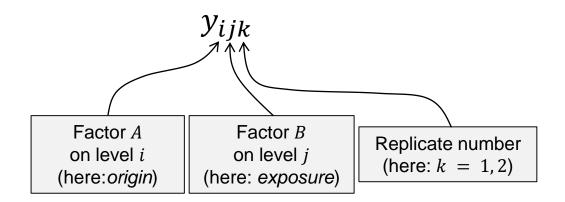


Factorial Treatment Structure: Part I

Lukas Meier, Seminar für Statistik


Factorial Treatment Structure

- So far (in CRD), the treatments had **no "structure"**.
- So called factorial treatment structure exists if the g treatments are the combination of the levels of two or more factors.
- In the case that we see all the possible combinations of the levels of the two factors, we call the factors crossed.
- Examples
 - Biomass of crop: different **fertilizers** and different **crop varieties**.
 - Battery life: Different temperature levels and different plate material. (Montgomery, 1991, Example 7-3.1).

• • •

Example (Linder, A. und W. Berchtold, 1982)

- Response: Needleweight of 20 three-week old pine seedlings [in 1/100 g].
- 2 factors: A = "origin", B = "exposure to light"
- We denote by y_{ijk} kth response of the treatment formed by the *i*th level of factor A and the *j*th level of factor B.

Two Factor Design: Generic Data Table

	<i>B</i> ₁	B ₂	B ₃	
	y_{111}	y_{121}	<i>y</i> ₁₃₁	
A_1	<i>Y</i> ₁₁₂	<i>Y</i> ₁₂₂	<i>Y</i> ₁₃₂	
	<i>Y</i> ₁₁₃	<i>Y</i> ₁₂₃	<i>Y</i> ₁₃₃	
	y_{114}	y_{124}	y_{134}	
A ₂	<i>y</i> ₂₁₁	<i>y</i> ₂₂₁	<i>y</i> ₂₃₁	
	<i>Y</i> ₂₁₂	<i>Y</i> ₂₂₂	<i>Y</i> ₂₃₂	
	<i>y</i> ₂₁₃	<i>Y</i> ₂₂₃	<i>Y</i> ₂₃₃	
	<i>Y</i> 214	y_{224}	<i>Y</i> ₂₃₄	

Data Table of Our Example

	Short	Long	Permanent
Taglieda	25	42	62
	25	38	55
Pfyn	45	62	80
	42	58	75
Rheinau	50	52	88
	50	62	95

Visualization

- As for one-way ANOVA situation
 - for all treatment combinations
 - factor-wise summaries ("marginal summaries")
- More useful: Interaction plot (see R-code)

Factorial Treatment Structure

- The structure of the treatment influences the analysis of the data.
- Setup:
 - Factor A with a levels
 - Factor B with b levels
 - *n* replicates for every combination ←

a so called **balanced design**

- Total of $N = a \cdot b \cdot n$ observations
- We could analyze this with the usual cell means model (ignoring the special treatment structure)
- Typically, we have research questions about **both** factors and their possible **interaction (interplay)**.

Factorial Treatment Structure

- Examples:
 - "Is effect of light exposure location specific?"
 - $(\rightarrow$ interaction between light exposure and location)
 - "What is the effect of light exposure averaged over all locations?" (→ main effect of light exposure)
 - "What is the effect of location averaged over all exposure levels?" (→ main effect of location)
- We could use the cell means (one-way ANOVA) model and try to answer these questions with appropriate contrasts (→ complicated).
- Easier: Use a model that incorporates the factorial structure of the treatments.

