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4 Extending the Linear Model 
Linear models are central to the practice of statistics and can be seen as part of 
the core knowledge of any applied statistician. While they are very versatile, there 
are situations that cannot be handled within the standard framework. Here, we will 
take care of some of these. 

4.1 What is the Problem? 

In all our previous theory, the response iy  was assumed to be a continuous 
random variable whose range was (at least theoretically) reaching from minus to 
plus infinity. The principal goal was to estimate and predict the conditional 
expectation, i.e. ˆ [ | ]i i iy E y X  from the data. All theory, algorithms, tests and 
confidence intervals operated under the assumption that the conditional 
distribution was Gaussian, i.e. 2ˆ| ~ ( , )i i i Ey X N y  . The figure below shows the 
density of these in a simple linear regression at 0x  , 0.75x   and 1.50x  . 

 

On the other hand, there are response variables that are not continuous, but 
binary, i.e. with values in  0,1 , or which are a proportion in [0,1] . Still, it can be 
very worthwhile to study the dependence of this response on a number of 
predictors with a regression approach. However, applying the standard multiple 
regression framework will ultimately result in responses that are beyond the set of 
values which are foreseen in that problem. Thus, we need some additional 
techniques which can deal with these types of situations. Depending on how 
exactly the response variable is, there are several different approaches, which all 
fit within the framework of a more widely formulated concept entitled generalized 
linear modeling (GLM). Here follows a brief overview of the covered topics: 
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4.1.1 Binary Response 

In toxicological studies, one tries to infer whether a lab mouse survives when it is 
given a particular dose of some poisonous medication. In human medicine, we are 
often interested in the contrary case: how much “dose” has an effect, i.e. reduces 
pain or other symptoms. Here, the response variable is a binary variable in  0,1 , 
standing for either survival vs. death, or status quo vs. reduction. The conditional 
distribution of the response is | ~ ( )i i iy X Bernoulli p  and hence much different from 
a Gaussian. Our interest lies in modeling the expectation of this conditional 
distribution which is [ | ]i i iE y X p , the probability of death resp. pain reduction. We 
illustrate this with an example where we acquired the response for a cohort of 72 
patients and also the dose given per bodyweight (in [ / ]mg kg ) was known. The 
data present themselves as follows: 

 

The naïve approach is to use simple linear regression with the 0/1 outcome as 
response and the dose as predictor. This yields the blue regression line. 
Obviously, this results in fitted values outside of the interval [0,1] , whose 
interpretation is unclear. A good statistical model for the above example must yield 
a [0,1]-restricted probability for positive response. This is a coherent approach and 
takes into account that for a given (intermediate) concentration, we will only have 
an effect on some of the subjects, but not on all of them. A potential solution is 
offered by the red dotted line in the above plot. The question is how the curved red 
line is obtained/estimated. While the full details are covered in section 4.2, we 
briefly mention that fitting such a logistic regression model is based on estimating 
the positive response probability ( 1| )i i ip P y x   for each observation i  such that: 
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The regression parameters 0 1,   are determined by optimizing the goodness-of-fit 
of the ip  with a maximum likelihood approach, for details see section 4.2. 
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4.1.2 Count Response 

What are predictors for the abundance of starfish (in German: Seestern) at several 
locations in the sea? For answering this question, we could analyze a dataset 
consisting of counts in different areas, plus the values of several predictors. 
Obviously, the response iy  is a count – the simplest and natural model for the 
conditional distribution |i iy X  is a Poisson distribution. We then assume that the 
parameter i  at location i  depends on the predictors. Since 0i  , we must use a 
log-transformation to link it to the linear combination: 

 | ~ ( )i iy X Pois   where 0 1 1log( ) ...i i p ipx x       . 

4.1.3 Categorical Response 

Another extension of the linear model is necessary for the case where we try to 
predict a nominal response variable. For example, we may be interested in giving 
probabilities for the favorite political party of a person, depending on predictors 
such as education, age, etc. Such data can be summarized and displayed in 
contingency tables. The goal is modeling conditional probabilities ( | )i iP y k X  for 
the categories 1,...,k K . 

