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Complete Block Designs



 Want to compare two different eye-drops (“new” vs. 

“control”).

 Every subject gets both treatments (meaning: one per 

eye; at the same time).

 At the end, measure redness on quantitative scale in 

every eye.

 For every patient, calculate the difference “new - control”.

 Perform standard one-sample 𝑡-test with these 

differences.

Remember: Paired 𝑡-Test (Example from Elliott, 2006)
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 Instead of using both eyes of 10 patients we could also do 

a similar experiment with 

 10 patients getting the control treatment in one eye

 10 other patients getting the new treatment in one eye

 See next slide for potential data-sets.

 As mentioned in the first week, we can reduce variance

by using homogeneous experimental units.

 A set of units that is homogeneous in some sense is 

called a block.

 In this example, a block is given by a person.
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Paired 𝑡-Test
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Paired vs. Unpaired Data

control treatment:

10 patients

new treatment:

10 (other) patients

difference of treatments:

within 10 (other) patients

Mean different from zero?

Different means?

Contains person to 

person variation

Compare 

different 

variances!



 A Randomized Complete Block Design (RCB) is the 

most basic blocking design.

 Assume we have 𝑟 blocks containing 𝑔 units each.

 Here, 𝑟 = 3 blocks with 𝑔 = 4 units.

 In every of the 𝑟 blocks we randomly assign the 𝑔
treatments to the 𝑔 units, independently of the other 

blocks.

Randomized Complete Block Designs (RCB)
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 Hence, a blocking design uses a restricted 

randomization scheme. Each block gets its “own” 

randomization.

 Blocking exists at the time of randomization!

 We call a blocking design complete if every treatment is 

used in every block.

 In the standard setup, we observe every treatment (only) 

once in every block, hence we have a total of 𝑟 (the 

number of blocks) observations per treatment.

 Therefore, we have no replicates (for treatment and 

block combinations).
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Randomized Complete Block Designs (RCB)



 Researchers wanted to evaluate the effect of several 

different fertilization timing schedules on stem tissue 

nitrate amounts.

 Treatment: Six different nitrogen application timing and 

rate schedules (including a control treatment of no 

nitrogen).

 Response: Stem tissue nitrate amount.

 Experiment design: irrigated field with a water gradient 

along one direction, see next slide.

 We already know: 

Available moisture will have an influence on the response.
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Example (Example 8.1 in Kuehl, 2000)



 Any differences in plant responses caused by the water 

gradient will be associated with blocks.

 We also say: we control for the water gradient.
8

Example: Layout of Experimental Design
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 𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝜖𝑖𝑗 with the usual assumptions for 𝜖𝑖𝑗.

 By only using main effects we implicitly assume that the 

effects are additive.

 Due to the balanced design we can use our standard 

estimates (one at a time) and sum of squares.

 Typically, we are not making inference about blocks (we 

already know that blocks are different!).
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Example: Analysis

block effecttreatment effect



 The blocking may result in (very) large differences 

between units from different blocks (which is ok).

 In the model we assumed that the effects are additive.

 Meaning: the treatment effects are constant from block to 

block.

 If we only have one observation per treatment and block 

combination we can potentially only detect interaction 

effects of the multiplicative form.

 If we want to fit a model with interaction, we would need 

more than one observation per treatment and block 

combination. What does interaction mean?
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Interaction of Treatment with Block Factor



 Conceptually it is straightforward to have (e.g.) a two-

factor factorial in a randomized complete block design.

 The analysis is straightforward. In R we would just use the 
model formula Y ~ Block + A * B

 We can test the interaction 𝐴𝐵 even if we only have one 

replicate per 𝐴𝐵 combination per block.
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Factorials in Complete Block Designs

Source df

Block 𝑟 − 1

𝐴 𝑎 − 1

𝐵 𝑏 − 1

𝐴𝐵 𝑎 − 1 ⋅ (𝑏 − 1)

Error (𝑎𝑏 − 1) ⋅ (𝑟 − 1)

Total 𝑟𝑎𝑏 − 1 # observations − 1

“Leftovers”



 Squared standard errors for treatment means are

 RCB design (what we’ve just done): 
𝜎𝑅𝐶𝐵
2

𝑟

 Completely randomized design: 
𝜎𝐶𝑅𝐷
2

𝑛

 If we want to have the same precision, we have to ensure 

that
𝜎𝑅𝐶𝐵
2

𝑟
=
𝜎𝐶𝑅𝐷
2

𝑛
.

If we know 𝜎𝑅𝐶𝐵
2 and 𝜎𝐶𝑅𝐷

2 than we have to use a ratio of

𝑛

𝑟
=
𝜎𝐶𝑅𝐷
2

𝜎𝑅𝐶𝐵
2 .
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How Much Does Blocking Increase Precision?

Number of observations per treatment



 𝜎𝑅𝐶𝐵
2 is estimated by 𝑀𝑆𝐸 of our RCB.

 What about 𝜎𝐶𝑅𝐷
2 ? 

 Can be estimated using a properly weighted average of 

𝑀𝑆𝐸 and 𝑀𝑆𝐵𝑙𝑜𝑐𝑘

 𝜎𝐶𝑅𝐷
2 = 𝑤 ⋅ 𝑀𝑆𝐵𝑙𝑜𝑐𝑘 + 1 − 𝑤 ⋅ 𝑀𝑆𝐸

where 𝑤 is some weight (see Oehlert, page 323).

