Completely Randomized Designs (CRD)
One-Way ANOVA

Lukas Meier, Seminar für Statistik
Example: Meat Storage Study (Kuehl, 2000, Example 2.1)

- Researcher wants to investigate the effect of packaging on bacterial growth of stored meat.

- Some studies suggested controlled gas atmospheres as alternatives to existing packaging.

- Different treatments (= packaging types)
 - Commercial plastic wrap (ambient air)
 - Vacuum package
 - 1% CO, 40% O₂, 59% N
 - 100% CO₂

- Experimental units: 12 beef steaks (ca. 75g).

- Measure effectiveness of packaging by measuring how successful they are in suppressing bacterial growth.
Example: Meat Storage Study

- Three beef steaks were randomly assigned to each of the packaging conditions.

- Each steak was packaged separately in its assigned condition.

- **Response**: (logarithm of the) number of bacteria per square centimeter.

- The number of bacteria was measured after nine days of storage at 4 degrees Celsius in a standard meat storage facility.
First Step (Always): Exploratory Data Analysis

- If very few observations: Plot all data points.
- With more observations: Use boxplots (side-by-side)
- Alternatively: Violin-plots, histogram side-by-side, …
- See examples in R: 02_meat_storage.R

Such plots typically give you the same (or even more) information as a formal analysis (see later).
Side Remark: Factors

- Categorical variables are also called **factors**.
- The different values of a factor are called **levels**.
- Factors can be **nominal** or **ordinal** (ordered)
 - Hair color: \{black, blond, …\} \textit{nominal}
 - Gender: \{male, female\} \textit{nominal}
 - Treatment: \{commercial, vacuum, mixed, CO$_2$\} \textit{nominal}
 - Income: \{<50k, 50-100k, >100k\} \textit{ordinal}
- Useful functions in R:
 - \texttt{factor}
 - \texttt{as.factor}
 - \texttt{levels}
Completely Randomized Design: Formal Setup

- Compare g treatments
- Available resources: N experimental units
- Need to **assign** the N experimental units to g different treatments (groups) having n_i observations each, $i = 1, \ldots, g$.
- Of course: $n_1 + n_2 + \ldots + n_g = N$.
- Use randomization:
 - Choose n_1 units at random to get treatment 1,
 - n_2 units at random to get treatment 2,
 - ...
- This randomization produces a so called **completely randomized design (CRD)**.
Setting up the Model

- Need to set up a **model** in order to do **statistical inference**.

- **Good message**: problem looks rather easy.

- **Bad message**: Some complications ahead regarding parametrization.
Remember: Two Sample t-Test for Unpaired Data

- **Model**
 - $X_i \text{ i.i.d. } \sim N(\mu_X, \sigma^2), i = 1, ..., n$
 - $Y_j \text{ i.i.d. } \sim N(\mu_Y, \sigma^2), j = 1, ..., m$
 - X_i, Y_j independent

- **t-Test**
 - $H_0: \mu_X = \mu_Y$
 - $H_A: \mu_X \neq \mu_Y$ (or one-sided)
 - $T = \frac{(\bar{X}_n - \bar{Y}_m)}{S_{pool} \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2}$ under H_0

- Allows us to test or construct confidence intervals for the true (unknown) difference $\mu_X - \mu_Y$.

- Note: Both groups have their “individual” mean but they share a common variance (can be extended to other situations).
From Two to More Groups

- In the meat storage example we had 4 groups.
- Hence, the t-test is not directly applicable.
- Could try to construct something using only pairs of groups (e.g., doing all pairwise comparisons).
- Will do so later. Now we want to expand the model that we used for the two sample t-test to the more general situation of $g > 2$ groups.
- As we might run out of letters, we use a common letter (say Y) for all groups and put the grouping and replication information in the index.
Cell Means Model

- We need **two indices** to distinguish between the different treatments (groups) and the different observations.

- Let Y_{ij} be the jth observation in the ith treatment group, $i = 1, \ldots, g; j = 1, \ldots, n_i$.

