe example from above, we could for example categorize the 
continuous predictor rpm into bins ranging from 400-600rpm, 600-800rpm, and 
800-1000rpm. Does this make sense? At the first glance, there does not seem to 
be an advantage for doing so, and in this particular example, there is in fact none. 

Also, the disadvantage of the categorization is that more parameters are required 
to represent the information of the continuous predictor. Thus, we increase the 
model complexity by this categorization. However, under the presence of enough 
data, this is sometimes desired, because it does not require the analyst to make 
any prior assumptions about the functional form of the relationship between the 
response and the predictor variable and enhances the flexibility. 

Another advantage of the categorization approach is that it allows dealing with 
missing observations, without having to delete them. If they are numerous in a 
certain predictor, we could just categorize it, and assign all observations with 
missing information in that predictor the label “unknown”. Within the model, we 
would just estimate the effect of unknown status in that predictor. Such a 
categorization of continuous predictors is in some fields quite popular among data 
analysts. The approach is also known as “poor man’s GAM”. 
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3.7 Model Diagnostics 

We need to check the assumptions we made for fitting a multiple linear regression 
model. Why? One reason is because we want to make sure that the estimates we 
produce and the inference we draw is valid. This seems quite technical and also 
somewhat fussy and boring. Still, it is absolutely essential to perform residual 
analysis before any findings from the summary output, confidence intervals or 
predictions are reported. If the model that was used is flawed, all these results 
might be dead wrong and presenting them unverified could bring you into a very 
uncomfortable situation. 

However, there is a second, usually equally important reason to perform model 
diagnostics: any potential flaws that appear can help us to improve the model and 
enhance our understanding of the relation between response and predictors. In 
fact, we can go as far as saying “it is all in the residuals”, i.e. most of what we can 
learn about how to better shape a regression analysis is derived from some clever 
diagnostic plots. Such enhancements include response and/or predictor 
transformations, inclusion of further predictors or interaction terms among them, 
weighted regression analysis or in some situations also the use of more generally 
formulated or more robust models that are not based on OLS. This is explorative 
data analysis at its best – we fit a model, try some ideas, check the results and try 
to improve. 

3.7.1 What Do We Need to Check For, and How? 

We restate the assumptions we made for using the OLS procedure when fitting 
multiple linear regression model and drawing inference from them. One goal in 
model diagnostics is to detect potential deviations from them. 

[ ] 0iE E  , 
2( )i EVar E  , 

( , ) 0i jCov E E  for all i j , 
2~ (0, ), . .i EE N I i i d . 

While the first three conditions are necessary for performing least square 
estimation and the validity of the fitted values, the last condition is only required for 
any hypothesis tests, confidence intervals and prediction intervals. Since these are 
very important and the OLS estimator quickly becomes inefficient under non-
Gaussian distribution, the normal assumptions shall also always be verified. While 
zero error, constant variance and the Gaussian property are relatively easy to 
check and will be addressed in the next subsection, uncorrelatedness or 
independence are more delicate matters that are postponed to a later chapter. 
Please also note that most of our diagnostic techniques are visual. This requires 
some expertise for their interpretation, but has the benefit of a very wide scope 
and good power for detecting what is important to be found. 



Applied Statistical Regression  3 Multiple Linear Regression 
 

 Page 70 

3.7.2 Checking Error Assumptions 

In this section, we present methods for checking the zero expectation, constant 
variance and normality assumptions of the errors iE . The errors iE  are random 
variables which tell the (potential) difference iy X   between observed and true 
value; they are a concept and unobservable in practice. What we can examine are 
the residuals. We have ˆ

i iR y X    which again are random variables and are the 
(potential) difference between observed value and the least squares and their 
realized values ir  on a particular dataset.  

Please note that iE  and iR  are not one and the same and to a certain extent, also 
have different properties. Even when the usual least squares conditions on the 
errors are exactly met and hence 2( ) EVar E I , the residuals will be weakly 
correlated and heteroskedastic. The derivation of this result starts with writing the 
fitted values with the hat matrix: 

 1ˆ ( )T Ty Hy X X X X y   

The random vector of residuals can be written as ˆR y X    and we will now 
study its distribution, i.e. form, family and moments. We obtain: 

 ˆ[ ] [ ] 0E R E y X    , and thus [ ] 0iE R   for all 1,...,i n  

 2( ) ( ) ... ( ) EVar R Var Iy Hy I H      , from which we derive 

 2( ) (1 )i ii EVar R H    and 2( , ) 0i j E ijCov R R H     

Finally, because the residuals ( )iR I H y   stem from a linear combination of the 
(under assuming 2~ (0, )i EE N  ) normally distributed responses, the residuals 
vector follows a Gaussian distribution, too: 

 2~ (0,(1 ) )i ii ER N H   

We here emphasize again that due to heteroskedasticity and correlation, the 
residuals do not exactly match the properties that the errors are supposed to have. 
The “further away” from the other data points an observations lies and hence the 
bigger its leverage iiH  is, the smaller the variance of its residuals iR  will be. This 
raises the question whether it is sensible to perform model diagnostics and 
checking the assumption for the error on the basis of the residuals. Fortunately, 
the answer is yes. In well-posed regression problems where enough data are 
present, the effects of estimation-induced residual correlation and 
heteroskedasticity will be relatively minor and can often be neglected. Hence, even 
an analysis of the so called raw residuals ir  usually yields reasonable insight. 

Moreover, one can try to standardize or studentize the residuals for mitigating the 
heteroskedasticity. The two terms refer to a division of each residual by its 
estimated standard deviation to bring them on a scale with unit variance: 
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E ii
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 . 

Here, iiH  is the thi  diagonal element of the hat matrix and ˆE  is an estimate of the 
residual standard error. Depending on whether ˆE  comes from the full fit or from 
an alternate regression without the thi  data point, one speaks of standardized 
respectively studentized residuals. The distinction between the two types is mostly 
for academic purpose and not too relevant for practical application. Standardized 
and studentized residuals can be obtained in R through functions rstandard() 
and rstudent(), respectively. However, the difference between either of these 
and the raw residuals ir  can be pronounced for data points with extreme x  values. 
We compare the centered and rescaled raw versus the standardized residuals for 
the mortality data: 

> plot(resid(fit)/sd(resid(fit)), rstandard(fit), pch=20) 

 

Except for the Tukey-Anscombe plot, all the forthcoming residuals plots will be 
based on standardized residuals. This is how things are implemented in R and 
unless you know much better, it is recommended to stick to this. 

Tukey-Anscombe Plot 

This plot of residuals ir  vs. fitted values ˆiy  is named after the two researchers 
(who were brothers-in-law) that made it popular and is the most important 
diagnostic tool for any multiple linear regression fit. It is mainly aimed at verifying 

[ ] 0iE E   and so evaluates whether the model is correct and makes unbiased 
predictions. However, please note that is not possible to check the assumption of 
zero expectation for each error individually – some residuals will be large and 
some will be small, but this proves nothing. What we need to check is whether the 
local mean of the residuals is related to some other quantity. This should not be 
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the case, no matter what that quantity is. The easiest way to generate a Tukey-
Anscombe plot in R is with the plot.lm() function, i.e. the command is simply 
plot(fit, which=1). Because it is more instructive, we here show the code to 
self-generate the plot and display it along R’s default version. As you can see, the 
two plots are nearly identical, except for some minor differences in the smoother 
which is due to the different algorithms that were used. Also, plot.lm() always 
annotates the name of the three data points with the biggest residuals which is 
very useful in practice. 

> plot(fitted(fit), resid(fit), main="Tukey-Anscombe") 
> lines(loess.smooth(fitted(fit), resid(fit)), col="red") 
> abline(h=0, lty=2) 

 

Producing a Tukey-Anscombe plot is one thing, drawing the correct conclusions 
from it the other. Some artificial examples which are displayed on the next page 
illustrate the concept. For the zero error expectation [ ] 0iE E   assumption to hold, 
we require that the smoother does not systematically deviate from the x -axis. This 
is the case in the top two panels, because the “residuals” there originate from an 
iid Gaussian distribution. Hence, any deviation can be attributed to randomness 
alone. The situation is different in the bottom right panel: here, there is a 
systematic deviation of the smoother from the x -axis, and under no circumstances 
we could tolerate such a faulty model. The bottom left panel shows a situation 
where [ ]iE E  does not systematically deviate from zero, but ( )iVar E  massively 
increases for large fitted values. Also this is a violation of the assumptions for OLS 
regression, although a less severe one. 

So when does a smoother systematically deviate from the x -axis, and when is this 
just due to random variation? Generally, this is an expert call based on the 
magnitude of the deviation and the number of data points which are involved. An 
elegant way out of these (sometimes difficult) considerations is given by a 
resampling approach. 
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It is based on keeping the fitted values ˆiy  as they are, but for each data point a 
“new” residual *

ir  is assigned, obtained from sampling with replacement among 
the ir . Then, with the new data pairs *

1,...,ˆ( , )i i i ny r  , a smoother is fitted and it is 
added to the Tukey-Anscombe plot as a grey line, the resampled data points are 
not shown. The entire process is repeated for a number of times, e.g. 100x. 
Clearly, because the residuals were randomly assigned to the fitted values, there 
cannot be a systematic (but just a random) deviation of the smoother. Hence, 
these resampled smoothers illustrate the magnitude which a random deviation 
from the x -axis can take and help us to assess the smoother on the original 
residuals. 

> plot(fitted(fit), resid(fit), pch=20, main="...") 
> for (i in 1:100) { 
> +   sresid <- sample(resid(fit), replace=TRUE)) 
> +   lines (loess.smooth(fitted(fit), sresid), col="grey")} 
> lines(loess.smooth(fitted(fit), resid(fit)), col="red") 
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You can obtain the R function resplot() from the lecturer; it implements the 
resampling idea. Please note that there is a random element in producing these 
plots. Hence without setting the random number generator using set.seed(), 
the grey lines will look different in each repetition. The result above tells us that up 
to fitted values which are 1050 , the original red smoother lies well within the grey 
scatter and thus just randomly deviates from the x -axis. At the right hand 
boundary, the situation remains fuzzy. The original smooth is at the edge of what 
can be generated by random sampling, but not clearly beyond. Also because it is 
only due two data points with strongly negative residuals, the author feels that we 
cannot reject the hypothesis [ ] 0iE E  . Hence, we here attribute the deviation of 
the smoother to randomness. 