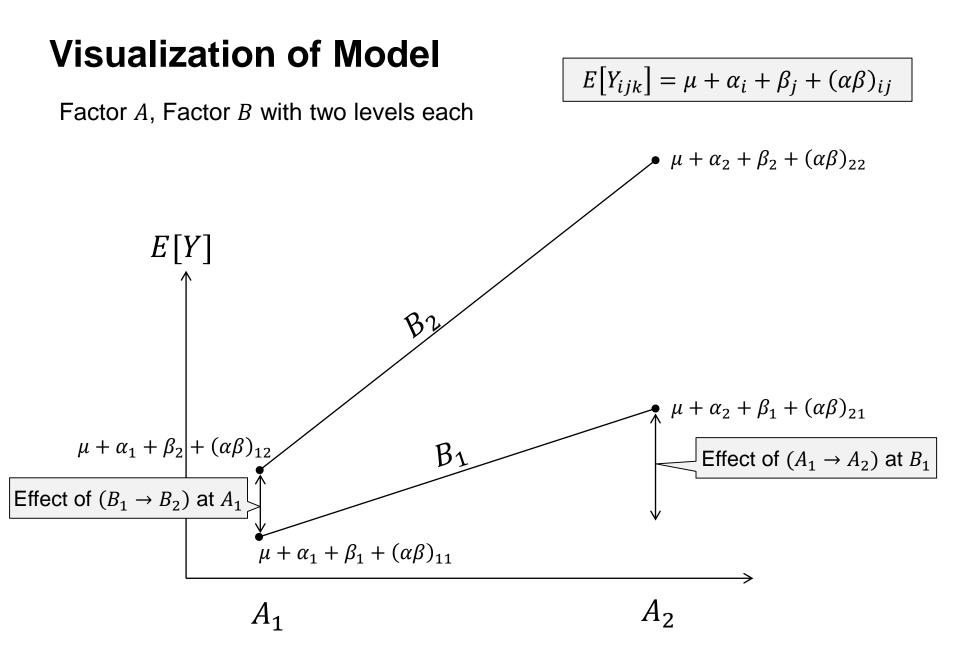
The **two-way ANOVA model with interaction** is $Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$

where

Factorial Model

- α_i is the **main effect** of factor A at level *i*.
- β_j is the **main effect** of factor *B* at level *j*.
- $(\alpha\beta)_{ij}$ is the **interaction effect** between *A* and *B* for level combination *i*, *j* (**not** the product $\alpha_i\beta_j$!)
- ϵ_{ijk} are i.i.d. $N(0, \sigma^2)$ errors.
- Typically, sum-to-zero constraints are being used, i.e.

•
$$\sum_{i=1}^{a} \alpha_i = 0$$
, $\sum_{j=1}^{b} \beta_j = 0$.

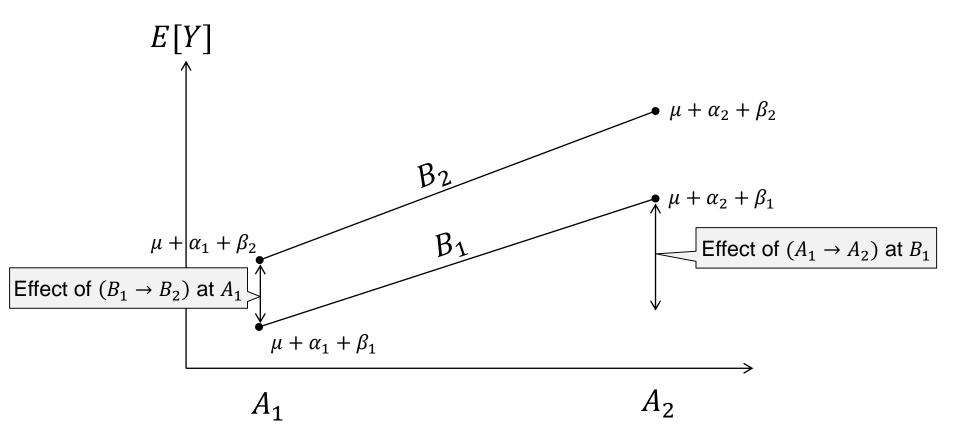

•
$$\sum_{i=1}^{a} (\alpha \beta)_{ij} = 0$$
, $\sum_{j=1}^{b} (\alpha \beta)_{ij} = 0$.

 $\rightarrow a - 1$ and b - 1 degrees of freedom

→ $(a-1) \cdot (b-1)$ degrees of freedom

Interpretation of Main Effects

- Main-effects are nothing else than the average effect when moving from row to row (column to column).
- Interaction effect is the difference to the main-effects model, i.e. it measures how far the treatment means differ from the main-effects model.
- If there is no interaction, the effects are additive. In our example it would mean: "No matter what location we are considering, the effect of light exposure is always the same."



Visualization of Model

$$E[Y_{ijk}] = \mu + \alpha_i + \beta_j$$

If no interaction is present, lines will be parallel.

Interaction plot is nothing else than empirical version of this plot.

