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Two-Series Factorials



 Production processes often involve many factors:
 material

 equipment

 intermediate products (producer, storage, …)

 conditions (temperature, humidity, pressure)

 personnel

 Typical questions are:
 Which factors have an effect on the response?

 What is the effect of the important factors?
 main-effects only?

 what about interaction effects?

 When you have to answer such questions you are 

basically always confronted with the “side constraint” that 

you are not allowed to run too many experiments.

Screening Experiments (Roth, 2013)
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Screening Experiments (Roth, 2013)



 E.g., if you have 7 factors with 3 levels each and want to 

run an experiment for every possible setting a total of 

37 = 2187 experiments have to be performed.

 An “easy trick” to reduce the number of experiments is 

to reduce the number of levels per factor. Typical and 

(minimal) choice is 𝟐 levels.

 In the previous example it would mean that we “only” 

have to run 27 = 128 experiments.

 However, we might risk to miss some effects if we make 

bad choices for the factor levels.
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Screening Experiments (Roth, 2013)



 It is not advisable to run experiments by varying or 

optimizing the factors “one by one”.

 Only a factorial experiment where we see all (or many) 

possible combinations of factor levels will allow us to say 

something about possible interactions between the 

involved factors.
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Screening Experiments (Roth, 2013)



 A two-series factorial design is a factorial design where 

all the factors have just two levels that we typically call 

“low” and “high”.

 If we have a total of 𝑘 factors, we call it a 𝟐𝒌 design.

 A complete or full 2𝑘 design is a 2𝑘 design where we 

observe all 2𝑘 possible settings.

 A fractional 2𝑘 design is a 2𝑘 design where we only 

observe a subset of all possible combinations.

 A 2𝑘 design is typically the first step in the optimization of 

complex production processes in order to find out the 

important factors affecting the response (“screening”).

Two-Series Factorials
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 We are in a “standard” ANOVA situation with some 

“historical” specialties with respect to
 labeling of factor level combinations

 estimation of effects

 graphical analysis of effects

 Assume that we have three factors 𝐴, 𝐵, 𝐶 with two levels 

each (“low” and “high”).

 A specific factor level combination is typically abbreviated 

with a string of lower-case letters.

 E.g., we denote by 𝑎𝑐𝑑 the setting (observation) (not the 

interaction!) where 𝐴, 𝐶 and 𝐷 are set to the level “high” 

and 𝐵 to the level “low”.
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Two-Series Factorials



 Hence, in a 23 design we have the following 23 = 8
possible configurations.

 Here a “+” means “high” and a “−” means “low”.
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Two-Series Factorials: 𝟐𝟑 design

A B C

(1) − − −

𝑎 + − −

𝑏 − + −

𝑎𝑏 + + −

𝑐 − − +

𝑎𝑐 + − +

𝑏𝑐 − + +

𝑎𝑏𝑐 + + +
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Two-Series Factorials: 𝟐𝟑 design

 In our “old layout” of a factorial design this would be as 

follows

 Here we dropped the third factor 𝐶 (or set it to level “low”) 

for illustrational reasons.

A low A high

B low (1) 𝑎

B high 𝑏 𝑎𝑏
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Two-Series Factorials: Visualization of 𝟐𝟑 design

Factor 𝐴

Factor 𝐵

Factor 𝐶

low high

high

high



 Response: cooling time of cement [minutes]

 Involved factors with two levels each
 stirring time (𝐴)

 temperature (𝐵)

 pressure (𝐶)

 Data (rows are observations)

𝐴: stirring time

𝐵: temperature

𝐶: pressure
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Example: Cooling Time of Cement (Roth, 2013)

Setting 𝒚

(1) 297

𝑎 300

𝑏 106

𝑎𝑏 131

𝑐 177

𝑎𝑐 178

𝑏𝑐 76

𝑎𝑏𝑐 109



 The ANOVA table of a two-series factorial is set up “as 

usual”.

 It has the special property that whatever effect we are 

looking at, it always has one degree of freedom.