- **Cell means model**: Every group (treatment) has its own mean value, i.e.
 \[Y_{ij} \sim N(\mu_i, \sigma^2), \text{ independent} \]

- Also called **separate means model**.

- Note: Variance **constant across groups** (as for standard two-sample t-test!)
Illustration of Cell Means Model

- See R-Code: 02_model_illustration.R
- Or visit
 https://gallery.shinyapps.io/anova_shiny_rstudio/
- Why cell means? Have a look at meat storage data:

<table>
<thead>
<tr>
<th></th>
<th>Commercial</th>
<th>Vacuum</th>
<th>Mixed</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>7.66</td>
<td>5.26</td>
<td>7.41</td>
<td>3.51</td>
</tr>
<tr>
<td>6.98</td>
<td>5.44</td>
<td>7.33</td>
<td>2.91</td>
<td></td>
</tr>
<tr>
<td>7.80</td>
<td>5.80</td>
<td>7.04</td>
<td>3.66</td>
<td></td>
</tr>
</tbody>
</table>
Cell Means Model: Alternative Representation

- We can “extract” the deterministic part in $Y_{ij} \sim N(\mu_i, \sigma^2)$.

- Leads to

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

with ϵ_{ij} i.i.d. $\sim N(0, \sigma^2)$.

- The ϵ_{ij}’s are random “errors” that fluctuate around zero.

- In the regression context:
 - Y is the response.
 - Treatment is a categorical predictor (a factor).
 - Hence, this is nothing else than a regression model with a categorical predictor.
Yet Another Representation (♥)

- We can also write $\mu_i = \mu + \alpha_i, i = 1, \ldots, g$.
- E.g., think of μ as a “global mean” and α_i as the corresponding deviation from the global mean.
- α_i is also called the ith treatment effect.
- This looks like a needless complication now, but will be very useful later (with factorial treatment structure).
- Unfortunately this model is not identifiable anymore.
- Reason: $g + 1$ parameters ($\mu, \alpha_1, \ldots, \alpha_g$) for g different means...
Ensuring Identifiability

- **Need side constraint**: many options available.
- Sum of the treatment effects is zero, i.e.
 \[\alpha_g = - (\alpha_1 + \cdots + \alpha_{g-1}) \]
 (R: `contr.sum`)
- Sum of **weighted** treatment effects is zero: ...
 (R: do manually)
- Set \(\mu = \mu_1 \), hence \(\alpha_1 = 0, \alpha_2 = \mu_2 - \mu_1, \alpha_3 = \mu_3 - \mu_1, \ldots \)
 i.e. a comparison with group 1 as **reference level**.
 (R: `contr.treatment`)
- Only \(g - 1 \) elements of the treatments effect are allowed to **vary freely**. We also say that the treatment effect has \(g - 1 \) degrees of freedom (df).
The encoding scheme (i.e., the side constraint being used) of a factor is called **contrast** in R.

To summarize: we have a total of g parameters: $\mu, \alpha_1, \ldots, \alpha_{g-1}$ to parametrize the g group means μ_1, \ldots, μ_g.

The interpretation of the parameters $\mu, \alpha_1, \ldots, \alpha_{g-1}$ **strongly depends** on the parametrization that is being used.

We will re-discover the word “contrast” in a different way later…
Parameter Estimation

- Choose **parameter estimates** $\hat{\mu}, \hat{\alpha}_1, \ldots, \hat{\alpha}_{g-1}$ such that model fits the data “well”.

- Criterion: Choose parameter estimates such that

$$\sum_{i=1}^{g} \sum_{j=1}^{n_i} (y_{ij} - \hat{\mu} - \hat{\alpha}_i)^2$$

is **minimal** (so called **least squares criterion**, exactly as in regression).