But what could we do in case of a systematic error? The answer is simple; we 
need to fit a better model. The difficult part is to find the correct way to improve the 
model. Often, (log-)transformations of the response and/or predictor variables 
help. In other cases, a systematic error may be cured by adding further predictors, 
higher order terms or interaction terms between some of the predictors. In some 
(pretty rare) cases, we may also need to conclude that multiple linear regression 
modelling is not the correct way to approach the problem at hand, so that more 
sophisticated procedures are required.  

We conclude this section with a brief summary: if the smoother in the Tukey-
Anscombe plot systematically deviates from the x -axis, the regression model has 
a systematic error. In this case, we should not generate predictions or report 
findings from the summary output, but need to improve the model. The most 
generic trick that helps in many situations is to consider log-transformations for the 
variables where this is sensible. 
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Normal Plot 

The assumption of iid  normally distributed errors can be checked with the normal 
plot, i.e. for 1,...,i n  we plot the ordered standardized residuals against the 

/ ( 1)i n   quantiles of the standard normal distribution. As we have seen above, the 
normal distribution of the errors iE  also transfers to the (standardized) residuals. 
Thus, the data points in the normal plot should align, i.e. not show a systematic 
deviation of the line that is fitted through the 1st and 3rd quartiles of the two 
distributions. This may again raise some discussion as when a deviation is random 
or systematic. We can again support this decision by resampling, i.e. drawing 100 
random samples of length n  from a Gaussian distribution that shares mean and 
standard deviation with the residuals. 

> qq <- qqnorm(rstandard(fit), pch=20, main="...") 
> for (i in 1:100) { 
> +   sresid <- rnorm(length(qq$y), mean(qq$y), sd(qq$y)) 
> +   lines(sort(qq$x), sort(sresid), col="grey")} 
> points(qq$x, qq$y, pch=20); box() 
> qqline(rstandard(fit), lty=2) 

 

We observe that all residuals from the mortality dataset fall within the resampling 
based confidence region, thus there is no systematic deviation from the normal 
distribution or the iid  assumption – please keep in mind that the above plot may 
show a deviation also in cases where the data are Gaussian, but (strongly) 
heteroskedastic! The question which remains is what to do if there is a systematic 
deviation. This depends on the type of non-Gaussian residuals that are observed. 
The OLS estimator is not tolerant to skewed residuals, especially because they 
mostly coincide with a systematic error, i.e. a violation in the Tukey-Anscombe 
plot. Heavy- and especially short-tailed residual distributions are less worrying, as 
long as they are symmetrically distributed. In that case, they hardly have an 
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adverse effect on the fitted values, which are still unbiased and trustworthy. In 
contrast, the accuracy in the levels of the confidence intervals that are computed 
and the precision of the tests suffers – an issue, which definitely has to be kept in 
mind. What also needs to be mentioned is that the efficiency of the OLS estimator 
degrades quickly for heavy-tailed distributions, meaning that there are other (i.e. 
robust) estimators that estimate the regression coefficients with higher precision. 

Some prototypical normal plots are shown below. In clockwise order, starting from 
the top left, they show residuals from a normal distribution, then from the right-
skewed lognormal distribution, the long-tailed Student’s 2t -distribution and finally a 
short-tailed Uniform distribution. 

 

As has been mentioned above, the situation in the top right panel is the most 
worrying. It is very unlikely that a regression fit producing such a normal plot is 
trustworthy. The two plots in the bottom panels are less than ideal, too. Here at 
least, due to the symmetrical distribution of the residuals, the fitted values are 
likely to be unbiased (though not efficiently estimated).  
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Scale-Location Plot 

This plot facilitates detecting non-constant variance, i.e. heteroskedasticity. We 
had argued above that one can also detect this by looking sharply at the Tukey-
Anscombe plot, but the Scale-Location plot is more specific. It displays the square 
root of the absolute value of the standardized residuals ir  versus the fitted 
values. The crucial operation is the absolute value. It means that the bottom half of 
the Tukey-Anscombe plot is folded over, hence we can better detect a potential 
relation of the residuals’ magnitude with the fitted value. Again, a smoother is 
added and if there is no heteroskedasticity, it will run horizontally. Also here, the 
task is to identify systematic deviations. We can again use the resampling idea of 
randomly drawing new data pairs *ˆ( , )i iy r  to produce a confidence region in the 
Scale-Location plot, see below. It seems as if the variance in the residuals grows 
with increasing fitted value. A popular cure for this is to apply a log-transformation 
to the response variable. If one tries (not displayed in this scriptum), there is a 
small benefit. 

 

3.7.3 Influence Diagnostics 

There are situations where the regression coefficient estimates are strongly 
influenced by one single, or just a few data points. This is suboptimal; it is 
important to recognize such situations and to identify these data points. However, 
the previously discussed residual plots are not always very useful for this task. 

We will present the issue and the main definitions on the basis of a few artificial 
simple regression examples below. A leverage point is one with extreme x -
value(s), i.e. lies “far” from the bulk of data. It is not necessarily an influential data 
point, but has a high potential to be so. The plots below illustrate this: the top left 
shows a “normal” situation without any leverage or influential points. Top right, a 
leverage point was added, but it is not influential, as it does not alter the 
regression line at all. 
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This is different at the bottom left: the leverage point now is an influential data 
point, i.e. the red regression line differs markedly from the blue one, which was 
computed by omitting the leverage point. Finally, the bottom right panel shows an 
outlier, which has relatively little influence on the regression line. This is because it 
has an x -value which is close to x . 

 

In the above examples, we determined the properties leverage point and influential 
point by visual inspection, and by omitting data points from the computation of the 
regression line. This works in simple situations, but is relatively cumbersome to 
generalize. If the influence of any data point in a sample shall be determined, we 
require running ( 1)n   regressions, i.e. one with all the data points, and one each 
with omitting one data point at a time. This is quite laborious, and additionally it 
requires some numerical criteria with which one quantifies the change in the 
regression line if a particular data point was left out. In the following, we will 
present the concepts of Leverage and Cook’s Distance. They allow quantifying the 
potential for change, resp. the change that is induced by each data point, and this 
even directly without running ( 1)n   regressions. 
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Leverage 

The leverage of a data point is relatively easy to determine. It simply corresponds 
to iiH , the thi  diagonal element of the hat matrix H . This makes sense, as if the 
response iy  changes by iy , then ii iH y  is the change in the fitted value ˆiy . 
Thus, a high leverage for the thi  data point means that it has a strong potential to 
alter the regression line and force it to fit well to it. We have: 

0 1iiH   for all i , and 1iiH p  .  

Hence, the average leverage is ( 1) /p n , and all data points exceeding twice that 
value, i.e. have 2( 1) /iiH p n  , are regarded as leverage points. As we have 
seen above, observations that have high leverage and at the same time a large 
residual are influential. We need to identify these! 

Cook’s Distance 

In brief summary, a leverage point tells us how strongly a data point may force the 
regression line to run through it. Whether it does so or not largely depends on the 
size of its residual. A direct measure for the change in the regression fit by a 
certain data point could be obtained by omitting the thi  data point and  
re-computing the fit without it. This is the basis for defining Cook’s Distance: 
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In the above equation, [ ]ˆ i
ky   is the fitted value for the thk  data point in a regression, 

where the thi  data point has been omitted. The sum in the above formula goes 
over all data points except the thi , i.e. 1,..., 1, 1,...,k i i n   . As the right hand side 
shows, there is a direct way of obtaining Cook’s Distance which does not require 
running multiple regressions. It suffices to know the hat matrix and the 
standardized residuals. 
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The default residual analysis in R shows the Leverage Plot as in the left panel 
above. It shows the standardized residuals vs. the leverage; but also Cook’s 
distance is featured as contours for values of 0.5 and 1. Data points exceeding 
these are influential, resp. potentially damaging to the analysis. If there are no 
Cook’s Distance contours in a Leverage Plot, this is because they do not fall within 
the plotting frame, hence you don’t need to worry about influential data points. 
Obtaining Cook’s Distance for all data is possible with plot(fit, which=4). 
This yields the right panel in the plot above. We observe that except for New 
Orleans (LA) and York (PA), Cook’s Distance is uncritical. Treatment and 
explanation for these two data points are discussed below. 

Dealing with Influential Data Points and Outliers 

We have seen above that the “most dangerous” data points are the ones that are 
leverage points and outliers at the same time. Also, we explained that Cook’s 
Distance is a well suited measure to identify such points. However, here are some 
more things to consider about the presence of influential data points: 

1) An influential data point in one model may disappear in another where 
variables have been changed or transformed. One needs to reinvestigate 
the question of influential data points when the model is changed. 

2) The error distribution may not be Gaussian and thus, larger residuals may 
need to be expected. For example, day-to-day relative changes in stock 
indices seem Gaussian over large periods of times, but large changes also 
happen once in a while. 

3) A single or very few outliers are usually much less of a problem in larger 
datasets. A single point will mostly not have the leverage to affect the fit 
very much. It is still worth identifying outliers if these types of observations 
are worth knowing about in the particular application.  

Suppose that you detected one or several influential data points or outliers in your 
data. What to do with them? The following can serve as a practical guide: 

a) Check for typos first, if the original source of the data is available. 

b) Examine the physical context – why did it happen? Sometimes, influential 
data points may be of little interest. On the other hand, it was often the case 
that scientific discoveries arose from noticing unexpected aberrations. 

c) Exclude the influential data points from the analysis, and re-fit the model. 
The differences can be substantial and make the difference between getting 
a statistically significant result, or having some “garbage” that cannot be 
published. To avoid any suggestion of dishonesty always report the 
existence of data points that were removed from the final model. 

d) Suppose there are outliers that cannot be reasonably identified as mistakes 
or aberrations, but are viewed as naturally occurring, e.g. due to long-tailed 
error distribution. Rather than excluding these instances and the using least 
squares, it is more efficient and reliable to use robust regression. 
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3.7.4 Example: Mortality Dataset 

From the model diagnostics, we conjecture that York and New Orleans are the 
most influential data points. To be on the safe side, it is reasonable to re-run the 
regression analysis without these two data points. The most important 
observations from this analysis are that the residual standard error is now smaller, 
and the coefficient of determination increased. Thus, the fit is better now.  

We now turn our attention to the interesting question why the cities of York and 
New Orleans were influential data points. Plotting some of the predictors, maybe 
even against other predictors and identifying outlying data points may help. In the 
plots below, we observe that the city of York has a considerably higher population 
density than all the other towns. It turned out that the definition of districts with 
which the population density was defined was somewhat suboptimal. 

Moreover, it is also striking that the average years of education in York are much 
lower than elsewhere, but the percentage of white collar workers is higher. This 
anomaly is explained by the predominance of Amish people in that region. It is 
thus, an inhomogeneity of the sample. 

