Complete Block Designs

Lukas Meier, Seminar für Statistik
Remember: Paired t-Test (Example from Elliott, 2006)

- Want to compare two different eye-drops ("new" vs. "control").

- **Every** subject gets **both treatments** (meaning: one per eye; at the **same** time).

- At the end, measure redness on quantitative scale in **every** eye.

- For every patient, calculate the difference "new - control".

- Perform standard one-sample t-test with these differences.
Fictional Data Set of 10 Patients

1 patient
Paired \(t \)-Test

- Instead of using both eyes of 10 patients we could also do a similar experiment with
 - 10 patients getting the control treatment in one eye
 - 10 other patients getting the new treatment in one eye

- See next slide for potential data-sets.

- As mentioned in the first week, we can reduce variance by using homogeneous experimental units.

- A set of units that is homogeneous in some sense is called a block.

- In this example, a block is given by a person.
Paired vs. Unpaired Data

Different means?

- Control treatment: 10 patients
- New treatment: 10 (other) patients
- Difference of treatments: within 10 (other) patients

Contains person to person variation

Compare different variances!

Mean different from zero?
Randomized Complete Block Designs (RCB)

- A Randomized Complete Block Design (RCB) is the most basic blocking design.
- Assume we have r blocks containing g units each.

Here, $r = 3$ blocks with $g = 4$ units.

In every of the r blocks we randomly assign the g treatments to the g units, independently of the other blocks.
Randomized Complete Block Designs (RCB)

- Hence, a blocking design uses a **restricted randomization** scheme. Each block gets its “**own**” randomization.

- Blocking exists at the time of randomization!

- We call a blocking design **complete** if every treatment is used in every block.

- In the standard setup, we observe every treatment (only) **once** in every block, hence we have a total of r (the number of blocks) observations per treatment.

- Therefore, we have **no replicates** (for treatment and block combinations).
Researchers wanted to evaluate the effect of several different fertilization timing schedules on stem tissue nitrate amounts.

Treatment: Six different nitrogen application timing and rate schedules (including a control treatment of no nitrogen).

Response: Stem tissue nitrate amount.

Experiment design: irrigated field with a water gradient along one direction, see next slide.

We already know:
Available moisture will have an influence on the response.
Any differences in plant responses caused by the water gradient will be associated with blocks.

We also say: we control for the water gradient.
Example: Analysis

- \(Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij} \) with the usual assumptions for \(\epsilon_{ij} \).

- By only using main effects we implicitly assume that the effects are additive.

- Due to the balanced design we can use our standard estimates (one at a time) and sum of squares.

```
> fit <- aov(y ~ block + treatment, data = nitro)
> summary(fit)

Df  Sum Sq  Mean Sq F value Pr(>F)
block   3 197.00  65.67  9.1200 0.00112 **
treatment 5 201.30  40.26  5.5920 0.00419 **
Residuals 15 108.00  7.20
```

- Typically, we are not making inference about blocks (we already know that blocks are different!).
Interaction of Treatment with Block Factor

- The blocking may result in (very) large differences between units from different blocks (which is ok).

- In the model we assumed that the effects are additive.

- Meaning: the treatment effects are constant from block to block.

- If we only have one observation per treatment and block combination we can potentially only detect interaction effects of the multiplicative form.

- If we want to fit a model with interaction, we would need more than one observation per treatment and block combination. What does interaction mean?
Factorials in Complete Block Designs

- Conceptually it is straightforward to have (e.g.) a two-factor factorial in a randomized complete block design.

- The analysis is straightforward. In R we would just use the model formula \(Y \sim \text{Block} + A \times B \)

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td>(r - 1)</td>
</tr>
<tr>
<td>(A)</td>
<td>(a - 1)</td>
</tr>
<tr>
<td>(B)</td>
<td>(b - 1)</td>
</tr>
<tr>
<td>(AB)</td>
<td>((a - 1) \cdot (b - 1))</td>
</tr>
<tr>
<td>Error</td>
<td>((ab - 1) \cdot (r - 1))</td>
</tr>
<tr>
<td>Total</td>
<td>(rab - 1)</td>
</tr>
</tbody>
</table>

- We can test the interaction \(AB \) even if we only have one replicate per \(AB \) combination per block.
How Much Does Blocking Increase Precision?

- Squared standard errors for treatment means are
 - RCB design (what we’ve just done): \(\frac{\sigma^2_{RCB}}{r} \)
 - Completely randomized design: \(\frac{\sigma^2_{CRD}}{n} \)

- If we want to have the same precision, we have to ensure that

\[
\frac{\sigma^2_{RCB}}{r} = \frac{\sigma^2_{CRD}}{n}.
\]

If we know \(\sigma^2_{RCB} \) and \(\sigma^2_{CRD} \) than we have to use a ratio of

\[
\frac{n}{r} = \frac{\sigma^2_{CRD}}{\sigma^2_{RCB}}.
\]
How Much Does Blocking Increase Precision?