Two-Way ANOVA Step-By-Step

	Short	Long	Permanent
Taglieda	25	42	62
	25	38	55
Pfyn	45	62	80
	42	58	75
Rheinau	50	52	88
	50	62	95

Г		Short	Long	Permanent
	Taglieda	μ μ	μ μ	μ μ
	Pfyn	μ μ	μ μ	$\mu \ \mu$
┥	Rheinau	μ μ	$\mu \ \mu$	μ μ

_	+			
		Short	Long	Permanent
	Taglieda	$lpha_1 \ lpha_1$	$lpha_1 \ lpha_1$	$lpha_1 \ lpha_1$
	Pfyn	$lpha_2 \ lpha_2$	$lpha_2 \ lpha_2$	$lpha_2 \ lpha_2$
	7 Rheinau	$lpha_3 \ lpha_3$	$lpha_3 \ lpha_3$	$lpha_3 \\ lpha_3$

	Short	Long	Permanent	
Taglieda	$egin{array}{c} eta_1\ eta_1\ eta_1 \end{array}$	$egin{smallmatrix} eta_2\ eta_2\ eta_2 \end{split}$	$eta_3\ eta_3$	
∑ ^P fyn	$egin{array}{c} eta_1\ eta_1\ eta_1 \end{array}$	$egin{array}{c} eta_2 \ eta_2 \ eta_2 \end{array}$	$egin{array}{c} eta_3\ eta_3\ eta_3 \end{array}$	
Rheinau	$egin{array}{c} eta_1\ eta_1\ eta_1 \end{array}$	$egin{smallmatrix} eta_2\ eta_2\ eta_2 \end{split}$	$eta_3\ eta_3$	
		+		
	Short	Long	Permanent	
Taglieda	$\begin{array}{c} (\alpha\beta)_{11} \\ (\alpha\beta)_{11} \end{array}$	$\begin{array}{c} (\alpha\beta)_{12} \\ (\alpha\beta)_{12} \end{array}$	$\begin{array}{c} (\alpha\beta)_{13} \\ (\alpha\beta)_{13} \end{array}$	
Pfyn	$\begin{array}{c} (\alpha\beta)_{21} \\ (\alpha\beta)_{21} \end{array}$	$\begin{array}{c} (\alpha\beta)_{22} \\ (\alpha\beta)_{22} \end{array}$	$\begin{array}{c} (\alpha\beta)_{23} \\ (\alpha\beta)_{23} \end{array}$	
Rheinau	$\begin{array}{c} (\alpha\beta)_{31} \\ (\alpha\beta)_{31} \end{array}$	$\begin{array}{c} (\alpha\beta)_{32} \\ (\alpha\beta)_{32} \end{array}$	$\begin{array}{c} (\alpha\beta)_{33} \\ (\alpha\beta)_{33} \end{array}$	
		+		
	Short	Long	Permanent	
Taglieda	$ \begin{array}{c} \epsilon_{111} \\ \epsilon_{112} \end{array} \end{array} $	$\epsilon_{121} \ \epsilon_{122}$	$\epsilon_{131} \ \epsilon_{132}$	
Pfyn	$\epsilon_{211} \ \epsilon_{212}$	$\epsilon_{221} \ \epsilon_{222}$	$\epsilon_{231} \ \epsilon_{232}$	
Rheinau	$\epsilon_{311} \ \epsilon_{312}$	$\epsilon_{321} \ \epsilon_{322}$	$\epsilon_{331} \ \epsilon_{332}$	