 

3.7.5 Further Residual Plots 

It is perfectly valid to plot the residuals from a regression model against any 
variable we like, be it a predictor, a not yet used potential predictor or other 
variables such as the time or sequence of the observations. There is one 
important rule for all these plots: if any non-random structure is evident, the model 
has deficiencies and can be improved. We will illustrate this using a dataset where 
the prestige of 102 occupations was measured with a survey. The prestige score 
is the response variable and there are 5 potential predictors, namely the average 
number of years of education that people in that profession have, the average 
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income, the percentage of women, the census (which is an occupational code) 
and the type, a categorical variable with the 3 levels professional/managerial, blue 
collar and white collar. For the purpose of exposition, we first fit a very simple 
model, i.e. 

 prestige ~ income + education 

The further three potential predictors are omitted from the model, such that we can 
study the deficiencies that appear. We first fit the model and study the 4 standard 
residual plots in R, enhanced with the resampling based confidence regions. The 
author has implemented that functionality in a procedure called resplot(): 

> fit <- lm(prestige ~ income + education, data=Prestige) 
> resplot(fit) 

 

From the summary, we gather that the global F-test is highly significant and that 
the R-squared reaches a value close to 0.8. Also when inspecting the residual 
plots, the fit seems reasonable. There may be a slight systematic error visible in 
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the Tukey-Anscombe plot and we observe two leverage points, namely physicians 
and general managers. These are the two professions with the highest average 
income. These problems are not severe and overall, the model is certainly of a 
reasonable quality. .However, as we will see below, it is pretty easy to come up 
with a better model for prestige. 

Residuals vs. Potential Predictors 

As mentioned in the introduction, we may plot the residuals against any variable 
we like. Here, we first study what we observe if the residuals are plotted versus the 
potential further predictors. 

> plot(resid(fit) ~ Prestige$women, pch=20) 
> lines(loess.smooth(Prestige$women, resid(fit)), col="red") 
> abline(h=0, col="grey", lty=3) 
> plot(resid(fit) ~ Prestige$census, pch=20) 
> lines(loess.smooth(Prestige$census, resid(fit)), col="red") 
> abline(h=0, col="grey", lty=3) 
> plot(resid(fit) ~ Prestige$type, col="limegreen") 
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There does not seem to be much of a relation between the percentage of women 
in a profession and the residuals, but the other two variables census and type 
certainly have a non-random relation with the residuals. Especially for census, we 
quite strongly underestimate the prestige of jobs with values in the 4000-6000 
range. A similar observation is made for the type: the prestige of managerial jobs 
is underestimated by our current model, while the one of white collar professions is 
overestimated. We can and should cure these problems by integrating the 
predictors into the model. 

Partial Residual Plots 

In many applied problems, it is very interesting to understand and visualize the 
relation between the response and some arbitrary predictor kx . However, a plot of 
y  vs. kx  can be deceiving, because in a multiple regression setting, all other 
predictors 1 1 1,..., , ,...,k k px x x x   will simultaneously have an effect on the response. 
Hence, what we should aim for is displaying the relation of y  vs. kx  under the 
presence of the other predictors. That is what the partial residual plot does. We try 
to illustrate the idea with an excerpt from the mortality dataset. 

 

The left panel shows the plain relation between the response and the logged 
nitrous oxide. The problem with this plot is that mortality in the different cities is 
affected by other factors than log( )xNO , too. We try to improve upon this with the 
plot on the right. It shows the partial residual plot for log( )xNO . The basic idea is to 
generate an updated y  variable, where the effect of all other predictors is removed 
from the response. This is the verbal definition of a partial residual. 
Mathematically, the partial residuals for predictor kx  are: 

 ˆ ˆ ˆˆj j j j k k
j k j k

y x y r x x r  
 

        

As we can see from the formula, the initial idea is to adjust the response by the 
estimated effect of the other predictors. We can reformulate this as adjusting the 
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residuals by the estimated effect of predictor kx . While the latter is a bit more 
difficult to comprehend, it is much more convenient for computation. The partial 
residuals can easily be accessed in R by typing: 

> residuals(fit, type="partial") 

This yields a n p  matrix that has the partial residuals for all the predictors. Even 
more convenient functionality can be found in the function crPlots() in 
library(car). We display the result for the prestige example: 

 

The partial residual plots are enhanced with the red dashed line that illustrates the 
actual fit according to the multiple linear regression model. The green solid line is 
a smoother that was added for visualizing the true relation between partial residual 
and predictor. This allows for gaining a lot of insight into the model. As we can 
see, the income variable has a non-linear (but approximately logarithmic) relation 
to its partial residuals. Hence, it would be wise to use log(income) rather than 
the untransformed variable. This should not come as a surprise, as its properties 
with only positive values on a right-open, relative scale and a right-skewed 
marginal distribution speak for that, too. Even more interesting is the observation 
in the left hand panel. There seems to be a pronounced difference in the prestige 
of jobs that require >12 years of education, i.e. a university degree. Hence, adding 
a factor variable that codes for jobs that require a degree might improve the fit 
strongly. As some further experimentation shows, this is indeed the case. A similar 
effect is achieved if variable type is added to the model, as the prof/managerial 
jobs are the ones requiring >12 years of education. 

We finish this section by summarizing that the partial residual plots allow for 
perceiving how the predictors act in a multiple linear regression model. If there 
appears a significant difference between their actual, linear fit and the true relation 
indicated by the smoother, one should improve the model. Sometimes, we can 
transform predictors to achieve this; at other times adding additional predictors 
and/or interaction terms may help. 
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3.7.6 Dealing with Correlated Errors 

For the efficiency of the OLS algorithm and the validity of inference results, we 
require uncorrelated resp. stochastically independent error terms. With the 
standard residuals plots discussed above, this condition will not be verified. As it 
turns out, data with temporal or spatial structure often happen to show dependent 
errors and require a second thought. We will illustrate the issue with an example, 
where ozone levels in New York are predicted from solar radiation and wind. The 
data can be found in library(faraway) by loading data(airquality). The 
model is as follows: 

log(Ozone) ~ Solar.R + Wind 

The measurements were made on 153 consecutive days, but as some data are 
missing, only 111 observations remain for fitting the multiple linear regression 
model. We use the OLS algorithm, but as the data clearly have a temporal 
structure, a second thought about potential error/residual correlation is necessary. 
The four standard residual plots for the above model are as follows: 
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The Tukey-Anscombe Plot looks somewhat borderline, while the remaining plots 
do not seem worrysome. As there are no simple means resp. transformations with 
which the model can be improved further, we might be tempted to carry on and 
take the inference results at face value: 

> summary(fit) 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  3.9519449  0.2337241  16.909  < 2e-16 *** 
Solar.R      0.0037215  0.0006773   5.494 2.63e-07 *** 
Wind        -0.1231183  0.0173535  -7.095 1.42e-10 *** 
--- 
Residual standard error: 0.6423 on 108 degrees of freedom 
  (42 observations deleted due to missingness) 
Multiple R-squared:  0.4598, Adjusted R-squared: 0.4498 
F-statistic: 45.96 on 2 and 108 DF,  p-value: 3.612e-15 

However, this bears some danger as the reported standard errors and p-values 
may be wrong if the errors/residuals are (sequentially) correlated. We can verify 
this by generating a time series plots of the residuals: 

> all.resid <- rep(NA, 153) 
> all.resid[as.numeric(names(resid(fit)))] <- resid(fit) 
> ts.plot(all.resid, main="Residuals vs. Time") 
> points(all.resid, pch=20) 
> abline(h=0, col="grey", lty=3) 

 

Coming to the right conclusion may require some experience in reading time 
series plots, but obviously there is some non-random structure. The residuals in 
the middle of the observation period are systematically positive, while those at the 
start and end are negative. This means that our current model underestimates the 
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ozone levels in the middle, but overestimates them at both ends. This is because 
our observation period starts in winter, ranges over summer and ends in winter 
again; and ozone levels are generally higher in summer. Hence, we have a 
temporal effect and correlation of residuals here. For those readers who are 
familiar with time series analysis, it may be obvious that generating a correlogram 
of the residuals may help in deciding whether there is correlation or not.  

> acf(all.resid, na.action=na.pass, main="ACF …") 

 

As we can see, there is some positive sequential correlation among the residuals. 
This violates the OLS assumptions and should not be lightly ignored. Before 
addressing the consequences and remedies, we first present the Durbin-Watson-
Test which provides another alternative to check for correlation among the 
errors/residuals. The null hypothesis is “no autocorrelation”, which is tested on the 
basis of the following test statistic: 
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If consecutive errors are uncorrelated, 2
1( )i ir r  will have the same expectation but 

bigger scatter than 2
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consecutive errors, then 2
1( )i ir r  will be systematically smaller than 2

ir , and vice 
versa if there is negative autocorrelation. Acceptance and rejection regions can be 
determined for an approximation to the Chi-Square distribution. We omit the 
details here and focus on the R implementation: 

> library(lmtest) 
> dwtest(log(Ozone) ~ Solar.R + Wind, data=airquality) 
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Durbin-Watson test 
data:  log(Ozone) ~ Solar.R + Wind 
DW = 1.4551, p-value = 0.001734 
alternative hypothesis: true autocorrelation greater than 0 

It turns out that for our particular example, the p-value is 0.001734 and hence the 
null hypothesis of no autocorrelation is rejected in favor of the alternative. Hence, 
as we had detected visually before, also the test diagnoses correlated residuals. 
The Durbin-Watson test requires some caution though: while rejection of the null 
hypothesis (up to the 5% of type I errors) indicates a problem with correlated 
residuals, the opposite is not true. If the null is accepted, we cannot necessarily 
conjecture that everything is fine. The Durbin-Watson-Test will reveal situations 
where consecutive residuals are positively or negatively correlated. But as soon as 
the correlation structure of the errors is more complex (even when it is still a 
sequential correlation) it may well fail due to the simple nature of the test statistic 
that is used. In such cases, only visual inspection of the use of more sophisticated 
tests such as Box-Ljung may reveal the issue. As intimate knowledge of time 
series analysis is required for these tools, we do not further pursue the issue here. 

So what is the actual problem if there are correlated errors? As long as the model 
does not feature a systematic error, the regression coefficients and the fitted 
values are still unbiased. Thus, if the principal goal with a regression model is 
prediction, one may even leave the error correlation unaccounted for. However, 
theory tells us that the OLS algorithm is no longer efficient in this case, i.e. there 
may be alternative regression estimators that yield more precise estimates of both 
regression coefficients and fitted values. However, the biggest issue is with the 
standard errors which are biased in case of correlated errors. This will inevitably 
lead to flawed inference results (i.e. tests and confidence intervals) and is 
dangerous even for the practicioner! Please note that the standard errors, 
depending on the nature of the correlation, can be either too small (majority of 
cases, spurious significance of predictors is the consequence) or also too big. 