- The **estimated cell means** are simply

$$\hat{\mu}_i = \hat{\mu} + \hat{\alpha}_i$$
Illustration of Goodness of Fit

- See blackboard (incl. definition of residual)
Some Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_i.$</td>
<td>Sum of all values in group i</td>
<td>$y_{i.} = \sum_{j=1}^{n_i} y_{ij}$</td>
</tr>
<tr>
<td>$\bar{y}_{i.}$</td>
<td>Sample average in group i</td>
<td>$\bar{y}{i.} = \frac{1}{n_i} \sum{j=1}^{n_i} y_{ij} = \frac{1}{n_i} y_{i.}$</td>
</tr>
<tr>
<td>$y_{..}$</td>
<td>Sum of all observations</td>
<td>$y_{..} = \sum_{i=1}^{g} \sum_{j=1}^{n_i} y_{ij}$</td>
</tr>
<tr>
<td>$\bar{y}_{..}$</td>
<td>Grand mean</td>
<td>$\bar{y}{..} = \frac{y{..}}{N}$</td>
</tr>
</tbody>
</table>

Rule: If we replace an index with a dot ("\cdot") it means that we are summing up values over that index.
Parameter Estimates, the Other Way Round

- “Obviously”, the $\hat{\mu}_i$’s that minimize the least squares criterion are $\hat{\mu}_i = \bar{y}_i$.

- **Means:** *Expectation* of group i is estimated with **sample mean** of group i.

- The $\alpha_i's$ are then simply estimated by applying the corresponding parametrization, i.e.

 $$\hat{\alpha}_i = \hat{\mu}_i - \hat{\mu} = \bar{y}_i - \bar{y}.$$

The fitted values $\hat{\mu}_i$ (and the **residuals**) are independent of the parametrization, but the $\hat{\alpha}_i$’s (heavily) depend on it!
Parameter Estimation

- We denote residual (or error) sum of squares by
 \[SS_E = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2 \]

- Estimator for \(\sigma^2 \) is \(MS_E \), mean squared error, i.e.
 \[\hat{\sigma}^2 = MS_E = \frac{1}{N-g} SS_E = \frac{1}{N-g} \sum_{i=1}^{g} (n_i - 1)s_i^2 \]

- This is an unbiased estimator for \(\sigma^2 \) (reason for \(N-g \) instead of \(N \) in the denominator).

- We also say that the error estimate has \(N-g \) degrees of freedom (\(N \) observations, \(g \) parameters) or
 \[N - g = \sum_{i=1}^{g} (n_i - 1) \]
Estimation Accuracy

- **Standard errors** for the parameters (using the sum of weighted treatment effects constraint)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimator</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>$\bar{y}.$</td>
<td>σ / \sqrt{N}</td>
</tr>
<tr>
<td>μ_i</td>
<td>$\bar{y}_i.$</td>
<td>$\sigma / \sqrt{n_i}$</td>
</tr>
<tr>
<td>α_i</td>
<td>$\bar{y}_i. - \bar{y}.$</td>
<td>$\sigma \sqrt{\frac{1}{n_i} - \frac{1}{N}}$</td>
</tr>
<tr>
<td>$\mu_i - \mu_j = \alpha_i - \alpha_j$</td>
<td>$\bar{y}_i. - \bar{y}_j.$</td>
<td>$\sigma \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$</td>
</tr>
</tbody>
</table>

- Therefore, a 95% confidence interval for α_i is given by

$$
\hat{\alpha}_i \pm t_{N-g}^{0.975} \cdot \hat{\sigma} \sqrt{\frac{1}{n_i} - \frac{1}{N}}
$$

- 97.5% quantile of t_{N-g} distribution

- $N - g$ degrees of freedom because of degrees of freedom of MS_E
Single Mean Model

- Extending the null-hypothesis of the t-test to the situation where $g > 2$, we can (for example) use the (very strong) null-hypothesis that treatment has no effect on the response.

- In such a setting, all values (also across different treatments) fluctuate around the same "global" mean μ.