 This means that every effect can be estimated with a 

single contrast.
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Two-Series Factorials: ANOVA Table

Source df

𝐴 1

𝐵 1

𝐶 1

𝐴𝐵 1

𝐴𝐶 1

𝐵𝐶 1

𝐴𝐵𝐶 1



 Consider factor 𝐴.

 If we use the sum-to-zero constraint we have for the 

corresponding parameter:  𝛼2 = −  𝛼1.

 We call the difference 

 𝑦2.. −  𝑦1.. = ( 𝑦2..−  𝑦...) − ( 𝑦1.. −  𝑦...) =  𝛼2 −  𝛼1 = 2 ⋅  𝛼2

the total effect of 𝐴.

 On the left-hand side we have the average of the 

response where 𝐴 is set to “high” minus the average of 

the response where 𝐴 is set to “low”.

 This is exactly the (weighted) “contrast pattern” that we 

saw in the table if we interpret “+” as 1 and “−” as −1.
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Two-Series Factorials: Parameter Estimation

=  𝛼2 =  𝛼1



 The same holds true for all other main-effects.

 The pattern of the contrasts corresponding to the  

interaction terms is the product of the involved patterns

of main-effects, i.e.
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Two-Series Factorials: Parameter Estimation

𝝁 A B C AB AC BC ABC

(1) + − − − + + + −

𝑎 + + − − − − + +

𝑏 + − + − − + − +

𝑎𝑏 + + + − + − − −

𝑐 + − − + + − − +

𝑎𝑐 + + − + − + − −

𝑏𝑐 + − + + − − + −

𝑎𝑏𝑐 + + + + + + + +

weight 1/8 1/4 1/4 1/4 1/4 1/4 1/4 1/4

total 

effect
 𝜇 2 ⋅  𝛼2 2 ⋅  𝛽2 2 ⋅  𝛾2 2 ⋅  (𝛼𝛽)22 2 ⋅  (𝛼𝛾)22 2 ⋅  (𝛽𝛾)22 2 ⋅  (𝛼𝛽𝛾)222

estimate 𝟏𝟕𝟏. 𝟕𝟓 𝟏𝟓. 𝟓 −𝟏𝟑𝟐. 𝟓 −𝟕𝟑. 𝟓 𝟏𝟑. 𝟓 𝟏. 𝟓 𝟒𝟕. 𝟓 𝟐. 𝟓



 Compare with output of R (see R-file).

 How can we test the contrasts (factors) or construct 

confidence intervals?

 If we have a complete 2𝑘 design and if we assume the 

standard ANOVA model with an error variance of 𝜎2 we 

have for each estimated effect (contrast) a variance of

1

2𝑘−1

2

2𝑘𝜎2 =
𝜎2

2𝑘−2

 In addition, if the true effect is zero, the expected value of 

every estimated effect (contrast) is zero too.

 Last but not least, the estimated effects are normally 

distributed and independent.
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Two-Series Factorials: Parameter Estimation

due to weight due to sum



 Hence, estimates corresponding to “null effects”

behave like independent samples from a normal 

distribution with mean 0 and constant variance.

 If we use the full model (i.e., including all interactions) we 

do not have any df’s left for the error term if we have no 

replicates.

 However, thanks to the aforementioned properties we can 

do a graphical “analysis” of the effects using

 pareto chart 

 halfnormal plot

of the estimated effects.
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Two-Series Factorials: Inference



 Barplot of absolute value of estimated effects.

 Can we identify two groups?
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Two-Series Factorials: Pareto Chart



 Plot sorted absolute effect values against quantiles of 

absolute value of a standard normal distribution.

 Can we detect any outliers?
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Two-Series Factorials: Half-Normal Plot



 If we drop the 3-way interaction we have 1 (!) degree of 

freedom left for estimating the error variance.

 We can do tests in this situation

 This basically confirms the graphical analysis.

 However: effect size is at least as important as statistical 

significance!
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Two-Series Factorials: Analysis



 Assume that we cannot do a complete 2𝑘 design in one 

day but that we are able to do half of the settings in one 

day.