Once correlated residuals/errors have been diagnosed, the question is how to 
address the issue. Ignoring it is a poor solution, but in case of weak correlation 
and a primary focus on prediction rather than precise inference results sometimes 
a viable strategy in practice. Another (much better) option is to use the 
Generalized Least Square (GLS) approach. This is a least square based 
estimation procedure which does not assume a diagonal covariance matrix of the 
error vector and hence can account for the correlation. However, it requires 
specifying a time series model for the dependency in the error term. This is 
beyond the scope of this course and will not be pursued here. Details about the 
GLS procedure, its application and evaluation are taught in the Applied Time 
Series Analysis course which is held by the author of this script every spring 
semester at ETH Zürich, or can also be found in the respective script. Finally, the 
best strategy for dealing with correlated errors is to identify the hidden variable 
which is responsible for it and add it to the model.  
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Here in particular, the data frame with the airquality data also contains information 
about the temperature on the observation days. We can well suspect that there is 
a temperature influence on the ozone levels. To learn more, we generate a time 
series plot of temperature and plot the residuals from the model versus 
temperature. 

 

We observe that there is a clear temporal signal in the temperature (i.e. 
temperatures in summer which corresponds to times 40-120 are higher than in 
spring and fall) as well as non-random structure in the residual plot. As we can 
see, the higher the temperature, the more positive the residuals are. Or in other 
words, when temperatures are high, our model underestimates the ozone levels. 
As a remedy, we add the temperature variable to the model. 

> fit02 <- lm(log(Ozone) ~ Solar.R + Wind + Temp, data=airq…) 
> summary(fit02) 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -0.2621323  0.5535669  -0.474 0.636798     
Solar.R      0.0025152  0.0005567   4.518 1.62e-05 *** 
Wind        -0.0615625  0.0157130  -3.918 0.000158 *** 
Temp         0.0491711  0.0060875   8.077 1.07e-12 *** 
--- 
Residual standard error: 0.5086 on 107 degrees of freedom 
  (42 observations deleted due to missingness) 
Multiple R-squared:  0.6644, Adjusted R-squared: 0.655 
F-statistic: 70.62 on 3 and 107 DF, p-value: < 2.2e-16 

Temperature is highly significant and cures many of the problems that existed with 
the previous model. There may be a slight systematic error with low temperatures 
that raises some questions (data not shown). This is due to inversions that often 
happen in cold weather condtions; hence further model enhancements are 
necessary. However, the issue with the correlated residuals has already been 
solved at this state: 
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> dwtest(log(Ozone) ~ Solar.R + Wind + Temp, data=airquality) 
Durbin-Watson test 
data:  log(Ozone) ~ Solar.R + Wind + Temp 
DW = 1.8068, p-value = 0.1334 
alternative hypothesis: true autocorrelation greater than 0 

Of course it would have been sensible to add temperature into this model right 
from the start and the author would advise to use all given variables that are 
relevant to a regression problem. The procedure in this section was tailored for 
exploratory purposes, i.e. for showing that sequential correlation of residuals may 
exist and that it is often most efficiently cured by adding some forgotten predictors 
to the model, rather than using more sophisticated methods as a remedy. 

3.8 Multicollinearity 

Multicollinearity is a potential problem with a regression model that does not arise 
from the errors/residuals, but with the predictors. As we already know, a multiple 
linear OLS regression will not have a unique solution if it has singular design. As 
explained before, this happens when exactly collinear predictors (i.e. constand 
variables, duplicates of variables, same variables in different units, circular 
variables) are present. A singular design is relatively easy to identify in practice, as 
R will omit some redundant terms from the model and report their coefficients as 
being NA. Now multicollinearity is the case where there is near, but not perfect 
linear dependence among the predictors in the design matrix X . This case is 
more delicate than perfect dependence in practical regression analysis, as there 
will be a (technically) unique solution, but it is often highly variable and of poor 
quality. In particular, the estimated coefficients will feature large or even extreme 
standard errors, i.e. they are imprecisely estimated with huge confidence intervals. 
It is also typical that the global F-Test shows a significant result, but none of the 
individual predictors has a p-value below 0.05. Furthermore, also numerical 
problems in determining the regression coefficients may arise, and extrapolation 
may yield extremely poor results. With the following illustration, we try to build 
some understanding what multicollinearity means. In all examples, a two-predictor 
multiple linear regression model y ~ x1 + x2 is fitted. We can see the 
regression hyperplanes, the original observations (black dots), the fitted values 
(white dots) and the projection of the data points (crosses) onto the x1/x2-plane. 
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The left panel shows a situation where the two predictors do not show 
multicollinearity. The regression hyperplane has a solid fundament and hence, the 
estimated coefficients will be precise with small standard errors. In the middle 
panel, we have exact collinearity. This is the case where there is no unique 
solution to the regression problem. As shown in the picture, there are several 
regression hyperplanes that provide an equally acceptable solution, i.e. all of them 
fulfill the least square condition. In this example, the y ~ x1 + x2 relation can 
be reduced to either y ~ x1 or y ~ x2 without any loss of information and as 
mentioned above, R would automatically omit one of the predictors (more 
precisely, it would drop the collinear predictor that appears last in the formula 
specifying the model). The third panel shows a situation where the predictors 
feature multicollinearity. The Pearson correlation coefficient of the projected data 
points is 0.90. In consequence, the regression hyperplane has a poor fundament. 
It is wiggly in the sense that even a slight change in the data might lead to a big 
change in the solution, i.e. the hyperplane. This is also expressed by the large 
standard errors of the regression coefficients. In summary, we should try our best 
for avoiding such multicollinearity. But first of all, we present a real-world example 
and address the issue how multicollinearity can be identified. 

3.8.1 Identifying Multicollinearity 

Understanding how car drivers adjust their seat would greatly help engineers to 
design better cars. For this reason, researchers at the HuMoSim laboratory at the 
University of Michigan collected data on 38 drivers. These can be found in R with 
data(seatpos) in library(faraway). The response variable is hipcenter, 
which is the horizontal distance between the hips and the steering wheel. There 
are a number of predictors, namely Age (in years), Weight (in pounds), HtShoes, 
Ht, Seated (height with and without shoes, and seated height) and Arm, Thigh, 
Leg (length of these extremities). Variable transformations are not imminent here 
and we start with a model using all these (obviously strongly correlated) predictors. 

> fit <- lm(hipcenter ~ ., data=seatpos) 
> summary(fit) 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)   
(Intercept) 436.43213  166.57162   2.620   0.0138 * 
Age           0.77572    0.57033   1.360   0.1843   
Weight        0.02631    0.33097   0.080   0.9372   
HtShoes      -2.69241    9.75304  -0.276   0.7845   
Ht            0.60134   10.12987   0.059   0.9531   
Seated        0.53375    3.76189   0.142   0.8882   
Arm          -1.32807    3.90020  -0.341   0.7359   
Thigh        -1.14312    2.66002  -0.430   0.6706   
Leg          -6.43905    4.71386  -1.366   0.1824   
--- 
Residual standard error: 37.72 on 29 degrees of freedom 
Multiple R-squared: 0.6866, Adjusted R-squared: 0.6001 
F-statistic: 7.94 on 8 and 29 DF, p-value: 1.306e-05 
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We are in the typical situation where the global F-Test is significant, but none of 
the individual predictors is. Together with the a-priori-knowledge about the 
predictors, this is a clear indication of multicollinearity. However, there are some 
tools with which we can gain further insight. A relatively simple option is to 
determine or visualize all the pairwise Pearson correlation coefficients among the 
predictor variables: 

> library(ellipse) 
> plotcorr(cor(seatpos[,-9])) 

 

The ellipses show both sign and magnitude of the pairwise correlation. Naturally, 
the diagonal entries are equal to +1 and not important to our analysis. However, 
some additional strong pairwise correlations exists as well, e.g. between Ht and 
HtShoes, Ht and Seated, Ht and Leg, et cetera. That does not really come as a 
surprise, though. Please note that such kind of pairwise analysis will not reveal all 
situations where multicollinearity is present as it does not need to be a pairweise 
phenomenom. It is easy to construct an example with circular variables where 
none of the pairwise relations exhibits strong correlation, but still near or even 
perfect collinearity exists. For gaining deeper insight, a more sophisticated 
approach is required. This is presented with the Variance Inflation Factor (VIF). It 
is based on the notion that the variance of an estimated regression coefficient can 
be rewritten in the form: 

2
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There first term is the error variance, the last is a design component and the term 
in the middle 21 / (1 )k kVIF R  , is the variance inflaction factor for the thk  predictor. 
It is obtained by determining the coefficient of determination 2

kR  in a regression 
where predictor kx  is the response variable, and all other predictors maintain their 
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higher are 2
kR  and hence also kVIF . Rather than with tedious handwork and 

running p  regressions, the VIFs can easily be obtained in R: 

> vif(fit) 
       Age     Weight    HtShoes         Ht  
  1.997931   3.647030 307.429378 333.137832  
    Seated        Arm      Thigh        Leg  
  8.951054   4.496368   2.762886   6.694291 

Hence predictor Age has the least inflated variance and Ht the most. For 
interpreting these values it is important to know that a 5VIF   corresponds to a 

2 0.8R  ; and 10VIF   to a 2 0.9R  . As a rule of the thumb, 5VIF   indicates a 
multicollinearity problem, and 10VIF   dangerous multicollinearity which needs to 
be addressed. As we can see, in our example the factors are even much higher. 
As we can see, the variance of Ht is inflated by more than 300x, hence the 
standard deviation (i.e. standard error in R) is still by around 18x bigger than if no 
multicollinearity was present with the accordant consequences on the confidence 
interval for that predictor. 