	Pfyn Rheinau Taglieda Pfyn Rheinau Taglieda Pfyn	Taglieda β_1 β_1 β_1 β_1 β_1 β_1 β_1 Pfyn β_1 β_1 Rheinau β_1 β_1 Taglieda $(\alpha\beta)_{11}$ $(\alpha\beta)_{21}$ $(\alpha\beta)_{21}$ Pfyn $(\alpha\beta)_{21}$ $(\alpha\beta)_{31}$ Rheinau $(\alpha\beta)_{31}$ $(\alpha\beta)_{31}$ Taglieda ϵ_{111} ϵ_{112} Pfyn ϵ_{211} ϵ_{212} Rheinau ϵ_{311}	Taglieda $\beta_1 \\ \beta_1$ $\beta_2 \\ \beta_2$ Pfyn $\beta_1 \\ \beta_1$ $\beta_2 \\ \beta_2$ Rheinau $\beta_1 \\ \beta_1$ $\beta_2 \\ \beta_2$ Taglieda $(\alpha\beta)_{11} \\ (\alpha\beta)_{11} \\ (\alpha\beta)_{11}$ $(\alpha\beta)_{12} \\ (\alpha\beta)_{12} \\ (\alpha\beta)_{12}$ Pfyn $(\alpha\beta)_{21} \\ (\alpha\beta)_{21} \\ (\alpha\beta)_{21} \\ (\alpha\beta)_{31} \\ (\alpha\beta)_{31} \\ (\alpha\beta)_{32} \\ (\alpha\beta)_{32} \end{pmatrix}$ Rheinau $(\alpha\beta)_{31} \\ (\alpha\beta)_{31} \\ (\alpha\beta)_{31} \\ (\alpha\beta)_{31} \\ (\alpha\beta)_{32} \\ (\alpha\beta)_{32} \end{pmatrix}$ Taglieda $\epsilon_{111} \\ \epsilon_{112} \\ \epsilon_{122} \\ \beta_{11} \\ \epsilon_{221} \\ \epsilon_{222} \end{pmatrix}$ Pfyn $\epsilon_{211} \\ \epsilon_{221} \\ \epsilon_{222} \\ \epsilon_{221} \\ \epsilon_{222} \end{pmatrix}$ Rheinau $\epsilon_{311} \\ \epsilon_{321} \end{pmatrix}$	Taglieda β_1 β_1 β_1 β_2 β_2 β_3 β_3 Pfyn β_1 β_1 β_1 β_2 β_2 β_3 β_3 Rheinau β_1 β_1 β_1 β_2 β_2 β_3 β_3 Rheinau β_1 β_1 β_1 β_2 β_2 β_3 β_3 Taglieda $(\alpha\beta)_{11}$ $(\alpha\beta)_{11}(\alpha\beta)_{12}(\alpha\beta)_{12}(\alpha\beta)_{12}(\alpha\beta)_{13}(\alpha\beta)_{12}(\alpha\beta)_{13}(\alpha\beta)_{13}(\alpha\beta)_{13}Pfyn(\alpha\beta)_{21}(\alpha\beta)_{21}(\alpha\beta)_{31}(\alpha\beta)_{32}(\alpha\beta)_{23}(\alpha\beta)_{33}(\alpha\beta)_{33}(\alpha\beta)_{32}(\alpha\beta)_{33}(\alpha\beta)_{33}Rheinau(\alpha\beta)_{31}(\alpha\beta)_{31}(\alpha\beta)_{31}(\alpha\beta)_{32}(\alpha\beta)_{32}(\alpha\beta)_{33}(\alpha\beta)_{33}Taglieda\xi_{111}\xi_{112}\xi_{121}\xi_{122}\xi_{231}\xi_{232}Pfyn\xi_{211}\xi_{212}\xi_{221}\xi_{232}\xi_{231}\xi_{232}Rheinau\epsilon_{311}\epsilon_{321}\epsilon_{331}$