 How should we “distribute” the factor level combinations 

over the two days?

 We do it by using confounding…

 The idea is to “sacrifice” some effects in order to “protect” 

the important ones.

 Splitting up the experiment in two blocks means losing 

efficiency as we have an incomplete block design (a 

day is a block). 

 The confounded effects are “lost”, while the others are 

“protected”.
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Confounding the Two-Series Factorial



 Example: What happens if we use the following 

experimental design:

 We are not able to distinguish the effect of 𝐴 from the 

effect of Day.

 𝐴 is confounded with Day in this setup. Hence, this was 

not a good choice because we sacrificed a main-effect!
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Confounding the Two-Series Factorial

Day 𝝁 A B C AB AC BC ABC

(1) 1 + − − − + + + −

𝑎 2 + + − − − − + +

𝑏 1 + − + − − + − +

𝑎𝑏 2 + + + − + − − −

𝑐 1 + − − + + − − +

𝑎𝑐 2 + + − + − + − −

𝑏𝑐 1 + − + + − − + −

𝑎𝑏𝑐 2 + + + + + + + +



 We say that we confounded the 2𝑘 design into two blocks 

of size 2𝑘−1.

 However, our confounding choice was not optimal as we 

sacrificed a main-effect.

 Better: use a high-order interaction as so called defining 

contrast.

 The idea is to have a look at the column of the defining 

contrast: all “+” go in one block and all “−” go in the other 

block.

 We have completely “lost” the defining contrast as it is 

confounded with block.
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Confounding the Two-Series Factorial



 Hence, if we use the 3-way interaction as defining 

contrast we get

 Here, we would run the configurations 1 , 𝑎𝑏, 𝑎𝑐, 𝑏𝑐 on 

day 1 and 𝑎, 𝑏, 𝑐, 𝑎𝑏𝑐 on day 2.
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Confounding the Two-Series Factorial

Day 𝝁 A B C AB AC BC ABC

(1) 1 + − − − + + + −

𝑎 2 + + − − − − + +

𝑏 2 + − + − − + − +

𝑎𝑏 1 + + + − + − − −

𝑐 2 + − − + + − − +

𝑎𝑐 1 + + − + − + − −

𝑏𝑐 1 + − + + − − + −

𝑎𝑏𝑐 2 + + + + + + + +



 The block containing (1) is called the principal block

while the other block is called the alternate block.

 What if we want to build more than two blocks? 

 Say we want to confound a 24 design into 4 blocks of size 

4 (4 = 22).

 Start with two defining contrasts, say 𝐴𝐵𝐶 and 𝐵𝐶𝐷. 

 Our 4 blocks are built by using as “block assignment” the 

4 different combinations of 𝐴𝐵𝐶 and 𝐵𝐶𝐷, that is 

23

Confounding the Two-Series Factorial

ABC BCD Block

− − 1

+ + 2

+ − 3

− + 4



 As we have 4 blocks (i.e., 3 df’s) there must be a third

effect that we are confounding.

 It is the effect that is given by the product of the two 

effects which is 

𝐴𝐵𝐶 ⋅ 𝐵𝐶𝐷 = 𝐴𝐵2𝐶2𝐷 = 𝐴𝐷

 The rule is: squared terms are disappearing.

 𝐴𝐷 is also called the generalized interaction of 𝐴𝐵𝐶 and 

𝐵𝐶𝐷.

 If we would choose 𝐴𝐵𝐶𝐷 and 𝐵𝐶𝐷 as defining contrasts, 

the generalized interaction would we 𝐴, i.e. we would 

confound the main-effect of 𝐴.

24

Confounding the Two-Series Factorial



 If we have replicates, we can do the “standard” ANOVA as 

we have an estimate for the error term.

 If we have no replicates, we can either pool some of the 

higher-order interactions into the error term (i.e., not using 

them in the model) or use the graphical tools presented 

earlier.

 The difficult part here was the design, not the analysis.
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Analysis of Confounded Two-Series Factorials