3.8.2 Dealing with Multicollinearity 

Except for some simple cases, multicollinearity needs well thought-out action. A 
very basic approach is called amputation. It means that among all collinear 
predictors, all but one is discarded. In our example, amputation would reduce the 
set of predictors to Age, Weight and Ht. This is not really satisfactory as we 
would be discarding valuable information. One can well imagine  that the length 
of the limbs relative to a person’s height or the shoes may play their role in the 
driver’s seat adjustment. We just have to make sure that the information is 
provided in a form in which it can be exploited by a multiple linear regression 
model. An often pursued strategy is the one of creating new variables out of the 
existing ones, such that the collinearities are broken. In our example, we take Ht 
as the key predictor which will be left alone. Most of the other predictors will be 
adjusted, i.e. taken relative to the body size. In particular: 

age    <- Age 
bmi    <- (Weight*0.454)/(Ht/100)^2 
shoes  <- HtShoes-Ht 
seated <- Seated/Ht 
arm    <- Arm/Ht 
thigh  <- Thigh/Ht 
leg    <- Leg/Hat 

Instead of weight, we are now using the BMI. The shoe height replaces the height 
with shoes, hence the collinearity to that variable is gone. The length variables for 
the limbs are expressed as fractions of the body height. This addresses potential 
different morphology of the test subjects. Is this relatively simple approach really 
successful in breaking all collinearities? We verify by plotting the pairwise 
correlations and then determine the VIFs from the updated model. 
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As we can see, the problem with pairwise correlations has been mitigated. 
However, this does not necessarily mean that there is no multicollinearity. 

> my.fit <- lm(hipcenter ~ ., data=my.sp) 
> summary(my.fit) 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)   632.0063   490.0451   1.290    0.207     
height         -3.6521     0.7785  -4.691 5.98e-05 *** 
age             0.7402     0.5697   1.299    0.204     
bmi             0.4234     2.2622   0.187    0.853     
shoes          -2.6964     9.8030  -0.275    0.785     
seated        171.9495   631.3719   0.272    0.787     
arm          -180.7123   655.9536  -0.275    0.785     
thigh        -141.2007   443.8337  -0.318    0.753     
leg         -1090.0111   806.1577  -1.352    0.187     
--- 
Residual standard error: 37.71 on 29 degrees of freedom 
Multiple R-squared: 0.6867, Adjusted R-squared: 0.6002 
F-statistic: 7.944 on 8 and 29 DF, p-value: 1.3e-05 

This fit still has nearly identical 2R  and global F-Test result as the initial one with 
collinear variables. However, meaningful inference is now possible. From the 
summary with all variables, only height is significant, though. 

> vif(my.fit) 
  height      age      bmi    shoes  
1.968447 1.994473 1.408055 1.155285  
  seated      arm    thigh      leg  
1.851884 2.044727 1.284893 1.480397 

The VIFs from the updated fit are uncritical now. Creating new variables has been 
successful, i.e. the information was preserved, but multicollinearity was broken. 
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3.9 Variable Selection 

In real-world regression problems, there is often a wealth of predictors and 
potential predictors available. Here, we show how we can select the “best” (or at 
least a good) subset of predictors. We first motivate why this is useful, then turn 
our attention to some strategies for finding the subset, and also discuss the 
meaning of the word “best” in terms of regression modeling. 

3.9.1 Why Variable Selection? 

Only in some rare special cases, we do already know the functional form with 
which a few specified predictors 1,..., px x  explain the response y . In these cases, 
we would still be interested in learning about the regression coefficients, do some 
hypothesis tests, and potentially give some prediction and confidence intervals. 

Much more frequently is the case where regression is used in an explorative 
fashion. This is when we do not know exactly how the relation between response 
y  and the (potential) predictors jx  is, usually we do not even know which 
predictors to keep/use and which ones to skip. Our goal with regression analysis 
will then be to learn not only about the form of the relation between response and 
predictors, but also about required variable transformations, and probably most 
importantly, about the predictors that have a relevant impact on the outcome. 

Thus, there is motivation for variable selection arising purely from applied aspects. 
However, there is some more technical reasoning for keeping a model small: 

1) We generally want to explain the data in the simplest way, and thus remove 
redundant predictors. This follows the idea that if there are several plausible 
explanations (i.e. models) for a phenomenon, then the simplest is the best. 

2) Unnecessary predictors in a regression model will add noise to the 
estimation of the coefficients for the other predictors. Or in other words: we 
need more observations to have the same estimation accuracy.  

3) What is stated in 2) above becomes even more pronounced if there is 
collinearity among the predictors, i.e. if there are too many variables trying 
to do the same job. Removing excess predictors facilitates interpretation. 

4) If the model is to be used for prediction, we will be able to save effort, time 
and/or money if we do not have to collect data for redundant predictors. 

Please note that variable selection is not a method. It is a process that cannot 
even be separated from the rest of the analysis. For example, outliers and 
influential data points will not only change a particular model – they can even have 
an impact on the model we select. Also variable transformations will have an 
impact on the model that is selected. Some iteration and experimentation is often 
necessary for variable selection, i.e. to find smaller, but better models. 
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3.9.2 Backward Elimination with p-Values 

Perhaps the easiest idea to deal with the variable selection problem would be to 
omit all predictors which turn out to be non-significant. This is an established 
procedure, but requires some caution. In section 3.4 we had argued that the  
p-values from the individual hypothesis tests are valid only if all other predictors 
are kept in the model. So do not fall into the trap of omitting all non-significant 
predictors from a regression summary at once! 

> summary(f.full) 
 
Call: 
lm(formula = Mortality ~ JanTemp + JulyTemp + RelHum + Rain +  
    Educ + Dens + NonWhite + WhiteCollar + log(Pop) + House +  
    Income + log(HC) + log(NOx) + log(SO2), data = apm) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.166e+03  2.470e+02   4.718 2.43e-05 *** 
JanTemp     -4.263e+00  1.593e+00  -2.676   0.0104 *   
JulyTemp    -3.153e+00  3.656e+00  -0.863   0.3931     
RelHum       3.420e-01  1.059e+00   0.323   0.7482     
Rain         5.879e-01  2.322e-01   2.532   0.0150 *   
Educ        -1.000e+01  9.087e+00  -1.101   0.2771     
Dens         4.525e-03  4.223e-03   1.072   0.2897     
NonWhite     5.152e+00  1.002e+00   5.143 6.01e-06 *** 
WhiteCollar -1.883e+00  1.198e+00  -1.572   0.1232     
log(Pop)     4.391e+00  7.714e+00   0.569   0.5721     
House       -4.574e+01  3.939e+01  -1.161   0.2518     
Income      -6.892e-04  1.334e-03  -0.516   0.6081     
log(HC)     -2.204e+01  1.523e+01  -1.447   0.1550     
log(NOx)     3.397e+01  1.425e+01   2.384   0.0215 *   
log(SO2)    -3.687e+00  7.359e+00  -0.501   0.6189     
--- 
Residual standard error: 34.48 on 44 degrees of freedom 
Multiple R-squared: 0.7685, Adjusted R-squared: 0.6949 
F-statistic: 10.43 on 14 and 44 DF, p-value: 8.793e-10 

We emphasize again that there is no basis for dropping all the non-significant 
terms, i.e. JulyTemp, RelHum, Educ, Dens, et cetera from the model. However, a 
theoretically valid option consists of performing stepwise backward elimination 
from the full model. This is a simple and still popular variable selection procedure 
that does not require more than the summary output. But please be aware of the 
fact that it is generally better to use function drop1() instead of summary(). For 
the mortality dataset with exclusively numerical predictors, there will be no 
difference between the two, but if factor variables or interaction terms are present, 
only drop1() lets you take the correct decisions. The idea is now that the term 
with the highest p-value is kicked out of the model – at least as long as its p-value 
is bigger than crit , which is mostly chosen as 0.05. In our example, this is 
predictor RelHum, and it is most convenient to use the update() function. 
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> fit01 <- update(f.full, .~.-RelHum) 
> drop1(fit01, test="F") 
<none>                   52436 428.60                      
JanTemp      1      8625 61062 435.58  7.4020 0.009229 **  
JulyTemp     1      1576 54012 428.35  1.3524 0.250987     
Rain         1      8134 60571 435.11  6.9806 0.011294 *   
Educ         1      1474 53911 428.24  1.2651 0.266659     
Dens         1      1326 53762 428.07  1.1379 0.291788     
NonWhite     1     33533 85969 455.77 28.7771 2.71e-06 *** 
WhiteCollar  1      2934 55370 429.81  2.5178 0.119571     
log(Pop)     1       405 52841 427.05  0.3472 0.558636     
House        1      1688 54124 428.47  1.4486 0.235039     
Income       1       337 52774 426.98  0.2895 0.593217     
log(HC)      1      2468 54905 429.31  2.1182 0.152497     
log(NOx)     1      6910 59346 433.90  5.9298 0.018914 *   
log(SO2)     1       454 52891 427.11  0.3897 0.535590     

The .~.-RelHum notation in update() means that both the response and the 
predictors are kept as they are, except for RelHum which is excluded. The 
updated p-values (note that they all changed with respect to the previous version!) 
are then analyzed and the next candidate for exclusion is identified. It turns out 
that Income is the one to drop next. The procedure then carries on; due to space 
constraints we do here without giving all the details and outputs. The sequence of 
excluded variables continues with log(Pop), log(SO2), JulyTemp, Dens, 
log(HC), House and WhiteCollar and then stops, because after that all terms 
are significant. 

> drop1(fit09, test="F") 
<none>                 61337 421.85                       
JanTemp   1     20169  81506 436.62 17.4277 0.0001116 *** 
Rain      1     11576  72913 430.05 10.0021 0.0025875 **  
Educ      1      7192  68529 426.39  6.2142 0.0158323 *   
NonWhite  1     51349 112687 455.73 44.3698 1.583e-08 *** 
log(NOx)  1     18848  80185 435.66 16.2860 0.0001760 *** 

When comparing this output with the full model, we observe that the remaining 
predictors have lower p-values than initially. This is typical, the reason is that some 
of their predictive power was initially taken by the (at least partially collinear) 
predictors that were later dropped from the model. However, do not overestimate 
the importance of the remaining predictors. The final result is by no means the 
“correct” model in the sense of a causal relationship between response and 
predictors and often, if the data are just slightly different, the model we end with 
may be different. Furthermore, the removed variables may very well be related 
with the response. If simple linear regressions of the response on each of the 
excluded predictors were run, they might even show significant coefficients. In the 
multiple linear model however, there seem to be better, more informative 
predictors available. Another remark is that setting 0.05crit   is totally arbitrary. If 
the main purpose of a model is prediction, often a 0.15  or 0.20  cutoff yields better 
results. 
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3.9.3 Forward Selection with p-Values 

Rather than starting variable selection from the full model with all predictors, it is 
also possible to start with the null model that only contains the intercept. This is a 
viable and often-chosen alternative when a regression problem has too many 
predictors for the number of cases that are available – remember the rule of the 
thumb, that per estimated parameter a minimum of 5 observations should be 
present. The selection can be based on the p-value again. However, note that with 
forward selection, the process of adding variables is more laborious. When we 
start from the null model, we will fit p  simple regressions, i.e. response vs. each of 
the predictors and finally add the one predictor that shows the lowest p-value in 
the individual hypothesis test for the slope. In R, we can simplify this process by 
employing the add1() function. As input, it takes with f.null the model we want 
to expand, as well as with f.full the maximum model we may want to use. 
Moreover, argument test="F" ensures that p-values for partial F-Tests are 
given. 