4.1.4 Generalized Linear Models 

The above mentioned models for binary, count and categorical response all fit 
within the framework of generalized linear models, which also encompasses the 
multiple linear regression approach from chapter 3. GLMs are based on the notion 
that the suitably transformed conditional expectation of the response iy  has a 
linear relation to the predictors, i.e.: 

 0 1 1( [ | ]) ...i i i p ipg E y X x x      . 

As we had argued above, in case of multiple linear regression the link ( )g   will be 
the identity function, and the conditional distribution |i iy X  is a Gaussian. The 
specifics of the model extensions for counts and categorical response will be 
discussed on the following pages. Please note that formally, GLMs also require 
that the responses’ variance iy  is of the form ( [ ])v E y  , where   is an additional 
parameter, and ( )v   a specific function. Moreover, the choice of conditional 
distributions |i iy X  that are tractable within the limits of GLMs is restricted. 

While the GLM formulation and the restrictions may sound complicated, they allow 
for formulating a unified mathematical theory that encompasses common basic 
principles for estimation, inference and model diagnostics. We will not deeply 
embark into the formal aspects, but limit ourselves to the practically relevant do’s 
and dont’s of applied generalized linear modeling. For readers who are interested 
in pursuing the theory on GLMs, we refer to the seminal work “Generalized Linear 
Models” by McCullagh and Nelder (Chapman and Hall, 1989). 
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4.2 Logistic Regression 

As explained above, datasets with a binary response variable are not multiple 
linear regression problems. Here, we will discuss the necessary extension. While 
in many aspects, techniques and ideas are similar to what is already known, some 
novel issues appear as well. We will take care of model formulation, estimation, 
inference, diagnostics, prediction and model choice. 

4.2.1 Example: Survival after Premature Birth 

We discuss an example dealing with survival after premature birth. A study of 
Hubbard (1986) contains data of 247 early born babies. Predictors for survival are 
birth weight (in grams), birth age (in weeks of pregnancy), the apgar scores 
(judging the vital functions one and five minutes after birth) and the pH-value of the 
babies’ blood (providing information on oxygen saturation). For reasons of 
simplicity, we limit ourselves to the two most informative predictors, age and 
weight. Due to positive skewness, we perform a log-transformation for the latter. 

If we color-code the response, i.e. survival with red dots and death with blue 
triangles, the data can be displayed in a 2d-scatterplot, see below. It is apparent 
that the proportion of surviving babies depends on age and weight: the older and 
heavier a baby is born prematurely, the better the odds for surviving are. The goal 
with our logistic regression analysis will be the quantitatively model the probability 
for survival conditional on the two predictors weight and age. 

> plot(age ~ weight, data=baby, log="x", type="n") 
> points(age ~ weight, subset=(survival==0), data=baby, ...) 
> points(age ~ weight, subset=(survival==1), data=baby, ...) 
> title("Survival after Premature Birth") 
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4.2.2 Model and Estimation 

In the premature birth example, the response is binary: {0,1}iy  . Hence iy  follows 
a Bernoulli distribution, whose parameter (called the “success probability”) is 
denoted by ip . Typically, the parameter and the distribution are conditional on the 
predictor(s), for which we use the general notation iX : 

 ( 1| ) [ | ]i i i i i ip P y X E y X     , 

It is important to note that ip  is not only the parameter of the responses’ Bernoulli 
distribution, but also the conditional expectation i  of the response variable iy . In 
that situation, the logistic regression model is defined as 
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As we can see, the linear predictor 0 1 1 ...i i p ipx x        is linked to the 
conditional expectation i ip   via the logit function log( / (1 ))p p p , which 
maps from [0,1]  to ( , )  . Thus, we are “safe” to use a linear combination of the 
predictors, i.e. it is certain that the output will always be a [0,1]-restricted 
probability. The logit function has a descriptive interpretation: / (1 )p p  is called 
the odds (“Wettverhältnis” in German) for an event. A probability of 1/ 2  yields to a 
1:1  odds, i.e. both outcomes are equally likely. If we have 1/ 4ip  , then the odds 
turns out to be 1: 3 , i.e. the second outcome is three times as likely. Odds are 
always positive, so that we require a log-transformation to obtain a full real-valued 
scale. Thus, logistic regression equals describing the log-odds with a linear model.  

