

Two-Series Factorials

Lukas Meier, Seminar für Statistik

- **Production processes** often involve many factors:
 - material
 - equipment
 - intermediate products (producer, storage, ...)
 - conditions (temperature, humidity, pressure)
 - personnel
- Typical questions are:
 - Which factors have an effect on the response?
 - What is the effect of the important factors?
 - main-effects only?
 - what about interaction effects?
- When you have to answer such questions you are basically always confronted with the "side constraint" that you are **not** allowed to run too many experiments.

Figure 1.1. Flow Chart, Pulp Manufacturing Process.

- E.g., if you have 7 factors with 3 levels each and want to run an experiment for every possible setting a total of $3^7 = 2187$ experiments have to be performed.
- An "easy trick" to reduce the number of experiments is to reduce the number of levels per factor. Typical and (minimal) choice is 2 levels.
- In the previous example it would mean that we "only" have to run 2⁷ = 128 experiments.
- However, we might risk to miss some effects if we make bad choices for the factor levels.

- It is not advisable to run experiments by varying or optimizing the factors "one by one".
- Only a factorial experiment where we see all (or many) possible combinations of factor levels will allow us to say something about possible interactions between the involved factors.

Two-Series Factorials

- A two-series factorial design is a factorial design where all the factors have just two levels that we typically call "low" and "high".
- If we have a total of k factors, we call it a 2^k design.
- A complete or full 2^k design is a 2^k design where we observe all 2^k possible settings.
- A fractional 2^k design is a 2^k design where we only observe a subset of all possible combinations.
- A 2^k design is typically the first step in the optimization of complex production processes in order to find out the important factors affecting the response ("screening").

Two-Series Factorials

- We are in a "standard" ANOVA situation with some "historical" specialties with respect to
 - labeling of factor level combinations
 - estimation of effects
 - graphical analysis of effects
- Assume that we have three factors A, B, C with two levels each ("low" and "high").
- A specific factor level combination is typically abbreviated with a string of lower-case letters.
- E.g., we denote by *acd* the **setting** (observation) (**not** the interaction!) where *A*, *C* and *D* are set to the level "high" and *B* to the level "low".

Two-Series Factorials: 2³ design

• Hence, in a 2^3 design we have the following $2^3 = 8$ possible configurations.

	A	B	С
(1)	—	—	—
а	+	-	_
b	—	+	—
ab	+	+	—
С	—	—	+
ac	+	—	+
bc	—	+	+
abc	+	+	+

Here a "+" means "high" and a "-" means "low".

Two-Series Factorials: 2³ design

 In our "old layout" of a factorial design this would be as follows

	A low	A high
B low	(1)	а
B high	b	ab

 Here we dropped the third factor C (or set it to level "low") for illustrational reasons.

Two-Series Factorials: Visualization of 2³ design

Example: Cooling Time of Cement (Roth, 2013)

- Response: cooling time of cement [minutes]
- Involved factors with two levels each
 - stirring time (A)
 - temperature (B)
 - pressure (C)

Data (rows are observations)

Setting	у
(1)	297
а	300
b	106
ab	131
С	177
ac	178
bc	76
abc	109

Two-Series Factorials: ANOVA Table

- The ANOVA table of a two-series factorial is set up "as usual".
- It has the special property that whatever effect we are looking at, it always has **one** degree of freedom.

Source	df
Α	1
В	1
С	1
AB	1
AC	1
BC	1
ABC	1

This means that every effect can be estimated with a single contrast.

Two-Series Factorials: Parameter Estimation

- Consider factor A.
- If we use the **sum-to-zero constraint** we have for the corresponding parameter: $\hat{\alpha}_2 = -\hat{\alpha}_1$.
- We call the difference

$$\bar{y}_{2..} - \bar{y}_{1..} = (\bar{y}_{2..} - \bar{y}_{...}) - (\bar{y}_{1..} - \bar{y}_{...}) = \hat{\alpha}_2 - \hat{\alpha}_1 = 2 \cdot \hat{\alpha}_2$$
$$= \hat{\alpha}_2 \qquad = \hat{\alpha}_1$$

the total effect of A.

- On the left-hand side we have the average of the response where A is set to "high" minus the average of the response where A is set to "low".
- This is exactly the (weighted) "contrast pattern" that we saw in the table if we interpret "+" as 1 and "−" as −1.

Two-Series Factorials: Parameter Estimation

- The same holds true for all other main-effects.
- The pattern of the contrasts corresponding to the interaction terms is the product of the involved patterns of main-effects, i.e.

	μ	Α	В	С	AB	AC	BC	ABC
(1)	+	-	-	-	+	+	+	—
а	+	+	-	_	—	—	+	+
b	+	-	+	-	_	+	—	+
ab	+	+	+	-	+	_	—	—
С	+	—	-	+	+	—	—	+
ас	+	+	-	+	—	+	—	_
bc	+	—	+	+	—	—	+	—
abc	+	+	+	+	+	+	+	+
weight	1/8	1/4	1/4	1/4	1/4	1/4	1/4	1/4
total effect	û	$2\cdot\hat{\alpha}_2$	$2 \cdot \hat{\beta}_2$	$2\cdot\hat{\gamma}_2$	$2\cdot \widehat{(\alpha\beta)}_{22}$	$2\cdot \widehat{(\alpha\gamma)}_{22}$	$2\cdot \widehat{(\beta\gamma)}_{22}$	$2\cdot(\widehat{lphaeta\gamma})_{222}$
estimate	171.75	15.5	-132.5	-73.5	13.5	1.5	47.5	2.5

Two-Series Factorials: Parameter Estimation

- Compare with output of R (see R-file).
- How can we test the contrasts (factors) or construct confidence intervals?
- If we have a complete 2^k design and if we assume the standard ANOVA model with an error variance of σ² we have for each estimated effect (contrast) a variance of

- In addition, if the true effect is zero, the expected value of every estimated effect (contrast) is zero too.
- Last but not least, the estimated effects are normally distributed and independent.