> f.full <- lm(Mortality ~ JanTemp + JulyTemp + RelHum +  
               Rain + Educ + Dens + NonWhite + WhiteCollar + 
               log(Pop) + House + Income + log(HC) +  
               log(NOx) + log(SO2), data=apm) 
> add1(f.null, scope=f.full, test="F") 
Single term additions 
Model: Mortality ~ 1 
            Df Sum of Sq    RSS    AIC F value    Pr(>F)     
<none>                   225993 488.79                       
JanTemp      1        58 225935 490.78  0.0145 0.9045520     
JulyTemp     1     23407 202586 484.34  6.5858 0.0129321 *   
RelHum       1      2309 223684 490.19  0.5883 0.4462331     
Rain         1     42393 183599 478.54 13.1614 0.0006117 *** 
Educ         1     58340 167652 473.17 19.8352 3.991e-05 *** 
Dens         1     14365 211627 486.92  3.8691 0.0540559 .   
NonWhite     1     94473 131520 458.85 40.9440 3.172e-08 *** 
WhiteCollar  1     18920 207072 485.63  5.2081 0.0262337 *   
log(Pop)     1      1646 224347 490.36  0.4182 0.5204471     
House        1     30608 195385 482.21  8.9292 0.0041348 **  
Income       1     18138 207855 485.86  4.9739 0.0296867 *   
log(HC)      1      3553 222440 489.86  0.9103 0.3440525     
log(NOx)     1     17696 208296 485.98  4.8425 0.0318330 *   
log(SO2)     1     34675 191318 480.97 10.3308 0.0021550 ** 

As it turns out, NonWhite is the predictor which has the lowest p-value in a simple 
regression when Mortality is the response variable. Hence it shall be added to 
the model. It is again convenient to use the update() function: 

> fit01  <- update(f.null, .~.+NonWhite) 
> add1(fit01, scope=f.full, test="F") 

Next we try to enhance the model by adding a second predictor. All two-predictor-
models with NonWhite and each of the remaining variables are tried and the  
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p-values from the partial F-Test (resp. individual hypothesis tests where 
appropriate) are recorded. This process can again be facilitated by function 
add1(). The next variable to add (data not shown) turns out to be Educ. Some 
further variables are added to the model, in sequence these are log(SO2), 
JanTemp, Rain and log(NOx). At this stage, there are no further predictors that 
would be significant if added to the model, hence the process stops – at least if we 
use 0.05crit  . If the main purpose is prediction, using a 0.15 or 0.20 threshold 
may also be sensible here. If we compare to the result from the backward 
elimination, we notice that the two models are different. This is the usual case, i.e. 
the two solutions from these different search heuristics do not coincide. If we keep 
an eye on the summary of the final model, we notice: 

> summary(fit06) 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 1029.4608    87.8902  11.713 3.35e-16 *** 
NonWhite       4.1458     0.6285   6.597 2.18e-08 *** 
Educ         -15.5812     6.4970  -2.398  0.02010 *   
log(SO2)      -0.1522     6.1914  -0.025  0.98048     
JanTemp       -2.1484     0.6601  -3.255  0.00200 **  
Rain           1.6554     0.5395   3.068  0.00341 **  
log(NOx)      18.2513     7.7826   2.345  0.02287 *   
--- 
Residual standard error: 34.34 on 52 degrees of freedom 
Multiple R-squared: 0.7286, Adjusted R-squared: 0.6973 
F-statistic: 23.27 on 6 and 52 DF, p-value: 3.879e-13 

Thus, not all predictors in the final model are significant. The last included variable 
log(NOx) is, but not log(SO2) which was added earlier in the process. It might 
seem tempting to complement the forward search with a backward elimination that 
is run subsequently. A similar strategy incorporating this will be presented below 
when we introduce step(), the most used variable selection procedure in R. 

3.9.4 AIC/BIC 

So far, our variable selection approaches were based on evaluating p-values of 
individual hypothesis tests or partial F-Tests. This is intuitive to the practitioner, but 
from a theoretical, mathematical perspective suffers from some drawbacks. Hence 
using other criteria that are based in information theory has nowadays become the 
established standard for model selection. The most popular variant is the Akaike 
Information Criterion (AIC, 1974), which gauges goodness-of-fit to the data with 
the complexity of the model and hence pursues a similar idea as the adjusted 2R .  

2log( ) 2

log( / ) 2

AIC L q

c n RSS n q

  
  

 

In the above formula, L  is the value of the likelihood function for a particular model 
and q  is the number of parameters that were estimated in it. When assuming 
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Gaussian errors and using the OLS estimator, the Likelihood function is driven by 
RSS , the residual sum of squares. Hence, the AIC criterion compares the 
magnitude of the residuals with the complexity of the model that was used and so 
prevents overfitting. While a larger models has the advantage of achieving a lower 
RSS , its penalization will be harder. As long as the data and the response variable 
are identical, any two models can be compared by AIC. In contrast to the testing 
based approaches, AIC does not require them to be hierarchical. Obviously, the 
smaller AIC is, the better the model. Please note that it is a relative measure, i.e. 
useful for comparing models on the same data, but the AIC value does not tell 
about the quality of the model in an absolute sense. An alternative to the AIC 
consists of the very similar Bayesian Information Criterion (BIC) that was 
developed by Schwarz (1978) who gave a Bayesian argument for it. The basic 
idea behind is absolutely identical, the only difference is in the penalty term: 

2log( ) 2log
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For any reasonably sized dataset with more than 7n   observations, we have
log 2n   and hence there is a stronger penalization for model size in BIC, meaning 
that the models will generally be smaller with this criterion. There has been some 
debate and theoretically motivated comparisons among AIC and BIC and it seems 
as if AIC was asymptotically optimal in selecting the model with least mean 
squared error at an optimal convergence rate, while BIC is lacking these 
properties. For the practicioner, these considerations are of relatively little value. If 
the main purpose of a regression model is prediction, one usually profits from 
using bigger models, hence it is attractive to use AIC for variable selection. If in 
contrast, the principal aim is inference or model interpretation, one often uses the 
BIC criterion since the typically smaller models are handier for this purpose. Now 
the question is how AIC/BIC variable selection can be operationalized. As we can 
see from the outputs of previous chapters, the R functions drop1() and add1() 
both report AIC values. In fact, we could use backward elimination and forward 
selection very much in the same way as above, by just replacing the p-value as 
the selection criterion with AIC/BIC. The next section will further comment on this 
and at the samte time suggest an improvement to the search heuristics. 

3.9.5 Using R Function step() 

As mentioned above, we can perform both backward elimination or forward 
selection based on AIC/BIC by using the R functions drop1() and add1(). Using 
the update() function, we could remove resp. add the variable that leads to the 
most improved AIC/BIC and would stop if the criterion could not be further 
improved anymore. However, there is no need for this relatively tedious handwork 
since there is R function step() which can do the entire selection automatically. 
The syntax for starting with the full model and doing an AIC based backward 
elimination is very simple. Please note that for using the BIC criterion, we need to 
alter argument k to k=log(59) here, or k=log(nrow(data)) more generally. 
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> f.back <- step(f.full, direction="backward", k=2) 
> summary(f.back) 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 1031.9491    80.2930  12.852  < 2e-16 *** 
JanTemp       -2.0235     0.5145  -3.933  0.00025 *** 
Rain           1.8117     0.5305   3.415  0.00125 **  
Educ         -10.7463     7.0797  -1.518  0.13510     
NonWhite       4.0401     0.6216   6.500  3.1e-08 *** 
WhiteCollar   -1.4514     1.0451  -1.389  0.17082     
log(NOx)      19.2481     4.5220   4.257  8.7e-05 *** 
--- 
Residual standard error: 33.72 on 52 degrees of freedom 
Multiple R-squared: 0.7383, Adjusted R-squared: 0.7081 
F-statistic: 24.45 on 6 and 52 DF, p-value: 1.543e-13 

The arguments to step() are the model to start with, then the direction of the 
search and finally the penalty parameter for the information criterion. Here, we set 
k=2, which means that AIC is used. Please note that the (long!) output detailing 
the selection process was omitted here due to space constraints. Since AIC is 
used, the predictors in the final model do not need to be significant, which turns 
out to be the case for Educ and WhiteCollar. If we prefer a forward selection, 
we need to start with the null model and define the scope for the search: 

> sc     <- list(lower=f.null, upper=f.full) 
> f.forw <- step(f.null, scope=sc, direction="forward", k=2) 
> summary(f.forw) 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 1258.3217   190.7542   6.597 2.57e-08 *** 
NonWhite       4.6907     0.7892   5.943 2.68e-07 *** 
Educ         -13.9775     7.7488  -1.804  0.07728 .   
log(SO2)      -2.6904     6.5506  -0.411  0.68304     
JanTemp       -2.6780     0.8341  -3.211  0.00232 **  
Rain           1.7329     0.5438   3.187  0.00248 **  
log(NOx)      20.4077     7.7626   2.629  0.01135 *   
WhiteCollar   -1.5733     1.0534  -1.494  0.14159     
House        -49.8414    37.0169  -1.346  0.18423     
--- 
Residual standard error: 33.78 on 50 degrees of freedom 
Multiple R-squared: 0.7475, Adjusted R-squared: 0.7071 
F-statistic: 18.5 on 8 and 50 DF, p-value: 1.623e-12 

The scope argument in step() requires a list where both the minimal and 
maximal model are specified. We observe that the result from the forward 
selection is different to the one from backward elimination. Also, there is a 
difference in contrast to the forward selection model that was obtained with the  
p-value as a criterion. Please note that step() does not offer the option to 
perform variable selection using p-values, but only has the information criteria 
implemented. This is the better option in practice – so use these! 
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In the above forward selection model (as well as in the one with the p-value as a 
criterion), we have the issue that log(SO2) was added at an early stage. Later 
on, also log(NOx) became part of the model, so that log(SO2) became  
non-significant and most likely also obsolete. However, in this pure one-directional 
search, there is no means for correcting earlier decisions, i.e. re-excluding 
variables that were added at a previous stage of the search. This is not 
mandatory; during the selection process we can well consider both adding new 
and removing existing variables at the same time. This makes the process more 
flexible, i.e. more models will be evaluated and better final solutions result. All 
decision will be on the basis of an information criterion. The setting for the search 
direction in step() is direction="both". This is also the default for that 
argument, hence if nothing is explicitly specified, that will be it. The variable 
selection process can start from the null model, from the full model or actually also 
from any arbitrary model in between. With the scope argument, the maximal and 
minimal models in the search process can and need to be defined. We illustrate 
with the following example: 