A peculiarity of logistic regression is that there is no explicit, additive error term as 
in multiple linear regression. It is not needed because we model ip : the variation in 
the babies’ survival for a given combination of birth age and weight is already dealt 
with by the Bernoulli distribution of the response variable with parameter ip . 

Estimation 

For practical application, it is important to estimate the regression coefficients 

0,..., p   on a given dataset. While it would conceptually be possible to minimize 
the sum of squared raw residuals i i ir p y  , this approach is not theoretically 
sound and does not prove to be fruitful in practice. Instead, we perform maximum 
likelihood estimation (MLE) where the regression coefficients j  are determined 
such that the likelihood of the observed data is maximized. By assuming 
independence of the cases, this boils down to determine the parameters such that 
the Bernoulli log-likelihood 

  
1

( ) log( ) (1 )log(1 )
n

i i i i
i

l y p y p


     

is maximized. Note that this is a sensible goodness-of-fit measure. For all 
observations with 1iy   we aspire for high ip  to keep the contribution to ( )l   low, 
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and vice versa for the observations with 0iy  . The dependence of ( )l   on the 
data and the regression coefficients becomes more obvious if ip  is replaced with: 
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The log-likelihood maximization can be approached by taking partial derivatives of 
( )l   with respect to 0,..., p  . This still yields an equation system, but in contrast to 

multiple linear regression, it is no longer a linear one that is easy to solve. 
However, under some mild conditions, the maximum exists, though it cannot be 
written in closed form. We thus require numerical optimization. It turns out that a 
good method is to employ linear approximations that are solved using a sequence 
of iteratively reweighted least squares regressions (the IRLS algorithm). We do 
without giving further details, but instead focus on the practical application. 

R-Code for Estimating Logistic Regression Models 

In R, routines for estimating logistic regression models are readily available. We 
illustrate their syntax on the premature birth example: 

> glm(survival~log10(weight)+age, family=binomial, data=baby) 
 
Coefficients: 
  (Intercept)  log10(weight)            age   
     -33.9711        10.1685         0.1474   

This is only a part of the output, but for the moment the most interesting one, 
namely the estimated coefficients 0 1

ˆ ˆ,   and 2̂ . Please note that this is a 
numerically optimized solution, so it may happen that the following warning 
message appears: 

Warning message: 
glm.fit: algorithm did not converge 

It obviously means that the IRLS algorithm did not converge, and hence the 
coefficients are not trustworthy. Unfortunately, it is not possible to make general 
statements on how to achieve convergence. On the other hand, convergence 
problems are rare in well-posed regression problems. Another issue (and warning) 
that can arise is the one of fitted 0 or 1 probabilites: 

Warning message: 
glm.fit: fitted probabilities numerically 0 or 1 occurred 

This is also known as the Hauck-Donner phenomenon and indicates that there is a 
subspace in predictor space with perfect separation of observations with 0y   and 

1y  . If that is the case, the optimal regression coefficient estimates could be 
arbitrarily large what makes it difficult to explicitly determine them. As a way out, R 
artificially limits the estimated coefficients to a maximum of +/- 10 and issues the 
above warning. Working with such models is usually fine despite the warning. 
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Displaying the Fit 

A simple option for displaying the GLM fit is to plot the response vs. the linear 
predictor. This always works, no matter how many predictor variables one uses. 
The following code is required: 

> fit <- glm(survival ~ log10(weight) + age, family=binomial) 
> fvl <- predict(fit, type="link") 
> fpr <- predict(fit, type="response") 
> plot(fvl, survival, type="n", xlab="linear predictor") 
> points(fvl[survival==0], survival[survival==0]) 
> points(fvl[survival==1], survival[survival==1], col="red") 
> lines(sort(fvl), sort(fpr), lty=3) 
> title("Survival vs. Linear Predictor") 

 

Small values in the linear predictor correspond to low survival probability, and vice 
versa. The fitted values show their typical S-shaped curve that is created by the 
inverse of the logit function. The value 0 always marks the midpoint: it corresponds 
to an odds of 1 and hence equal chances for survival vs. death. 

