

Lukas Meier, Seminar für Statistik

Remember: Paired t-Test (Example from Elliott, 2006)

- Want to compare two different eye-drops ("new" vs. "control").
- Every subject gets both treatments (meaning: one per eye; at the same time).
- At the end, measure redness on quantitative scale in every eye.
- For every patient, calculate the difference "new - control".
- Perform standard one-sample t-test with these differences.

Fictional Data Set of 10 Patients

Paired t-Test

- Instead of using both eyes of 10 patients we could also do a similar experiment with
- 10 patients getting the control treatment in one eye
- 10 other patients getting the new treatment in one eye
- See next slide for potential data-sets.
- As mentioned in the first week, we can reduce variance by using homogeneous experimental units.
- A set of units that is homogeneous in some sense is called a block.
- In this example, a block is given by a person.

Paired vs. Unpaired Data

Randomized Complete Block Designs (RCB)

- A Randomized Complete Block Design (RCB) is the most basic blocking design.
- Assume we have r blocks containing g units each.

- Here, $r=3$ blocks with $g=4$ units.
- In every of the r blocks we randomly assign the g treatments to the g units, independently of the other blocks.

Randomized Complete Block Designs (RCB)

- Hence, a blocking design uses a restricted randomization scheme. Each block gets its "own" randomization.
- Blocking exists at the time of randomization!
- We call a blocking design complete if every treatment is used in every block.
- In the standard setup, we observe every treatment (only) once in every block, hence we have a total of r (the number of blocks) observations per treatment.
- Therefore, we have no replicates (for treatment and block combinations).

Example (Example 8.1 in Kuehl, 2000)

- Researchers wanted to evaluate the effect of several different fertilization timing schedules on stem tissue nitrate amounts.
- Treatment: Six different nitrogen application timing and rate schedules (including a control treatment of no nitrogen).
- Response: Stem tissue nitrate amount.
- Experiment design: irrigated field with a water gradient along one direction, see next slide.
- We already know:

Available moisture will have an influence on the response.

Example: Layout of Experimental Design

- Any differences in plant responses caused by the water gradient will be associated with blocks.
- We also say: we control for the water gradient.

Example: Analysis

- $Y_{i j}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j}$ with the usual assumptions for $\epsilon_{i j}$. treatment effect block effect
- By only using main effects we implicitly assume that the effects are additive.
- Due to the balanced design we can use our standard estimates (one at a time) and sum of squares.

```
> fit <- aov(y ~ block + treatment, data = nitro)
> summary(fit)
\begin{tabular}{lrrrrrr} 
& Df & Sum Sq Mean Sq F value & Pr ( \(>\) F) & \\
block & 3 & 197.0 & 65.67 & 9.120 & 0.00112 & \(* *\) \\
treatment & 5 & 201.3 & 40.26 & 5.592 & 0.00419 & ** \\
Residuals & 15 & 108.0 & 7.20 & & &
\end{tabular}
```

- Typically, we are not making inference about blocks (we already know that blocks are different!).

Interaction of Treatment with Block Factor

- The blocking may result in (very) large differences between units from different blocks (which is $\mathbf{o k}$).
- In the model we assumed that the effects are additive.
- Meaning: the treatment effects are constant from block to block.
- If we only have one observation per treatment and block combination we can potentially only detect interaction effects of the multiplicative form.
- If we want to fit a model with interaction, we would need more than one observation per treatment and block combination. What does interaction mean?

Factorials in Complete Block Designs

- Conceptually it is straightforward to have (e.g.) a twofactor factorial in a randomized complete block design.
- The analysis is straightforward. In R we would just use the model formula Y ~ Block + A * B

Source	df	
Block	$r-1$	
A	$a-1$	
B	$b-1$	
$A B$	$(a-1) \cdot(b-1)$	
Error	$(a b-1) \cdot(r-1)$	\longleftarrow

- We can test the interaction $A B$ even if we only have one replicate per $A B$ combination per block.

How Much Does Blocking Increase Precision?

- Squared standard errors for treatment means are
- RCB design (what we've just done): $\frac{\sigma_{R C B}^{2}}{r}$
- Completely randomized design: $\frac{\sigma_{C R D}^{2}}{n \longleftarrow}$
- If we want to have the same precision, we have to ensure that

$$
\frac{\sigma_{R C B}^{2}}{r}=\frac{\sigma_{C R D}^{2}}{n}
$$

If we know $\sigma_{R C B}^{2}$ and $\sigma_{C R D}^{2}$ than we have to use a ratio of

$$
\frac{n}{r}=\frac{\sigma_{C R D}^{2}}{\sigma_{R C B}^{2}}
$$

How Much Does Blocking Increase Precision?

- $\sigma_{R C B}^{2}$ is estimated by $M S_{E}$ of our RCB.
- What about $\sigma_{\text {CRD }}^{2}$?
- Can be estimated using a properly weighted average of $M S_{E}$ and $M S_{\text {Block }}$

$$
\hat{\sigma}_{C R D}^{2}=w \cdot M S_{\text {Block }}+(1-w) \cdot M S_{E}
$$

where w is some weight (see Oehlert, page 323).