Two-Series Factorials: Inference

- Hence, estimates corresponding to "null effects" behave like independent samples from a normal distribution with mean 0 and constant variance.
- If we use the full model (i.e., including all interactions) we do **not** have any df's left for the error term if we have no replicates.
- However, thanks to the aforementioned properties we can do a graphical "analysis" of the effects using
 - pareto chart
 - halfnormal plot

of the estimated effects.

Two-Series Factorials: Pareto Chart

- Barplot of absolute value of estimated effects.
- Can we identify two groups?

Two-Series Factorials: Half-Normal Plot

- Plot sorted absolute effect values against quantiles of absolute value of a standard normal distribution.
- Can we detect any outliers?

Theoretical Quantiles

Two-Series Factorials: Analysis

- If we drop the 3-way interaction we have 1 (!) degree of freedom left for estimating the error variance.
- We can do tests in this situation

```
> fit2 <- aov(y \sim (time + temp + press)^2, data = cement)
> summary(fit2)
          Df Sum Sq Mean Sq F value Pr(>F)
           1
                480
                       480
                            38.44 0.1018
time
           1 35112 35112 2809.00 0.0120 *
temp
           1 10804 10804 864.36 0.0216 *
press
          1 364
                       364 29.16 0.1166
time:temp
time:press 1 5
                         5 0.36 0.6560
           1 4512 4512 361.00 0.0335 *
temp:press
           1
Residuals
              13
                        13
```

- This basically confirms the graphical analysis.
- However: effect size is at least as important as statistical significance!

- Assume that we cannot do a complete 2^k design in one day but that we are able to do half of the settings in one day.
- How should we "distribute" the factor level combinations over the two days?
- We do it by using confounding...

- The idea is to "sacrifice" some effects in order to "protect" the important ones.
- Splitting up the experiment in two blocks means losing efficiency as we have an incomplete block design (a day is a block).
- The confounded effects are "lost", while the others are "protected".

Example: What happens if we use the following experimental design:

	Day	μ	Α	B	С	AB	AC	BC	ABC
(1)	1	+	-	—	—	+	+	+	—
а	2	+	+	_	_	_	_	+	+
b	1	+	—	+	—	—	+	—	+
ab	2	+	+	+	_	+	_	_	—
С	1	+	—	_	+	+	—	_	+
ас	2	+	+	_	+	_	+	_	—
bc	1	+	—	+	+	_	_	+	—
abc	2	+	+	+	+	+	+	+	+

- We are **not** able to distinguish the effect of *A* from the effect of Day.
- A is confounded with Day in this setup. Hence, this was not a good choice because we sacrificed a main-effect!

- We say that we confounded the 2^k design into two blocks of size 2^{k-1}.
- However, our confounding choice was not optimal as we sacrificed a main-effect.
- Better: use a high-order interaction as so called defining contrast.
- The idea is to have a look at the column of the defining contrast: all "+" go in one block and all "-" go in the other block.
- We have completely "lost" the defining contrast as it is confounded with block.

 Hence, if we use the 3-way interaction as defining contrast we get

	Day	μ	Α	В	С	AB	AC	BC	ABC
(1)	1	+	—	—	—	+	+	+	<u> </u>
а	2	+	+	_	_	_	_	+	+
b	2	+	—	+	—	—	+	—	+
ab	1	+	+	+	—	+	—	_	—
С	2	+	—	_	+	+	—	—	+
ас	1	+	+	_	+	_	+	_	—
bc	1	+	—	+	+	—	_	+	—
abc	2	+	+	+	+	+	+	+	+

 Here, we would run the configurations (1), *ab*, *ac*, *bc* on day 1 and *a*, *b*, *c*, *abc* on day 2.

- The block containing (1) is called the **principal block** while the other block is called the **alternate block**.
- What if we want to build **more than two** blocks?
- Say we want to confound a 2⁴ design into 4 blocks of size 4 (4 = 2²).
- Start with **two** defining contrasts, say *ABC* and *BCD*.
- Our 4 blocks are built by using as "block assignment" the 4 different combinations of ABC and BCD, that is

ABC	BCD	Block
-	—	1
+	+	2
+	—	3
_	+	4

- As we have 4 blocks (i.e., 3 df's) there must be a third effect that we are confounding.
- It is the effect that is given by the product of the two effects which is

 $ABC \cdot BCD = AB^2C^2D = AD$

- The rule is: squared terms are disappearing.
- *AD* is also called the **generalized interaction** of *ABC* and *BCD*.
- If we would choose ABCD and BCD as defining contrasts, the generalized interaction would we A, i.e. we would confound the main-effect of A

Analysis of Confounded Two-Series Factorials

- If we have replicates, we can do the "standard" ANOVA as we have an estimate for the error term.
- If we have **no** replicates, we can either pool some of the higher-order interactions into the error term (i.e., not using them in the model) or use the graphical tools presented earlier.
- The difficult part here was the design, **not** the analysis.