Another option for displaying the results (that is restricted to examples with two 
predictors as in premature birth) is to color code the probability of survival. By 
keeping the probability of survival fixed, we can express the age value as function 
of log10(weight). Some quick calculations show that the resulting function is linear, 
hence the contours of equal probability are given by parallel straight lines. The 
frame on the next page illustrates this for the age vs. weight plot: black 
background color would correspond to a survival probability of 0, and white to 1. 
The orange contours stand for probability 0.1, 0.2, …, 0.9. As we can observe, 
there are babies who survive with estimated probabilities below 0.2, whereas 
others die despite of estimated survival probabilities above 0.9. 
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Interpretation of the Regression Coefficients 

We now turn our attention to the interpretation of the regression coefficients j . As 
we had stated above, the log-odds for 1iy   are a linear function of the predictors. 
Thus, if predictor jx  is increased by 1 unit, then the log-odds in favor of 1y   
increase by j  if all other predictors remain unchanged. We illustrate this with the 
premature birth example, where we consider an individual with 10log ( ) 3weight   
and birth age of 30 weeks. We have: 

 33.9711 10.1685 3.0 0.1474 30 0.957        , 

which are the log-odds for survival. If we take exp(0.957) 2.604 , we obtain the 
odds for survival. It is thus 2.604 times more likely to survive than die when born at 
this particular combination of age and weight. On the other hand, the probability 
for survival is: 

 1 exp( ) exp(0.957)
( ) 0.723

1 exp( ) 1 exp(0.957)
g




   
 

 

Now, if we compare to an individual with birth age 31 weeks (and the rest 
remaining as above), we obtain the odds as exp(1.104) 3.017 . If we divide the two 
odds, we obtain the odds-ratio: 

 2

3.017 ˆ1.159 exp( )
2.604
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600 800 1000 1200 1400

2
0

2
5

3
0

3
5

Survival after Premature Birth

weight

a
g

e



Applied Statistical Regression  4 Extending the Linear Model 
 

 Page 123 

The odds for surviving increase by 2
ˆexp( )  (i.e. about 15%) when a baby of the 

same weight is born one week later – this is a more illustrative way to see the 
parameter 2̂ . In other words, we can say that the coefficients from logistic 
regression models are log-odds ratios. 

Alternative Link Functions 

The role of the link function is to map between the conditional expectation [ | ]E y X  
and the linear predictor  . In logistic regression, we must ensure that this mapping 
is between the intervals [0,1]  and ( , )  . Above, we had argued that the logit 
function can play this part and is attractive due to its clear interpretation. However, 
we could use any function that maps between these intervals and in fact, the 
inverse of any cumulative distribution function (cdf) will do so. 

Hence, an intuitive alternative choice for the link function is 1( )p  , the inverse 
of the Gaussian cdf. The resulting procedure is known as Probit Regression. In 
most applied problems, the difference between probit and logistic regression are 
negligible. Unless you know exactly that you are in a setting where one needs to 
use the probit link function, it is probably better to stick to the logit link. Even more 
exotic is the complementary log-log link log( log(1 ))p    . There are some 
special cases where it is useful, but giving the details is far beyond the scope of 
this course. 

4.2.3 Inference for Logistic Regression 

We base our discussion about inferring a logistic regression model on the 
summary output in R. Most concepts are already known from our previous 
discussion about multiple linear regression, but reappear in slightly different form. 