- Model reduces to: $Y_{ij} \text{ i.i.d. } \sim N(\mu, \sigma^2)$

- Or equivalently: $Y_{ij} = \mu + \epsilon_{ij}, \quad \epsilon_{ij} \text{ i.i.d. } \sim N(0, \sigma^2)$.

- This is the single mean model.
Comparison of models

- Note: Models are “nested”, single mean model is a special case of cell means model.
- Or: Cell means model is more flexible than single mean model.
- Which one to choose? Let a statistical test decide.
Analysis of Variance (ANOVA)

- Classical approach: decompose “variability” of response into different “sources” and compare them.

- More modern view: Compare (nested) models.

- In both approaches: Use statistical test with global null hypothesis

\[
H_0 : \mu_1 = \mu_2 = \ldots = \mu_g
\]

versus the alternative

\[
H_A : \mu_k \neq \mu_l \text{ for at least one pair } k \neq l
\]

- \(H_0\) says that the single mean model is ok.

- \(H_0\) is equivalent to \(\alpha_1 = \alpha_2 = \ldots = \alpha_g = 0\).
Decomposition of Total Variability

- See blackboard.
Illustration of Different Sources of Variability

- Between groups ("signal")
- Within groups ("noise")

Grand mean
ANOVA table

- Present different sources of variation in a so called ANOVA table:

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Sum of squares (SS)</th>
<th>Mean Squares (MS)</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>$g - 1$</td>
<td>SS_{Trt}</td>
<td>$MS_{Trt} = \frac{SS_{Trt}}{g-1}$</td>
<td>$\frac{MS_{Trt}}{MS_E}$</td>
</tr>
<tr>
<td>Error</td>
<td>$N - g$</td>
<td>SS_E</td>
<td>$MS_E = \frac{SS_E}{N - g}$</td>
<td></td>
</tr>
</tbody>
</table>

- Use *F-ratio* (last column) to construct a statistical test.

- **Idea**: Variation **between groups** should be **substantially** larger than variation **within groups** in order to reject H_0.

- This is a so called one-way ANOVA.

because only **one** factor involved
More Details about the F-Ratio

- It can be shown that $E[MS_{Trt}] = \sigma^2 + \sum_{i=1}^{g} n_i \alpha_i^2 / (g - 1)$

- Hence under H_0: MS_{Trt} is also an estimator for σ^2 (contains no “signal” just “error”).

- Therefore, under H_0: $F = \frac{MS_{Trt}}{MS_E} \approx 1$.

- If we observe a value of F that is “much larger” than 1, we will reject H_0.

- What does “much larger” mean here?

- We need to be more precise: we need the distribution of F under H_0.
F-Distribution

- Under H_0 it holds that F follows a so called **F-distribution** with $g - 1$ and $N - g$ degrees of freedom: $F_{g-1, N-g}$.

- The **F-distribution** has **two degrees of freedom parameters**: one from the numerator and one from the denominator mean square (treatment and error).

- Technically: $F_{n, m} = \frac{\frac{1}{n}(X_1^2 + \cdots X_n^2)}{\frac{1}{m}(Y_1^2 + \cdots Y_m^2)}$ where X_i, Y_j are i.i.d. $N(0,1)$.

- Illustration and behaviour of quantiles: see R-Code.

- We reject H_0 if the corresponding **p-value** is small enough or if F is larger than the corresponding quantile (the F-test is always a one-sided test).
More on the \(F\)-Test

- It holds that \(F_{1,n} = t_n^2\) (the square of a \(t_n\)-distribution)
- It can be shown that the \(F\)-test for the \(g = 2\) case is nothing else than the squared \(t\)-test.
- The \(F\)-test is also called an omnibus test (Latin for "for all“) as it compares all group means simultaneously.
Analysis of Meat Storage Data in R

- Use function `aov` to perform “analysis of variance”
- When calling `summary` on the fitted object, an ANOVA table is printed out.

```
> fit <- aov(y ~ treatment, data = meat)
> summary(fit)

              Df Sum Sq Mean Sq F value Pr(>F)
 treatment     3 32.873 10.9581  94.581  1.38e-06 ***
 Residuals     8  0.934  0.1163    0.35
```

