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Random Effects



 Up to now: treatment effects were fixed, unknown 

parameters that we were trying to estimate.

 Such models are also called fixed effects models.

 Now: Consider the situation where treatments are 

random samples from a large population of potential 

treatments.

 Example: Effect of machine operators that were randomly 

selected from a large pool of operators. 

 In this setup, treatment effects are random variables and 

therefore called random effects. The corresponding 

model will be a random effects model.

New Philosophy…
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 Why would we be interested in a random 

effects situation?

 It is a useful way of thinking if we want to make a 

statement (conclusion) about the population of all 

treatments.

 In the operator example we shift the focus away from 

the individual operators (treatments) to the population 

of all operators (treatments).

 Typically, we are interested in the variance of the

treatment population.

 E.g., what is the variation from operator to operator?
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New Philosophy…
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Examples of Random Effects

Randomly select… …from…

clinics …all clinics in a country.

school classes …all school classes in a region.

investigators …a large pool of investigators.

series in quality control …all series in a certain time period.

… …



 Company with 50 machines that produce cardboard 

cartons.

 Ideally, strength of the cartons shouldn’t vary too much. 

 Therefore, we want to have an idea about
 “machine-to-machine” variation

 “sample-to-sample” variation on the same machine.

 Perform experiment: 
 Choose 10 machines at random (out of the 50)

 Produce 40 cartons on each machine

 Test resulting cartons for strength ( response)
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Carton Experiment One (Oehlert, 2000)



 Model so far:

𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗, 

where 𝛼𝑖 is the (fixed) effect of machine 𝑖 and 𝜀𝑖𝑗 are the 

errors with the usual assumptions.

 However, this model does not reflect the sampling 

mechanism from above.

 If we repeat the experiment, the selected machines 

change and therefore also the meaning of the 

parameters: they typically correspond to a different 

machine!

 Moreover, we want to learn something about the 

population of all machines.

5

Carton Experiment One (Oehlert, 2000)



 New: Random effects model:

𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗, 

with
 𝛼𝑖 i. i. d. ∼ 𝑁 0, 𝜎𝛼

2

 𝜖𝑖𝑗 i. i. d. ∼ 𝑁 0, 𝜎2

 This looks very similar to the old model, however the 𝛼𝑖’s 

are now random variables!

 That small change will have a large impact on the 

properties of the model and on our way to analyze such 

kind of data.
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Carton Experiment One (Oehlert, 2000)

Parameter

Random variable

effect of

machine



 Properties of random effects model:

 Var 𝑌𝑖𝑗 = 𝜎𝛼
2 + 𝜎2

 Cor 𝑌𝑖𝑗 , 𝑌𝑘𝑙 =  
0 𝑖 ≠ 𝑘

𝜎𝛼
2/(𝜎𝛼

2 + 𝜎2) 𝑖 = 𝑘, 𝑗 ≠ 𝑙
1 𝑖 = 𝑘, 𝑗 = 𝑙

Reason: Observations from the same machine “share” the same 

random value 𝛼𝑖 and are therefore correlated.

 Conceptually, we could also put all the correlation structure into the 

error term and forget about the 𝛼𝑖 ’s, i.e.

𝑌𝑖𝑗 = 𝜇 + 𝜖𝑖𝑗

where 𝜖𝑖𝑗 has the appropriate correlation structure from above. 

Sometimes this interpretation is a useful way of thinking.
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Carton Experiment One (Oehlert, 2000)

variance components

different machines

same machine

intraclass correlation
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Random vs. Fixed: Overview

 Comparison between random and fixed effects models

 A note on the sampling mechanism:
 Fixed: Draw new random errors only, everything else is kept constant.

 Random: Draw new “treatment effects” and new random errors (!)

Term Fixed effects model Random effects model

𝛼𝑖
fixed, unknown 

constant
𝛼𝑖 i. i. d. ∼ 𝑁(0, 𝜎𝛼

2)

Side constraint on 𝛼𝑖 needed not needed

𝐸[𝑌𝑖𝑗] 𝜇 + 𝛼𝑖 𝜇, but 𝐸 𝑌𝑖𝑗 𝛼𝑖 = 𝜇 + 𝛼𝑖

Var(𝑌𝑖𝑗) 𝜎2 𝜎𝛼
2 + 𝜎2

Corr(𝑌𝑖𝑗 , 𝑌𝑘𝑙) = 0 (𝑗 ≠ 𝑙) =  
0 𝑖 ≠ 𝑘

𝜎𝛼
2/(𝜎𝛼

2 + 𝜎2)
1

𝑖 = 𝑘, 𝑗 ≠ 𝑙
𝑖 = 𝑘, 𝑗 = 𝑙



Fixed case: 3 different fixed treatment levels 𝛼𝑖.