> summary(fit) 
 
Call: glm(survival ~ log10(weight) + age, family = binomial) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.2983  -0.7451   0.4303   0.7557   1.8459   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -33.97108    4.98983  -6.808 9.89e-12 *** 
log10(weight)  10.16846    1.88160   5.404 6.51e-08 *** 
age             0.14742    0.07427   1.985   0.0472 *   
--- 
Dispersion parameter for binomial family taken to be 1 
 
    Null deviance: 319.28  on 246  degrees of freedom 
Residual deviance: 235.94  on 244  degrees of freedom 
AIC: 241.94 
Number of Fisher Scoring iterations: 4 



Applied Statistical Regression  4 Extending the Linear Model 
 

 Page 124 

Perhaps the most important difference is that the multiple R-squared and the 
global F-test are missing here, and only some information about the deviance is 
given. For deeper insight, we need to consider the goodness-of-fit measure that is 
used here, which is the so-called deviance: 

  
1

ˆ ˆ ˆ( , ) 2 log( ) (1 )log(1 )
n

i i i i
i

D y p y p y p


       

We can see that ˆ2 ( )D l   , i.e. minus twice the log-likelihood of our model. The 
summary output lists the value under Residual deviance, together with the 
degrees of freedom of that model, which are ( 1)df n p   . The Null deviance 
conceptually is the same, but for the simplest possible model that only has no 
predictors but only the intercept, and which fits the a-priori probability (i.e. the 
relative frequency of observations with 1iy  ) to all observations. 

Coefficient of Determination 

In multiple linear regression, the multiple R-squared was an intuitive concept for 
the explanatory content in the predictors. We might consider applying the same 
idea for logistic regression models by measuring the proportion of deviance 
explained. In particular, this would yield 1 235.94 / 319.28 0.26  , or in R: 

> 1-fit$dev/fit$null 
[1] 0.2610193 

This simple measure is often reasonable for practical application, though the 
proportion of deviance explained is an often debated topic. A better statistic to 
measure the explanatory content is: 

 2 1 exp(( ) / )

1 exp( / )
res null

null

D D n
R

D n

 


 
, 

where resD  and nullD  are the residual resp. null deviance and n  is the number of 
observations. When this alternative measure is implemented in R, we obtain: 

> (1-exp((fit$dev-fit$null)/247))/(1-exp(-fit$null/247)) 
[1] 0.3947567 

Individual Hypothesis Tests and Confidence Intervals 

In multiple linear regression, when assuming Gaussian errors, it is quite easy to 
show that the estimated regression coefficients ˆ

j  are normally distributed. That 
property can be used for constructing the individual hypothesis test and the 
confidence interval. Both require the use of the standard error ˆˆ

j
  for 

standardization, hence the t -distribution comes into play. All this is no longer true 
for logistic regression. Maximum likelihood theory tells us that under some mild 
conditions, the ˆ

j  are asymptotically Gaussian. In practice, we are of course 
lacking infinitely many observations, but the asymptotic result is used for 
concluding that the regression coefficients are approximately Gaussian. 
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This property can be used to assess the individual hypothesis tests and to 
determine the confidence intervals for the coefficients. We simply assume that 
under the null hypothesis 0 : jH b   

 
ˆ

ˆ
~ (0,1)

ˆ
j

j b
Z N







  

The p-values of the individual hypothesis tests for 0 : 0jH    are given in the 
summary output. Due to the normal assumption, the respective columns are 
entitled “z-value” rather than the “t-value” we had in multiple linear regression. 
A 95%-confidence interval for 1  can be hand-constructed via: 

> 10.16846+qnorm(c(0.025,0.975))*1.88160 
[1] 6.480592 13.856328 

A convenient way for obtaining the confidence interval is with the R command 
confint(). However, it uses a more sophisticated method for deriving the result, 
hence it is not numerically identical to the hand-constructed one. 