> sc     <- list(lower=f.null, upper=f.full) 
> f.both <- step(f.null, scope=sc, direction="both", k=2) 
> summary(f.both) 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) 944.274572  47.170880  20.018  < 2e-16 *** 
NonWhite      4.194072   0.620038   6.764 1.18e-08 *** 
JanTemp      -1.941998   0.516119  -3.763 0.000428 *** 
Rain          1.924283   0.484198   3.974 0.000219 *** 
log(NOx)     17.000178   4.879795   3.484 0.001012 **  
WhiteCollar  -2.723255   0.947170  -2.875 0.005839 **  
Dens          0.006437   0.003608   1.784 0.080282 .   
--- 
Residual standard error: 33.46 on 52 degrees of freedom 
Multiple R-squared: 0.7425, Adjusted R-squared: 0.7127 
F-statistic: 24.98 on 6 and 52 DF, p-value: 1.028e-13 

When starting from the empty model, this improved strategy with searches in both 
directions first adds the six predictors NonWhite, Educ, log(SO2), JanTemp, 
Rain and log(NOx). Then, after log(NOx) has been added, log(SO2) indeed 
becomes obsolete and is dropped from the model again. Next, WhiteCollar and 
Dens are added, before finally Educ is dropped. At this stage, no further AIC 
improvement is possible by either adding or removing terms from the model, 
hence the search has stopped. The output and final summary can be seen above.  

We conclude this section with the remark that the most established standard in 
variable selection consists of fitting the full model with all predictors (if that is 
possible) and then running an AIC-based search with direction="both". Due 
to the respective default settings in R, it suffices to simply type step(f.full) to 
run mentioned standard procedure – very quick and easy thus. However, 
depending on the problem, alternative settings and procedures may very well be 
valuable. 
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3.9.6 All Subsets Selection 

If a multiple regression model has p  predictors, there are actually 2 p  models 
which can be fitted. For each of the variables there are two options, namely 
including it or not. This shows that even with a mid-sized dataset that features 50 
predictors, very many models do exist. If 10p  , the stepwise approaches from 
above only consider few of all existing models and it is very well conceivable that 
the variable selection process stops at a point where the AIC/BIC criteria reach a 
local, but not the global optimum. For ensuring that the one model with globally 
minimal AIC/BIC is found, we need to run an exhaustive search over all possible 
models. This is only feasible with small datasets with up to about 15 20p    
predictors; with very fast computers perhaps also a bit more, but the complexity of 
the problem increases so quickly that there is no hope for big datasets. In R, there 
is library(leaps) which has function regsubsets() that does such an 
exhaustive search. Unfortunately, it cannot correctly handle factor variables or 
interaction terms, hence its use is limited to datasets that consist of numerical 
predictors only. This is the case for the mortality datasets, hence we compute: 

> library(leaps) 
> out <- regsubsets(formula(f.full),nbest=1,dat=apm,nvmax=14) 
> plot(out) 

 

The arguments in the regsubsets() function are set such that for each size, 
only the best model is returned, as nbest=1. The maximal model size is 
nvmax=14, equal to the number of predictors we have, as this is computationally 
feasible here. Note that with bigger datasets, you may need to limit yourself here. 
The function then computes the BIC value for every model and yields a graphical 
output. The minimal BIC value is attained with the 5 predictors JanTemp, Rain, 
Educ, NonWhite and log(NOx). The closest competitor is the model with 6 
predictors, where Educ is replaced by Dens and WhiteCollar. In contrast, 
models with very few or very many predictors seem to perform poorer. 
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3.9.7 Final Remarks about Variable Selection 

In variable selection, it is important to treat models with factor variables, 
polynomial or interaction terms correctly. In particular, the rules are: 

 If the coefficient of a dummy variable that belongs to a factor is  
non-significant, that dummy cannot simply be removed from the model. 
Either we keep the entire factor variable, or we keep it with all its dummies. 
If p-values are used as a selection criterion, partial F-Tests have to be run. 

 If there are interaction terms between two variables that stay within the 
model, then the main effects of the respective variables cannot be removed. 

 The same holds for the case where significant higher-order polynomial 
terms of a variable are present. One cannot remove the lower-order terms. 

So please be careful if variable selection is performed manually. In contrast, the R 
functions step(), drop1() and add1() obey to these rules and will only 
consider exclusion of terms that can actually be dropped from the model. As 
already mentioned, regsubsets() in contrast does not have that feature and 
may invariably come to false decisions if not only plain numerical predictors are 
present in a dataset. This strongly limits the practical utility of that function. 

A final remark on variable selection: every procedure may yield a different “best” 
model. Often, even the results with a fixed procedure are somewhat instable, i.e. if 
we received another sample from the same population and repeated the variable 
selection procedure, we might identify another “best” model. Thus, there is an 
element of chance in this declaration. How can we mitigate this in practice? It is 
usually advisable to not only consider the “best” model according to a particular 
procedure, but to check a few more models that did nearly as good, if they exist. 

3.10 Cross Validation 

Cross validation is a model evaluation technique that tells how well the results will 
generalize to an independent dataset from the same population. It is mainly used if 
the primary goal in a regression analysis is prediction, but can also be useful when 
other aims are pursued. By construction, it does not artificially advantage bigger 
models with more predictors and hence goes in line with approaches such as the 
adjusted 2R  and AIC/BIC. On the other hand, it stands in sharp contrast to criteria 
like RSS , multiple 2R  or the variance of the error term which would all leave to 
overfitting when used for comparison of model of different size.  

The basic idea of cross validation is relatively simple. It consists of splitting the 
data into a learning set (e.g. 80% of the observations) which is used for fitting the 
model, and into a test set (e.g. 20% of the observations) on which the quality of 
the predictions is evaluated. This process is repeated a number of (e.g. 5) times, 
until every observation in the dataset has been predicted exactly once. 
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In the schematic example above, so-called 5-fold cross validation is illustrated. 
Each of the data points that are available will be used four times for training and 
one time for prediction. This will result in a ˆTest

iy  for all data points 1,...,i n . Since 
the observed value iy  is known, we can compute the squared prediction error 

2ˆ( )Test
i iy y  for all observations and finally determine the mean squared prediction 

error: 

2

1

1
ˆ( )

n
Test

CV i i
i

MSPE y y
n 

   

This is used as a quality criterion for the model. As we are using out-of-sample 
predictions here, there is no need to penalize bigger models. If there are too many 
variables used in a regression and overfitting happens, spurious random 
phenomena will be explained which will degrade the quality of the out-of-sample 
results.  

Cross validation is a bit more laborious and also computationally more intensive 
than AIC-based variable selection. Its advantages are that it is a very flexible 
procedure that has little restrictions. So for example, it can also be applied in the 
following settings, when an AIC-based comparison is not feasible: 

- If the effect of a response variable transformation needs to be evaluated. 
The AIC values from models with and without transformation cannot be 
compared. When using cross validation, we can always predict on the 
original scale and obtain a sound comparison of results. 

- If the sample is not identical. In some cases, one may wish to check 
whether excluding data points (i.e. outliers, leverage points, influential 
data points) from the fitting process yields better predictions for the 
entire sample or not. This is possible with cross validation. 
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- If the performance of alternative methods such as Lasso, Ridge 
Regression, Generalized Additive Models or Robust Regression shall be 
evaluated. In these cases, testing based model comparison does not 
work and AIC approaches are at least difficult (if not impossible). 

So there may be good reasons to choose cross validation. Additionally, when 
prediction is the main aim of the analysis, the mean squared prediction error is the 
most relevant quality criterion for a model, plus it allows for obtaining an idea of 
the absolute quality of the results. While R has the CVlm() function in 
library(DAAG), this is a poor implementation and the author strongly 
recommends to self-program a cross validation loop. This requires some basic 
knowledge about programming. See here for some generic code for a 5-fold cross 
validation. 

> rss   <- c() 
> folds <- 5 
> sb    <- round(seq(0,nrow(dat),length=(fo+1))) 
> for (i in 1:folds) 
> { 
>   test   <- (sb[((folds+1)-i)]+1):(sb[((folds+2)-i)]) 
>   train  <- (1:nrow(dat))[-test] 
>   fit    <- lm(res ~ p1+..., data=dat[train,]) 
>   pred   <- predict(fit, newdata=dat[test,]) 
>   rss[i] <- sum((dat$response[test] - pred)^2) 
> } 

As an example, we apply cross validation for evaluating the out-of-sample 
performance in mortality prediction. We will use the full model with 14 predictors, 
as well as the two models obtained from step() when starting from the full model 
with AIC and BIC, which have 6 resp. 5 predictors. 

> rss <- data.frame(rss1, rss2, rss3) 
> apply(rss,2,mean) 
   big.mo    aic.mo    bic.mo  
13213.182  8774.873  8329.638 

The numerical results indicate that the BIC model performs best, with the AIC 
model close behind. The full model with all predictors is clearly worse, indicating 
that it suffers from overfitting. Generating boxplots of the squared prediction errors 
can further enhance the comprehension of the results. The results are displayed 
on the next page and show again, that the individual predictions with the full model 
are generally worse and also have bigger scatter than the ones from the models 
where variable selection had been performed. Please note that the distribution of 
the out-of-sample errors can often yield additional insight into the model and its 
deficiencies. For example, if there are only a few data points with poor out-of-
sample predictions that are not standing out in the insample residual analysis, this 
well needs to ring the alarm bells. It usually indicates an overfitting phenomenon, 
or more deliberately said a phenomenon that does not generalize to an 
independent dataset. 
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> boxplot(rss) 

 

3.11 Modelling Strategies 

This is the concluding section about multiple linear regression modelling. We have 
learnt a number of techniques for dealing with the data. The often asked question 
by students is in which order the tools need to be applied in practice. Please note 
that the sequence with which they were presented in the script is not necessarily 
the correct order, as the presentation here is also motivated by didactic reasons.  
A good generic solution, but not the ultimate, always-optimal strategy is: 

 Data Preparation  Variable Transformations  Estimation of Coefficients 
  Model Diagnostics  Variable Refinement and Selection  Evaluation 
  Inference  Reporting 

If some flaws to the analysis are noticed in any of the above steps, this may well 
send you back to the start again. On a more general note, professional regression 
analysis can be seen as the search for structure in the data. This requires 
technical skill, flexibility and intuition. One must be alert to the obvious as well as 
to the non-obvious, and needs the flair for the unexpected. Trying to follow some 
standard recipes usually does not work. The tries for defining automatized 
regression procedures where one can just hit the bottom are old, but did (and will) 
not make the breakthrough. You can do better! As a guideline, we here try to give 
some hints what to think about in the single analysis steps. Please note that these 
hints are by no means complete! 