- Relative efficiency is then defined as:

$$
R E=\frac{\hat{\sigma}_{C R D}^{2}}{\hat{\sigma}_{R C B}^{2}}
$$

(sometimes multiply with correction factor for df's).

- $R E$ gives us the ratio $\frac{n}{r}$.

How Much Does Blocking Increase Precision?

- In our example: relative efficiency ≈ 2.
- Meaning: A CRD would need twice as many experimental units to achieve the same efficiency (precision).
- Here: 8 replications per treatment (instead of 4).
- Easier for a quick check: Have a look at the ratio $\frac{M S_{\text {Block }}}{M S_{E}}$

$$
\frac{M S_{\text {Block }}}{M S_{E}}>1 \Leftrightarrow \text { Relative Efficiency }>1
$$

More than One Blocking Factor

- Up to now: one blocking factor involved, i.e. we can block on a single source of variation.
- Sometimes: need to block on more than one source.
- We will discuss some special cases.
- Latin Squares
- Graeco-Latin Squares

Example: Car Tires (Kuehl, 2000, Example 8.2)

- An experiment tests 4 car tire treatments (A, B, C, D) on 4 cars. Response: Wear of a tire.
- Each treatment appears on one of the $\mathbf{4}$ positions of each car. \longleftarrow Block factors
- Experiment set-up was as follows:

Latin Squares

- This design is a so called Latin Square.
- Each treatment (the Latin letters) appears exactly once in each row and exactly once in each column.
- A Latin Square blocks on both rows and columns simultaneously.
- The design is very restrictive. A Latin Square needs to have
- g treatments (the Latin letters)
- Two block factors each having g levels (the rows and the columns)
- Hence, a total of g^{2} experimental units
- We're only seeing g^{2} out of g^{3} possible combinations (but the subset we see is selected in a smart, balanced way).

Latin Squares

- A Latin Square is nothing else than an assignment of treatments to units with the side constraints
- each treatment appears exactly once in each row.
- each treatment appears exactly once in each column.
- Picking a random Latin Square isn't trivial: Fisher-Yates algorithm (see book for details).

Analysis of Latin Squares

- Use main effects model with treatment, row and column effects.

$$
\begin{gathered}
Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\epsilon_{i j k} \\
\quad \text { treatment } \begin{array}{c}
\begin{array}{c}
\text { Block foctor 1 } \\
\text { (rows) }
\end{array} \\
\begin{array}{c}
\text { Block factor 2 } \\
\text { (oolumns) }
\end{array} \\
\hline
\end{array}
\end{gathered}
$$

- The design is balanced having the effect that our usual estimators and sums of squares are "working".
- As in an RCB we do not test for the block effects.
- Latin Squares can have few degrees of freedom for error if g is small, making detection of treatment effects difficult:

g	df of $M S_{E}$
3	2
4	6
5	12

Latin Squares

- Just because the design contains the word "square" doesn't mean that the physical layout of the experiment has to be a square.
- Often, one blocking factor is time: Think of testing 5 different machines (A, B, C, D, E) on 5 days with 5 operators (response: yield of machine):

Operator	B		C	e	C
Mon	E	B	C	A	D
Tue	B	D	E	C	A
Wed	A	C	D	B	E
Thu	C	E	A	D	B
Fri	D	A	B	E	C

Graeco Latin Squares

- What if we have one more blocking criterion?
- Use so called Graeco Latin Squares (if applicable).
- Take a Latin Square and superimpose it with another block factor, denoted by Greek letters (here: think of driver)

Car	!	!	!	?
	$A \alpha$	$B \gamma$	$C \delta$	$D \beta$
	$B \beta$	$A \delta$	$D \gamma$	$C \alpha$
	$C \gamma$	$D \alpha$	$A \beta$	$B \delta$
	$D \delta$	$C \beta$	$B \alpha$	$A \gamma$

Graeco Latin Squares

- The Latin letters occur once in each row and column
- The Greek letters occur once in each row and column
- In addition: each Latin letter occurs exactly once with each Greek letter.
- Use main effects model

$$
Y_{i j k l}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\delta_{l}+\epsilon_{i j k l}
$$

to analyze data.

$\begin{array}{c}\text { Block factor } 2 \\ \text { (columns) }\end{array}$	$\begin{array}{c}\text { Block factor } 3 \\ \text { (Greek letters) }\end{array}$

More General Situations

- In practice, (Graeco) Latin Squares are often impractical due to the very restrictive assumptions on the number of levels of the involved treatment and block factors.
- E.g., think of the car tire example with 7 instead of 4 tire treatments.
- Or going back to the intro example: What if we wanted to compare three different eye-drops?
- This will lead us to balanced incomplete block designs (BIBD), see later.

General Rules for Analyzing Block Designs

- As we have seen, we treat block factors just as other factors in our model formulas.
- Typically, a block effect is assumed to be additive (i.e., main effects only).
- Block factors are not tested but they can be examined with respect to efficiency gain.
- ANOVA table and df's are "as usual".
- A possible interaction between block and treatment factor(s) is difficult to sell.