> confint(fit, "log10(weight)") 
Waiting for profiling to be done... 
    2.5 %    97.5 %  
 6.618496 14.032741 

Comparing Hierachical Models 

This section discusses the analogue to the partial F-test of multiple linear 
regression. The idea behind is still the same, namely comparing two hierarchical 
models by their goodness-of-fit measure and their difference in degrees of 
freedom. However, some adjustments are necessary here, because we are now 
using the deviance rather than the residual sum of squares which leads to a 
different distribution in the test statistic. Let us assume that we have Big  and 
Small  models where ( 1)p   resp ( 1)q   parameters are estimated. Our interest 
lies in the null hypothesis 0 1 2: ... 0q q pH        . This means that the 
additional predictors in the big model have zero coefficients and thus are useless. 
The MLE theory suggest to use the likelihood ratio (or log-likelihood difference) as 
the test statistic: 

 2ˆ ˆ2 ( ) ( , ) ( , ) ~Big Small
Small Big p qll ll D y p D y p       

The log-likelihood difference can be computed from the difference in deviance 
between the two models. Under the null hypothesis, it asymptotically follows a 
Chisquare distribution with p q  degrees of freedom. We illustrate the procedure 
by performing the global test against the null model. This is the easiest model that 
is possible and contains the intercept term only. In our example about baby 
survival, the null model fits the overall survival proportion ˆ /Null ip y n  to all 
observations, no matter what the birth weight or age were. Our goal is now to 
compare against the full model with age- and weight-specific survival probabilities. 
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The two deviances are reported in the summary output. We observe a value of 
319.28 for the null model (the Null deviance) and 235.94 for the model with 
two predictors (the Residual deviance). The full model has two parameters 
more, and hence the difference of the deviances follows a 2

2  distribution. We can 
thus compute the p-value for the null hypothesis 0 1 2: 0H    : 

> 1-pchisq(fit$null-fit$dev, df=(fit$df.null-fit$df.res)) 
[1] 0 

We obtain a p-value that is (numerically) zero; hence there is a strongly significant 
contribution of the two predictors on the odds for survival. While typing the above 
command into R is not a big effort, there is a quick check that can be done by 
looking at the summary output. The Chisquare distribution with p q  degrees of 
freedom has an expectation of p q  and standard deviation 2( )p q . The 
consequence is that if the difference between null and residual deviance is large 
with respect to the difference in degrees of freedom, then the predictors do yield a 
significant contribution. 

For factor variables with multiple levels, where a hierarchical model comparison is 
required to test their contribution to the model, the R command drop1() is very 
useful. The difference of deviance test is implemented there. We type: 

> drop1(fit, test="Chisq") 
Single term deletions 
 
Model: 
survival ~ log10(weight) + age 
              Df Deviance    AIC    LRT  Pr(>Chi)     
<none>             235.94 241.94                      
log10(weight)  1   270.19 274.19 34.247 4.855e-09 *** 
age            1   239.89 243.89  3.948   0.04694 *   

The function tests the exclusion of all model terms, using the difference of 
deviance as a test statistic. Please note that for all variables with one degree of 
freedom only, this is a special case of hierarchical model comparison, namely an 
individual hypothesis test. However, in case of GLMs the results will be slightly 
different to the ones that are reported in the summary. The latter are based on the 
approximation of the estimated coefficients’ distribution to the Gaussian, whereas 
here the comparison is against the Chisquare. Hence, the p-values are not equal, 
though the difference is relatively small. Asymptotically, it will even vanish – the 
two tests will be one and the same when infinitely many datapoints are available. 

4.2.4 Model Diagnostics 

Residual analysis is important for logistic regression too, but somewhat more 
difficult than for multiple linear regression. Although there is no error term in 
logistic regression, the diagnostics will be based on differences between observed 
and fitted values. The intuitive concept is to work with the so-called response 
residuals: 
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 ˆi i ir y p  . 

One of the major problems with these response residuals is that they are 
heteroskedastic. Their variance is bigger when ˆ 1/ 2ip   and smaller when ˆ ip  is 
close to either zero or one. For overcoming the issue, one could try to standardize 
by ˆ ˆ(1 )i ip p , the estimated standard deviation of ir . The result is: 
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p p
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
, called the Pearson Residuals. 