Parameter Estimates

Estimates for the balanced case (and the sum-to-zero constraints) are

Parameter	Estimator
μ	$\hat{\mu}=ar{y}_{}$
$lpha_i$	$\hat{\alpha}_i = \bar{y}_{i\cdots} - \bar{y}_{\cdots}$
eta_j	$\hat{eta}_j = ar{y}_{\cdot j \cdot} - ar{y}_{\cdot \cdot \cdot}$
$(\alpha\beta)_{ij}$	$(\widehat{\alpha}\widehat{\beta})_{ij} = \overline{y}_{ij} - \widehat{\mu} - \widehat{\alpha}_i - \widehat{\beta}_j$

 This means: we estimate the main effects as if the other factors wouldn't be there (see next slides).

Main Effect of Location

Original data-set

 $\rightarrow \hat{\alpha}_i$

	Short	Long	Permanent
Taglieda	25	42	62
	25	38	55
Pfyn	45	62	80
	42	58	75
Rheinau	50	52	88
	50	62	95

 Ignore factor "exposure", estimate effect as in one-way ANOVA model

Taglieda	Pfyn	Rheinau
25	45	50
25	42	50
42	62	52
38	58	62
62	80	88
55	75	95

Main Effect of Light Exposure

Original data-set

	Short	Long	Permanent
Taglieda	25	42	62
	25	38	55
Pfyn	45	62	80
	42	58	75
Rheinau	50	52	88
	50	62	95

 Ignore factor "location", estimate effect as in one-way ANOVA model

Short	Long	Permanent
25	42	62
25	38	55
45	62	80
42	58	75
50	52	88
50	62	95

Sum of Squares

• Again, total sum of squares can be **partitioned** into **different sources**, i.e. $SS_T = SS_A + SS_B + SS_{AB} + SS_E$.

		squared effect
Source	df	Sum of squares (SS)
Α	a – 1	$\sum_{i=1}^{a} \underline{b \cdot n} \cdot \hat{\alpha}_{i}^{2} \leftarrow$
В	b - 1	$\sum_{j=1}^{b} a \cdot n \cdot \hat{\beta}_{j}^{2}$ # observations with that effect
AB	$a-1)\cdot(b-1)$	$\sum_{i=1}^{a} \sum_{j=1}^{b} n \cdot \widehat{(\alpha\beta)}_{ij}^2$
Error	$(n-1) \cdot ab_{r}$	$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \bar{y}_{ij})^{2}$
Total	abn — 1	$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \bar{y}_{})^2$
product of a involved fac		

ANOVA Table

• As before, we can construct an **ANOVA table**

Source	df	SS	MS	F
Α	a – 1	SS _A	$\frac{SS_A}{a-1}$	$\frac{MS_A}{MS_E}$
В	b-1	SS _B	$\frac{SS_B}{b-1}$	$\frac{MS_B}{MS_E}$
AB	$(a-1)\cdot(b-1)$	SS _{AB}	$\frac{SS_{AB}}{(a-1)(b-1)}$	$\frac{MS_{AB}}{MS_E}$
Error	$ab \cdot (n-1)$	SS_E	$\frac{SS_E}{(n-1)ab}$	

 Under the corresponding (global) null-hypothesis, the Fratio is again F-distributed with degrees of freedom defined through the numerator / denominator.

F-Tests: Overview

Interaction AB

- $H_0: (\alpha\beta)_{ij} = 0$ for **all** i, j
- H_A : At least one $(\alpha\beta)_{ij} \neq 0$
- Under $H_0: \frac{MS_{AB}}{MS_E} \sim F_{(a-1)(b-1), ab(n-1)}$
- Main effect A
 - $H_0: \alpha_i = 0$ for **all** *i*
 - H_A : At least one $\alpha_i \neq 0$
 - Under $H_0: \frac{MS_A}{MS_E} \sim F(a-1), ab(n-1)$

Main effect B

- $H_0: \beta_j = 0$ for **all** j
- H_A : At least one $\beta_j \neq 0$
- Under $H_0: \frac{MS_B}{MS_E} \sim F_{(b-1), ab(n-1)}$

Analyzing the ANOVA Table

- Typically, the *F*-tests are analyzed from bottom to top (in the ANOVA table).
- Here, this means we start with the F-test of the interaction.
- If we reject:
 - Conclude that we need an interaction in our model, i.e. the effect of A depends on the level of B.
 - Don't continue testing the main-effects (principle of hierarchy)
 - Perform individual analysis for every level of factor A (or B).
 - Have a look at interaction plot to get a better understanding of what is going on.
 - Interaction might be based on a single cell.
 - Transformation might help in getting rid of the interaction.
- If we can't reject, continue testing the main effects.

Two-Way ANOVA model in R

Define model with interaction in formula interface

More than Two Factors

- Model can be easily extended to more than two factors, say 3 (A, B, C).
- Model:

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + \qquad \longleftarrow \qquad \text{main effects} \\ (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \qquad \longleftarrow \qquad \text{two-way interactions} \\ (\alpha\beta\gamma)_{ijk} + \qquad \longleftarrow \qquad \text{three-way interaction} \\ \epsilon_{ijkl}$$

with ϵ_{ijkl} i.i.d. $N(0, \sigma^2)$ and the usual sum-to-zero constraints.

- Two-way interaction describes how a main-effect depends on the level of the other factor.
- Three-way interaction describes how a two-way interaction depends on level of third factor...

Interpretation

- The higher-order interactions are quite difficult to interpret.
- Parameter estimation as before.
- Degrees of freedom of an interaction is the product of the df's of the involved factors.
- E.g., for the three-way interaction:

$$(a-1)\cdot(b-1)\cdot(c-1)$$