We (repeatedly) sample 2 observations per treatment level:

𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗
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Illustration of Correlation Structure

𝛼1 = −4.5

𝛼2 = 1

𝛼3 = 3.5

Think of 3 specific

machines

Think of 2 carton 

samples
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Random case: 

Whenever we draw 2 observations 𝑌𝑖1 and 𝑌𝑖2 we first have 

to draw a new (common) random treatment effect 𝛼𝑖.
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Illustration of Correlation Structure

Think of a 

random

machine.

Think of 2 carton 

samples



 Let us extend the previous experiment.

 Assume that machine operators also influence the 

production process.

 Choose 10 operators at random. 

 Each operator will produce 4 cartons on each machine 

(hence, operator and machine are crossed factors).

 All assignments are completely randomized.
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Carton Experiment Two (Oehlert, 2000)



 Model:

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽 𝑖𝑗 + 𝜖𝑖𝑗𝑘,

with

 𝛼𝑖 , 𝛽𝑗 , 𝛼𝛽 𝑖𝑗 , 𝜖𝑖𝑗𝑘 independent and normally distributed.

 Var 𝑌𝑖𝑗𝑘 = 𝜎𝛼
2 + 𝜎𝛽

2 + 𝜎𝛼𝛽
2 + 𝜎2 (different variance components).

 Measurements from the same machine and / or operator are again 

correlated. 

 The more random effects two observations share, the larger the 

correlation. It is given by

sum of shared variance components

sum of all variance components

 E.g., correlation between two (different) observations from the 

same operator on different machines is given by
𝜎𝛽
2

𝜎𝛼
2 + 𝜎𝛽

2 + 𝜎𝛼𝛽
2 + 𝜎2

12

Carton Experiment Two (Oehlert, 2000)

𝑁 0, 𝜎𝛼
2 𝑁 0, 𝜎𝛽

2 𝑁 0, 𝜎𝛼𝛽
2

𝑁 0, 𝜎2

main effect

machine

main effect

operator
interaction

machine×operator



 Hierarchy is typically less problematic in random effects 

models.

1) What part of the variation is due to general machine-to-machine 

variation?  𝜎𝛼
2

2) What part of the variation is due to operator-specific machine 

variation?  𝜎𝛼𝛽
2

Could ask question (1) even if interaction is present (question (2)).

 Extensions to more than two factors straightforward.
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Carton Experiment Two (Oehlert, 2000)



 Sums of squares, degrees of freedom and mean squares 

are being calculated as if the model would be a fixed 

effects model (!)

 One-way ANOVA (𝐴 random, 𝑛 observations per cell)

 Two-way ANOVA (𝐴, 𝐵, 𝐴𝐵 random, 𝑛 observations per cell)
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ANOVA for Random Effects Models (balanced designs)

Source df SS MS E[MS]

𝐴 𝑔 − 1 … … 𝜎2 + 𝑛𝜎𝛼
2

Error 𝑁 − 𝑔 … … 𝜎2

Source df SS MS E[MS]

𝐴 𝑎 − 1 … … 𝜎2 + 𝑏 ⋅ 𝑛 ⋅ 𝜎𝛼
2 + 𝑛 ⋅ 𝜎𝛼𝛽

2

𝐵 𝑏 − 1 … … 𝜎2 + 𝑎 ⋅ 𝑛 ⋅ 𝜎𝛽
2 + 𝑛 ⋅ 𝜎𝛼𝛽

2

𝐴𝐵 (𝑎 − 1)(𝑏 − 1) … … 𝜎2 + 𝑛 ⋅ 𝜎𝛼𝛽
2

Error 𝑎𝑏(𝑛 − 1) … … 𝜎2



 We are now formulating our null-hypothesis with respect 

to the parameter 𝜎𝛼
2.

 To test 𝐻0: 𝜎𝛼
2 = 0 vs. 𝐻𝐴: 𝜎𝛼

2 > 0 we use the ratio

𝐹 =
𝑀𝑆𝐴

𝑀𝑆𝐸
∼ 𝐹𝑔−1,𝑁−𝑔 under 𝐻0

Exactly as in the fixed effect case!

 Why? Under the old and the new 𝐻0 both models are the 

same!
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One-Way ANOVA with Random Effects



 To test 𝐻0: 𝜎𝛼
2 = 0 we need to find a term which has 

identical 𝐸[𝑀𝑆] under 𝐻0.