In R, the Pearson Residuals can easily be obtained by using the command 
resid(fit, type="pearson"), when object fit contains the results of a 
logistic regression. Another fruitful approach to the definition of a residual lies in 
using the contribution id  of each instance to the goodness-of-fit measure ˆ( , )D y p : 

     ˆ ˆ2 log (1 ) log 1i i i i id y p y p       

For obtaining a residual that can be well interpreted, we take the square root and 
enhance it by the sign of the difference between true and fitted value. Thus: 

 ˆ( )i i i iD sign y p d    are called the Deviance Residuals. 

Again, in R, computation is simple: resid(fit, type="deviance"), when as 
before, object fit contains the results of a logistic regression. It is crucial to 
understand the properties of these residuals well. For a correctly specified model, 
both the Pearson and Deviance versions have expectation zero and roughly 
constant variance. The latter can be improved by standardizing or studentizing 
with 1/ 1 iih  to remove the estimation-induced heteroskedasticity, though this 
hardly proves practically necessary if no extreme leverage points are present. 
Please note that the residual for a particular instance i  has a binary distribution, 
i.e. can only take two values. Obviously, this distribution is not a Gaussian and 
furthermore, it is generally not identical for different cases i . Please note that the 
generic plot(fit) command in R produces the well-known four standard plots 
for model diagnostics also if object fit is from a GLM. However, these are 
inadequate here for several reasons, as will be explained below. 

Tukey-Anscombe Plot 

As in multiple linear regression, the Tukey-Anscombe plot is important for 
identifying potential model missspecification and displays the residuals vs. the 
fitted values. In logistic regression, there is some freedom and also debate 
whether it shall be based on Pearson or Deviance residuals. Mostly, the difference 
between the two versions can be neglected from a practical viewpoint. Hence in 
this scriptum, we restrict to showing all residual plots with the Deviance residuals 
only. Also for the x -axis there is some choice: we can either use the linear 
predictor or the fitted probabilities. Since there is a non-linear transformation 
between the two, the plots will look (often only slightly) different. Our choice for this 
scriptum is to work with the linear predictor as the x -variable. 
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The interpretation of these plots is more difficult than in multiple linear regression. 
As can be seen from the Tukey-Anscombe plot below, the residual for a given 
value of the linear predictor can only take two different values and thus has a 
binary distribution. That distribution (i.e. the values it can take and also the 
likelihood they are taken with) will be non-identical for different linear predictor 
values. For example, it is evident that positive residuals will be rare for small 
values of the linear predictor, and vice versa.  

Due to this very specific distribution of the residuals, the Tukey-Anscombe plot is 
somewhat more difficult to read than in multiple linear regression. We can only 
detect a potential model inadequacy if a smoother is displayed, which basically 
amounts to comparing against a more flexible (non-parametric) logistic regression 
model. It is absolutely crucial to use a non-robust smoother for this task. Else, at 
high or low values for i , the rare positive resp. negative residuals will be 
considered as outliers and hence down-weighted in the smoother fit. This is highly 
unwanted and hampers the correct interpretation of the plot. Unfortunately, the R 
version of the Tukey-Anscombe plot generated by plot(fit) relies on a robust 
smoother – we need to code a better version by ourselves. The fragment of code 
below produces a Tukey-Anscombe plot with a non-robust smoother: 

> xx <- predict(fit, type="link") 
> yy <- residuals(fit, type="deviance") 
> plot(xx, yy, pch=20, main="Tukey-Anscombe Plot") 
> lines(loess.smooth(xx, yy, family="Gaussian"), col="red") 
> abline(h=0, lty=3, col="grey") 

 

For expositional purposes, we also added a robust smoother. As we can observe, 
the survival probability tends to be slightly overestimated for low weight and age, 
and vice versa. The model missspecification is not severe here, though an 
interaction term or further predictor transformations might be beneficial. 
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