Data Screening and Processing 

Learn the meaning of all variables in your dataset and give them short and 
informative names. Check all variables for missing values, errors and impossible 
values. Especially dangerous are missing values that are coded numerically. If in 
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doubt, be deliberate with setting these to NA, as it is generally better to have 
missing rather than wrong data. If missing values are present, ask yourself 
whether these are random or systematic errors. In the latter case, this may very 
well limit the meaning of your results, whereas random missings are usually not a 
bigger problem. 

Variable Transformations 

First of all, bring all variables to a suitable scale that you are well familiar with. It 
makes the results a lot easier to interpret. Please note that using linear 
transformation will not change the regression analysis. Furthermore, use statistical 
and specific knowledge for identifying variables that require log-transformations. 
Anything that is clearly on a relative scale should be transformed at this point. 
Finally, breaking very obvious collinearities can already happen at this point. 

Fitting a First Model 

We usually start by fitting a big model with potentially too many predictors. If the 
number of data points allows, use all predictors for the first model. The rule of the 
thumb is that one should roughly have five times as many observations as the 
number of coefficients that are estimated. If that is clearly violated, one can 
potentially sort out some predictors manually by previous knowledge. Or 
alternatively, perform variable selection from the null model with either AIC or a p-
value of 0.2. 

Model Diagnostics 

Always inspect the 4 standard residuals plots in R. A systematic error in the 
Tukey-Anscombe plot indicates that the model will generate false predictions and 
is never tolerable. Improve the model by using transformations, adding interaction 
terms, creating/obtaining new variables or applying more sophisticated methods 
such as Generalized Additive Models. Be aware that there may be influential data 
points. If they exist, try to understand them. Take care with non-constant variance 
and long-tailed errors. They often do not have catastrophic influence, but 
compromise the quality of inference results and the levels of the confidence 
intervals. Also think about potential correlation among the residuals, especially if 
the data have spatial or temporal structure. If it exists, this will degrade the quality 
of the inference results, too. 

Variable Selection 

Try to reduce the model to the predictors that are utterly required and drop the 
rest. The standard procedure is to use the step() function with search direction 
“both”, starting from the full model and either the AIC or BIC criterion. If it is 
computationally feasible, an all-subset-search with AIC/BIC is even better. While 
doing variable selection, keep the quality of the models in mind. The residual plots 
must not degrade (substantially) when variables are excluded. If they do, rather 
keep a few more predictors than AIC/BIC suggest! 
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Refining the Model 

For understanding the role of each predictor, partial residual plots may help. 
Inspect for potential non-linearities and if they exist, either convert them to factor 
variables or use a more flexible tool such as Generalized Additive Models. 
Sometimes, adding interaction terms may improve the fit drastically; partial 
residual plots often allow gaining hints where they are required. Use the respective 
tools to find out whether there is multicollinearity that disturbs and if yes, take the 
respective actions. 

Plausibility 

Now you are at a point where a technically valid model was found. If you have the 
respective knowledge of the application field, check the regression summary for 
implausible predictors, wrong signs or generally things that contradict established 
theory and try to find out how/why it appeared. Sometimes, it may also be justified 
to remove such terms from the model if there is no drastic change to the outcome, 
even if AIC/BIC suggest otherwise. 

Evaluation 

By using cross validation, one can get another view on the performance of one or 
several competing models and gain an idea on the precision of out-of-sample 
predictions. Finally, if the decision for one particular model has been made and all 
the necessary assumptions are met, one can derive test results, confidence and 
prediction intervals. 

Reporting 

Whenever results from a statistical analysis are reported, it is key to be honest and 
openly report all data manipulations and decisions that were made. A regression 
analysis is always an interpretation of the raw data material that was available. 
Finally, keep in mind that regression models are always descriptive only, but not 
causal! And do not confuse significance of terms with relevance. The next section 
gives some further details about this. 

3.12 Significance vs. Relevance 

It is important to keep in mind that p-values arise from a combination of predictor 
effect, scatter and sample size. When the first two remain constant, smaller and 
smaller p-values will be achieved by increasing the sample size. In fact, if a 
predictor in a regression model does not have zero influence (i.e. 0j  ) which is 
almost never the case in practice, we just need enough data to be able to reject 
the aforementioned null hypothesis. Hence with large datasets, we may very well 
see statistically significant predictors which are largely irrelevant from a practical 
viewpoint. Or in other words: do not confuse small p-values with a relevant or 
important predictor effect. 
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On the other hand, a 0j   null hypothesis that is accepted is even less 
meaningful. Very generally, absence of evidence is not the same as evidence of 
absence. Hence, failing to reject a null hypothesis of 0j   is not a proof that a 
predictor does not influence the response. It may very well be the case that there 
is just too much scatter for the present sample size and a larger dataset would 
yield a different answer. Or it can also happen that there is another (collinear) 
predictor in the multiple regression model that takes load and significance off said 
variable. A slightly different but related idea is to measure the relevance of the 
predictors in a regression model. This complements the impression that is given 
by their significance. A very simple statistic to do so is the compute the maximum 
effect that a predictor variable has on the response on the given dataset. 

ˆ (max min )j j i ij i ijMaxrel x x   

So we take the span between the maximal and minimal value for the respective 
predictor variable and multiply it with the estimated coefficient. We illustrate with 
the computation of that measure in the mortality model obtained from the AIC 
backward elimination. Note that the code is somewhat laborious since we have to 
accommodate for the log-transformed variables. 

> mort         <- apm[,-c(10,13,14,15)] 
> mort$log.Pop <- log(apm$Pop) 
> mort$log.HC  <- log(apm$HC) 
> mort$log.NOx <- log(apm$NOx) 
> mort$log.SO2 <- log(apm$SO2) 
> f.full       <- lm(Mortality ~ ., data=mort) 
> f.aic        <- step(fit) 
> summary(f.aic) 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 1031.9491    80.2930  12.852  < 2e-16 *** 
JanTemp       -2.0235     0.5145  -3.933  0.00025 *** 
Rain           1.8117     0.5305   3.415  0.00125 **  
Educ         -10.7463     7.0797  -1.518  0.13510     
NonWhite       4.0401     0.6216   6.500  3.1e-08 *** 
WhiteCollar   -1.4514     1.0451  -1.389  0.17082     
log.NOx       19.2481     4.5220   4.257  8.7e-05 *** 
> mami   <- function(col) max(col)-min(col) 
> ranges <- apply(mort,2,mami)[c(2,5,6,8,9,14)] 
> ranges 
    JanTemp        Rain        Educ    NonWhite 
  55.000000   55.000000    3.300000   37.700000 
WhiteCollar     log.NOx 
  28.400000    5.765191 
> rele   <- abs(ranges*coef(f.aic)[-1]) 
> rele 
    JanTemp        Rain        Educ    NonWhite 
  111.29085    99.64437    35.46263   152.31188 
WhiteCollar     log.NOx  
   41.21900   110.96873 
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So for the January temperature, the difference between the observation with the 
smallest and largest values is 55 units. The regression coefficient is estimated as  
-2.0235, so the maximum effect this variable has on mortality is 111.29085 units. 
With the above code, these respective quantities are computed for all predictors 
that are in the final model. As we can see, NonWhite has the biggest impact on 
the response according to this statistic, whereas Educ is comparably less relevant. 
Please note that these relevance values are not strongly correlated with the  
p-values. It can very well happen that a very homogeneously appearing effect is 
small and thus has a low p-value, but little influence/relevance to the response. 
Finally, we can also compare the above results to the span between the maximum 
and minimum values for the response which is 322.43. 

The advantage of using the maximum effect as a relevance measure is its 
simplicity and intuitivity. However, it is an extreme value statistic which bears its 
dangers. The computed relevance basically depends on two observations only 
which makes it not very robust to outliers. Hence there have been numerous tries 
to define alternative relevance measures that have nicer theoretical properties. We 
will introduce two of them here. They, as well as several more, are implemented in 
R package library(relaimpo). We first focus on the use of standardized 
coefficients. This is an approach where all predictor variables are centered and 
rescaled so that they have mean zero and unit variance. This makes their 
coefficients ˆ

j  directly comparable, i.e. the magnitude of the coefficient then tells 
us about the effect size and thus relevance. 

> library(relaimpo) 
> calc.relimp(fit.or, type="betasq", rela=TRUE) 
Total response variance: 3896.423  
Proportion of variance explained by model: 73.83% 
Metrics are normalized to sum to 100% (rela=TRUE).  
                betasq 
JanTemp     0.14838879    NonWhite    0.46467477 
Rain        0.15460185    WhiteCollar 0.01903859 
Educ        0.02938728    logNOx      0.18390873 

The results are somewhat similar to the ones from before, i.e. it is again 
NonWhite which is the most relevant predictor and Educ is the least relevant. 
However, also this approach with standardized coefficients has some undesired 
properties. A more theoretically sound variant is to use the LMG criterion. It is 
pretty complicated, so we do here without giving the details of its computation: 

> library(relaimpo) 
> calc.relimp(fit.or, type="lmg", rela=TRUE) 
Total response variance: 3896.423  
Proportion of variance explained by model: 73.83% 
Metrics are normalized to sum to 100% (rela=TRUE).  
                betasq 
JanTemp     0.06027426    NonWhite    0.42530033 
Rain        0.16412106    WhiteCollar 0.05357159 
Educ        0.15815923    logNOx      0.13857353 
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We conclude this chapter on multiple linear regression with a remark about what a 
good model is. The true model is a concept that exists in theory and simulation, 
but whether it does in practice remains often unclear. Anyway, it is not realistic to 
identify the true model in observational studies with a limited amount of data. A 
good model is one that is useful for the task at hand, correctly describes the data 
without any systematical errors, has good predictive power and is practical and 
applicable for future use. Finally, we emphasize again that regression models that 
are found in observational studies are always only descriptive but never causal. A 
good model may yield an accurate idea which of the observed variables drive the 
variation in the response, but not necessarily reveal the true mechanism that is 
behind. 