- σ_{RCB}^2 is estimated by MS_E of our RCB.
- What about σ_{CRD}^2?
- Can be estimated using a properly **weighted average** of MS_E and MS_{Block}

$$\hat{\sigma}_{CRD}^2 = w \cdot MS_{Block} + (1 - w) \cdot MS_E$$

where w is some weight (see Oehlert, page 323).

- **Relative efficiency** is then defined as:

$$RE = \frac{\hat{\sigma}_{CRD}^2}{\hat{\sigma}_{RCB}^2}$$

(sometimes multiply with correction factor for df’s).

- RE gives us the ratio $\frac{n}{r}$.

13
How Much Does Blocking Increase Precision?

- In our example: relative efficiency \(\approx 2 \).
- Meaning: A CRD would need twice as many experimental units to achieve the same efficiency (precision).
- Here: 8 replications per treatment (instead of 4).
- Easier for a quick check: Have a look at the ratio \(\frac{MS_{Block}}{MS_E} \)

\[
\frac{MS_{Block}}{MS_E} > 1 \iff \text{Relative Efficiency} > 1
\]
More than One Blocking Factor

- Up to now: one blocking factor involved, i.e. we can block on a **single source** of variation.

- Sometimes: need to block on **more than one** source.

- We will discuss some special cases.
 - Latin Squares
 - Graeco-Latin Squares
Example: Car Tires (Kuehl, 2000, Example 8.2)

- Each treatment appears on one of the 4 positions of each car. Block factors

- Experiment set-up was as follows:

<table>
<thead>
<tr>
<th>Tire position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>B</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>C</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>D</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>A</td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>
Latin Squares

- This design is a so called Latin Square.
- Each treatment (the Latin letters) appears exactly once in each row and exactly once in each column.
- A Latin Square blocks on both rows and columns simultaneously.
- The design is very restrictive. A Latin Square needs to have
 - g treatments (the Latin letters)
 - Two block factors each having g levels (the rows and the columns)
 - Hence, a total of g^2 experimental units
- We’re only seeing g^2 out of g^3 possible combinations (but the subset we see is selected in a smart, balanced way).
Latin Squares

- A Latin Square is nothing else than an assignment of treatments to units with the **side constraints**
 - each treatment appears *exactly once in each row*.
 - each treatment appears *exactly once in each column*.

Analysis of Latin Squares

- Use main effects model with treatment, row and column effects.

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}$$

- The design is balanced having the effect that our usual estimators and sums of squares are “working”.

- As in an RCB we do not test for the block effects.

- Latin Squares can have few degrees of freedom for error if g is small, making detection of treatment effects difficult:

<table>
<thead>
<tr>
<th>g</th>
<th>df of MS_E</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>
Latin Squares

- Just because the design contains the word “square” doesn’t mean that the physical layout of the experiment has to be a square.

- Often, one blocking factor is **time**: Think of testing 5 different machines \((A, B, C, D, E)\) on 5 days with 5 operators (response: yield of machine):

<table>
<thead>
<tr>
<th>Operator</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>D</td>
<td>E</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>E</td>
<td>A</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>E</td>
<td>C</td>
</tr>
</tbody>
</table>
What if we have one more blocking criterion?

Use so called **Graeco Latin Squares** (if applicable).

Take a Latin Square and superimpose it with another block factor, denoted by Greek letters (here: think of driver)

<table>
<thead>
<tr>
<th>Car</th>
<th>Aα</th>
<th>Bγ</th>
<th>Cδ</th>
<th>Dβ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>Bβ</td>
<td>Aδ</td>
<td>Dγ</td>
<td>Cα</td>
</tr>
<tr>
<td>Car</td>
<td>Cγ</td>
<td>Dα</td>
<td>Aβ</td>
<td>Bδ</td>
</tr>
<tr>
<td>Car</td>
<td>Dδ</td>
<td>Cβ</td>
<td>Bα</td>
<td>Aγ</td>
</tr>
</tbody>
</table>
Graeco Latin Squares

- The Latin letters occur once in each row and column
- The Greek letters occur once in each row and column
- In addition: each Latin letter occurs exactly once with each Greek letter.

- Use main effects model

\[Y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + \delta_l + \epsilon_{ijkl} \]

to analyze data.
More General Situations

- In practice, (Graeco) Latin Squares are often **impractical** due to the **very restrictive assumptions** on the **number of levels** of the involved treatment and block factors.

- E.g., think of the car tire example with 7 instead of 4 tire treatments.

- Or going back to the intro example: What if we wanted to compare **three** different eye-drops?

- This will lead us to **balanced incomplete block designs (BIBD)**, see later.
General Rules for Analyzing Block Designs

- As we have seen, we treat block factors just as other factors in our model formulas.
- Typically, a block effect is assumed to be **additive** (i.e., main effects only).
- Block factors are **not** tested but they can be examined with respect to efficiency gain.
- ANOVA table and df’s are “as usual”.
- A possible interaction between block and treatment factor(s) is difficult to sell.