 Relative efficiency is then defined as:

𝑅𝐸 =
 𝜎𝐶𝑅𝐷
2

 𝜎𝑅𝐶𝐵
2

(sometimes multiply with correction factor for df’s).

 RE gives us the ratio 
𝑛

𝑟
.
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How Much Does Blocking Increase Precision?



 In our example: relative efficiency ≈ 2.

 Meaning: A CRD would need twice as many experimental 

units to achieve the same efficiency (precision).

 Here: 8 replications per treatment (instead of 4).

 Easier for a quick check: Have a look at the ratio 
𝑀𝑆𝐵𝑙𝑜𝑐𝑘

𝑀𝑆𝐸
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How Much Does Blocking Increase Precision?

𝑀𝑆𝐵𝑙𝑜𝑐𝑘

𝑀𝑆𝐸
> 1 ⟺ Relative Efficiency > 1



 Up to now: one blocking factor involved, i.e. we can block 

on a single source of variation.

 Sometimes: need to block on more than one source.

 We will discuss some special cases.
 Latin Squares

 Graeco-Latin Squares
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More than One Blocking Factor



 An experiment tests 4 car tire treatments (𝐴, 𝐵, 𝐶, 𝐷) on 4 

cars. Response: Wear of a tire.

 Each treatment appears on one of the 4 positions of 

each car.

 Experiment set-up was as follows:
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Example: Car Tires (Kuehl, 2000, Example 8.2)

Tire 

position

1 𝐴 𝐵 𝐶 𝐷

2 𝐵 𝐶 𝐷 𝐴

3 𝐶 𝐷 𝐴 𝐵

4 𝐷 𝐴 𝐵 𝐶

Block factors



 This design is a so called Latin Square.

 Each treatment (the Latin letters) appears exactly once in 

each row and exactly once in each column.

 A Latin Square blocks on both rows and columns 

simultaneously.

 The design is very restrictive. A Latin Square needs to 

have 
 𝑔 treatments (the Latin letters)

 Two block factors each having 𝑔 levels (the rows and the columns)

 Hence, a total of 𝑔2 experimental units

 We’re only seeing 𝑔2 out of 𝑔3 possible combinations (but 

the subset we see is selected in a smart, balanced way).
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Latin Squares



 A Latin Square is nothing else than an assignment of 

treatments to units with the side constraints

 each treatment appears exactly once in each row.

 each treatment appears exactly once in each column.

 Picking a random Latin Square isn’t trivial: Fisher-Yates 

algorithm (see book for details).
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Latin Squares



 Use main effects model with treatment, row and 

column effects.

𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + 𝜖𝑖𝑗𝑘

 The design is balanced having the effect that our usual 

estimators and sums of squares are “working”.

 As in an RCB we do not test for the block effects.

 Latin Squares can have few degrees of freedom for error 

if 𝑔 is small, making detection of treatment effects difficult:
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Analysis of Latin Squares

treatment
Block factor 1

(rows)

Block factor 2

(columns)

𝑔 df of 𝑴𝑺𝑬

3 2

4 6

5 12



 Just because the design contains the word “square” 

doesn’t mean that the physical layout of the experiment 

has to be a square.

 Often, one blocking factor is time: Think of testing 5 

different machines (𝐴, 𝐵, 𝐶, 𝐷, 𝐸) on 5 days with 5 

operators (response: yield of machine):
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Latin Squares

Operator

Mon 𝐸 𝐵 𝐶 𝐴 𝐷

Tue 𝐵 𝐷 𝐸 𝐶 𝐴

Wed 𝐴 𝐶 𝐷 𝐵 𝐸

Thu 𝐶 𝐸 𝐴 𝐷 𝐵

Fri 𝐷 𝐴 𝐵 𝐸 𝐶



 What if we have one more blocking criterion?

 Use so called Graeco Latin Squares (if applicable).

 Take a Latin Square and superimpose it with another 

block factor, denoted by Greek letters (here: think of 

driver)
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Graeco Latin Squares

Car

1 𝐴𝛼 𝐵𝛾 𝐶𝛿 𝐷𝛽

2 𝐵𝛽 𝐴𝛿 𝐷𝛾 𝐶𝛼

3 𝐶𝛾 𝐷𝛼 𝐴𝛽 𝐵𝛿

4 𝐷𝛿 𝐶𝛽 𝐵𝛼 𝐴𝛾



 The Latin letters occur once in each row and column

 The Greek letters occur once in each row and column

 In addition: each Latin letter occurs exactly once with 

each Greek letter.

 Use main effects model

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + 𝛿𝑙 + 𝜖𝑖𝑗𝑘𝑙

to analyze data.
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Graeco Latin Squares
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 In practice, (Graeco) Latin Squares are often impractical

due to the very restrictive assumptions on the number 

of levels of the involved treatment and block factors.

 E.g., think of the car tire example with 7 instead of 4 tire 

treatments.

 Or going back to the intro example: What if we wanted to 

compare three different eye-drops?

 This will lead us to balanced incomplete block designs 

(BIBD), see later.
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More General Situations



 As we have seen, we treat block factors just as other 

factors in our model formulas.

 Typically, a block effect is assumed to be additive (i.e., 

main effects only).

 Block factors are not tested but they can be examined 

with respect to efficiency gain.

 ANOVA table and df’s are “as usual”.

 A possible interaction between block and treatment 

factor(s) is difficult to sell.
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General Rules for Analyzing Block Designs