 Use 𝑀𝑆𝐴𝐵, i.e. 𝐹 =
𝑀𝑆𝐴

𝑀𝑆𝐴𝐵
∼ 𝐹𝑎−1, 𝑎−1 𝑏−1 under 𝐻0.

 Similarly for the test 𝐻0: 𝜎𝛽
2 = 0.

 The interaction will be tested against the error, i.e. use

𝐹 =
𝑀𝑆𝐴𝐵
𝑀𝑆𝐸

∼ 𝐹 𝑎−1 𝑏−1 , 𝑎𝑏 𝑛−1

under 𝐻0: 𝜎𝛼𝛽
2 = 0.

 In the fixed effect case we would test all effects against the 

error term (i.e., use 𝑀𝑆𝐸 instead of 𝑀𝑆𝐴𝐵 to build 𝐹-ratio)!
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Two-Way ANOVA with Random Effects



 Reason: ANOVA table for fixed effects: 

 E.g, 𝑆𝑆𝐴 (𝑀𝑆𝐴) is being calculated based on column-wise 

means.

 In the fixed effects model, the expected mean squares 

do not “contain” any other component.
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Two-Way ANOVA with Random Effects

Source df E[MS]

𝐴 𝑎 − 1 𝜎2 + 𝑏 ⋅ 𝑛 ⋅ 𝑄 𝛼

𝐵 𝑏 − 1 𝜎2 + 𝑎 ⋅ 𝑛 ⋅ 𝑄(𝛽)

𝐴𝐵 (𝑎 − 1)(𝑏 − 1) 𝜎2 + 𝑛 ⋅ 𝑄(𝛼𝛽)

Error 𝑎𝑏(𝑛 − 1) 𝜎2

Didn’t look at this 

column when analyzing 

factorials

Shorthand 

notation for a 

term depending 

on 𝛼𝑖
′𝑠



 In a random effects model, a column-wise mean is 

“contaminated” with the average of the corresponding 

interaction terms.

 In a fixed effects model, the sum (or mean) of these 

interaction terms is zero by definition.

 In the random effects model, this is only true for the 

expected value, but not for an individual realization!

 Hence, we need to check whether the variation from 

“column to column” is larger than term based on error and

interaction term. 

18

Two-Way ANOVA with Random Effects



 We do not only want to test the variance components, we  

also want to have estimates of them.

 I.e., we want to determine  𝜎𝛼
2,  𝜎𝛽

2,  𝜎𝛼𝛽
2 ,  𝜎2 etc.

 Easiest approach: ANOVA estimates of variance 

components.

 Use columns “MS” and “E[MS]” in ANOVA table, solve the 

corresponding equations from bottom to top.

 Example: One-way ANOVA

  𝜎2 = 𝑀𝑆𝐸

  𝜎𝛼
2 =

𝑀𝑆𝐴−𝑀𝑆𝐸

𝑛
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Point Estimates of Variance Components



 Advantage: Can be done using standard ANOVA 

functions (i.e., no special software needed).

 Disadvantages: 
 Estimates can be negative (in previous example if 𝑀𝑆𝐴 < 𝑀𝑆𝐸). Set 

them to zero in such cases.

 Not always as easy as here.

 This is like a method of moments estimator.

 More modern and much more flexible: restricted 

maximum-likelihood estimator (REML). 
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Point Estimates of Variance Components



 Think of a modification of maximum likelihood estimation 

that removes bias in estimation of variance components.

 Theory complicated (still ongoing research).

 Software implementation in R-package lme4 (or 

lmerTest)

 lme4 and lmerTest allow to fit so called mixed models 

(containing both random and fixed effects, more details 

later).

 Basically, lmerTest is the same as lme4 with some 

more features.
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Point Estimates of Variance Components: REML



 General rule: Variances are “difficult” to estimate in the 

sense that you’ll need a lot of observations to have some 

reasonable accuracy.

 Only approximate confidence intervals are available.

 Use confint in R.
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Confidence Intervals for Variance Components



 If we do a study with random effects it is good if we have 

a lot of levels of a random effect in order to estimate a 

variance component with high precision.

 Or in other words: Who wants to estimate a variance with 

only very few observations?
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Some Thoughts About Random Effects



 Genetics study with beef animals.

 Inheritance study of birth weights.

 Five sires, each mated to a different group of dams.

 Birth weight of eight male calves in each of the five sire 

groups. 