Reject H_0 because p-value is very small
Analysis of Meat Storage Data in R

- **Coefficients** can be extracted using the function `coef` or `dummy.coef`

```
> coef(fit)
(Intercept) treatment1 treatment2 treatment3
 5.90    -2.54     1.58     1.36

> dummy.coef(fit)
Full coefficients are

(Intercept):  5.9
  treatment: CO2 Commercial Mixed Vacuum
               -2.54     1.58  1.36  -0.40
```

Useless if encoding scheme unknown. Interpretation for computer trivial. For you?

Coefficients in terms of the original levels of the coefficients rather than the “coded” variables.

\[
\begin{align*}
\mu_{CO_2} & = 5.9 - 2.54 = 3.36 \\
\mu_{Commercial} & = 5.9 + 1.58 = 7.48 \\
\mu_{Mixed} & = 5.9 + 1.36 = 7.26 \\
\mu_{Vacuum} & = 5.9 - 0.40 = 5.50 \\
\end{align*}
\]

- Compare with fitted values (see R-Code).
ANOVA as Model Comparison

- Because $SS_T = SS_{Trt} + SS_E$ we can rewrite the nominator of the F-ratio as

 $$\frac{(SS_T - SS_E)}{(g - 1)}$$

- Or in other words, SS_{Trt} is the **reduction in residual sum of squares** when going from the single mean to cell means model.

- If we reject the F-test, we conclude that we really need the more complex cell means model.

<table>
<thead>
<tr>
<th>Residual sum of squares of single mean model</th>
<th>Residual sum of squares of cell means model</th>
<th>Difference in number of model parameters</th>
</tr>
</thead>
</table>

| 32 |
Checking Model Assumptions

- Statistical inference (e.g., F-test) is only valid if the **model assumptions** are fulfilled.

- Need to check
 - Are the errors **normally distributed**?
 - Are the errors **independent**?
 - Is the **error variance constant**?

- We don’t observe the errors but we have the residuals as proxy.

- Will use **graphical assessments** to check assumptions.
 - QQ-Plot
 - Tukey-Anscombe plot (TA plot)
 - Index plot
 - ...
QQ-Plot (is normal distribution good approximation?)

- Plot **empirical quantiles of residuals vs. theoretical quantiles (of standard normal distribution)**.
- Points should lie more or less on a **straight line** if residuals are normally distributed.
- **R**: `plot(fit, which = 2)`
- If unsure, compare with (multiple) simulated versions from normal distribution with the same sample size:
  ```
  qqnorm(rnorm(nrow(data))
  ```
- **Outliers** can show up as isolated points in the “corners”.
QQ-Plot (Meat Storage Data)

```
qqnorm(aov(y ~ treatment))
qqline(aov(y ~ treatment))
```
Tukey-Anscombe Plot (TA-Plot)

- Plot **residuals** vs. **fitted values**
- Checks **homogeneity of variance** and **systematic bias** (here not relevant yet, why?)
- R: `plot(fit, which = 1)`
- “Stripes” are due to the data structure (g different groups)
Tukey-Anscombe Plot (Meat Storage Data)

Residuals vs Fitted

Fitted values
aov(y ~ treatment)
Constant Variance?
Index Plot

- Plot residuals against **time** index to check for potential serial correlation (i.e., dependence with respect to time).
- Check if results close in time too similar / dissimilar?
- Similarly for potential **spatial** dependence.
Fixing Problems

- **Transformation of response** (square root, logarithm, …) to improve QQ-Plot and constant variance assumption.

- Carefully **inspect potential outliers**. These are very interesting and informative data points.

- Deviation from normality less problematic for large sample sizes (reason: central limit theorem).

- **Extend model** (e.g., allow for some dependency structure, different variances, …)

- Many more options…