 Analyze data using a random effect for sire.
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Example: Genetics Study (Kuehl, 2000, Exercise 5.1)

Sire 1 2 3 4 5 6 7 8

1 61 100 56 113 99 103 75 62

2 75 102 95 103 98 115 98 94

3 58 60 60 57 57 59 54 100

4 57 56 67 59 58 12 101 101

5 59 46 120 115 115 93 105 75
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Example: Genetics Study (Kuehl, 2000, Chapter 5, Ex. 1)

1 2 3 4 5

6
0

8
0

1
0

0
1

2
0

w
e

ig
h

t



 Model: 𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗 , 𝛼𝑖 i. i. d. ∼ 𝑁 0, 𝜎𝛼
2 , 𝜖𝑖𝑗 i. i. d. ∼ 𝑁 0, 𝜎𝛼

2

 We reject 𝐻0: 𝜎𝛼
2 = 0.

 We estimate 𝜎𝛼
2 by  𝜎𝛼

2 =
1397.8−463.8

8
= 116.75.

 The variance of 𝑌𝑖𝑗 is estimated as 

 𝜎2 +  𝜎𝛼
2 = 116.75 + 463.8 = 580.55.

 Variation due to sire accounts for about 20% of total 

variance (= intraclass correlation).
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Example: Genetics Study

Old school 

estimation 

technique.



 We fitted the model as if it was a fixed effects model and 

then “adjusted” the output for random effects specific 

questions.

 Now we want to use the more modern approach (based 

on REML estimation technique).
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Example: Genetics Study



 In R using the function lmer in Package lme4.
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Example: Genetics Study

 𝜎𝛼

 𝜎

 𝜇

Check if model was 

interpreted correctly

Meaning: a random effect 

per sire



 Manufacturer was developing a new spectrophotometer 

for medical labs.

 Development at pilot stage. Evaluate machine 

performance from assembly line production.

 Critical: Consistency of measurement from day to day 

among different machines.

 Design: 
 4 (randomly selected) machines

 4 (randomly selected) days

 Per day: 8 serum samples (from the same stock reagent), 

randomly assign 2 samples to each of the 4 machines.
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Example: Evaluating Machine Performance (Kuehl, 2000, Ex. 7.1)



 Measure triglyceride levels (mg/dl) of the samples.

 Note: Always the same technician prepared the serum 

samples and operated the machines throughout the 

experiment.
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Example: Evaluating Machine Performance



 Fit random effects model with interaction with usual assumpt.

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽 𝑖𝑗 + 𝜖𝑖𝑗𝑘

 Classical approach:

 “Classical” approach to estimate variance components.

 Results: 
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Example: Evaluating Machine Performance

𝑁 0, 𝜎𝛼
2

[day]

𝑁 0, 𝜎𝛽
2

[machine]

𝑁 0, 𝜎𝛼𝛽
2

[day × machine]

𝑁 0, 𝜎2

[error]

 𝜎2 = 17.9

 𝜎𝛼𝛽
2 =

87.3 − 17.9

2
= 34.7

 𝜎𝛼
2 =

444.8 − 87.3

8
= 44.7

 𝜎𝛽
2 =

549.1 − 87.3

8
= 57.7



Testing the variance components: “by hand”

 Interaction: 𝐻0: 𝜎𝛼𝛽
2 = 0.

M𝑆𝐴𝐵

𝑀𝑆𝐸
=

87.3

17.9
= 4.9, 𝐹9,16-distribution

 Main effect day: 𝐻0: 𝜎𝛼
2 = 0.

M𝑆𝐴

𝑀𝑆𝐴𝐵
=

444.8

87.3
= 5.1, 𝐹3,9-distribution

 Main effect machine: 𝐻0: 𝜎𝛽
2 = 0.

M𝑆𝐵

𝑀𝑆𝐴𝐵
=

549.1

87.3
= 6.3, 𝐹3,9-distribution
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Example: Evaluating Machine Performance

reject

reject

reject
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Example: Evaluating Machine Performance

 Using the function lmer in package lme4

 𝜎𝛼𝛽
 𝜎𝛽

 𝜎

 𝜎𝛼

Check if model was 

interpreted correctly

 𝜇

Meaning: a random effect per 

day, per machine and per 

day x machine combination



 Total variance is 17.9 + 34.7 + 44.7 + 57.7 = 155.

 Individual contributions

 Manufacturer now has to decide if some sources of 

variation are too large.
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Example: Evaluating Machine Performance

Source Percentage Interpretation

Day
44.7

155
= 29%

Day to day operational differences (e.g., due to daily 

calibration)

Machine
57.7

155
= 37% Variability in machine performance

Interaction
34.7

155
= 22%

Variability due to inconsistent behavior of machines 

over days (calibration inconsistency within the same 

day?)

Error
17.9

155
= 12% Variation in serum samples


