
Lukas Meier, Seminar für Statistik

Completely Randomized Designs (CRD)

One-Way ANOVA



 Researcher wants to investigate the effect of packaging 

on bacterial growth of stored meat.

 Some studies suggested controlled gas atmospheres as 

alternatives to existing packaging.

 Different treatments (= packaging types)
 Commercial plastic wrap (ambient air)

 Vacuum package

 1% CO, 40% O2, 59% N

 100% CO2

 Experimental units: 12 beef steaks (ca. 75g).

 Measure effectiveness of packaging by measuring how 

successful they are in suppressing bacterial growth.
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Example: Meat Storage Study (Kuehl, 2000, Example 2.1)

Current techniques (control groups)

New techniques



 Three beef steaks were randomly assigned to each of 

the packaging conditions.

 Each steak was packaged separately in its assigned 

condition.

 Response: (logarithm of the) number of bacteria per 

square centimeter.

 The number of bacteria was measured after nine days of 

storage at 4 degrees Celsius in a standard meat storage 

facility.
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Example: Meat Storage Study



 If very few observations: Plot all data points.

 With more observations: Use boxplots (side-by-side)

 Alternatively: Violin-plots, histogram side-by-side, …

 See examples in R: 02_meat_storage.R
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First Step (Always): Exploratory Data Analysis

Such plots typically give you the same (or even 

more) information as a formal analysis (see later).



 Categorical variables are also called factors.

 The different values of a factor are called levels.

 Factors can be nominal or ordinal (ordered)

 Hair color: {black, blond, …} nominal

 Gender: {male, female} nominal

 Treatment: {commercial, vacuum, mixed, CO2} nominal

 Income: {<50k, 50-100k, >100k} ordinal

 Useful functions in R: 
 factor

 as.factor

 levels
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Side Remark: Factors



 Compare 𝑔 treatments

 Available resources: 𝑁 experimental units 

 Need to assign the 𝑁 experimental units to 𝑔 different 

treatments (groups) having 𝑛𝑖 observations each, 𝑖 =
1,… , 𝑔.

 Of course: 𝑛1 + 𝑛2 + … + 𝑛𝑔 = 𝑁.

 Use randomization: 
 Choose 𝑛1 units at random to get treatment 1, 

 𝑛2 units at random to get treatment 2,

 ...

 This randomization produces a so called completely 

randomized design (CRD).

Completely Randomized Design: Formal Setup
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 Need to set up a model in order to do statistical 

inference.

 Good message: problem looks rather easy.

 Bad message: Some complications ahead regarding 

parametrization.
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Setting up the Model



 Model 

 𝑋𝑖 i. i. d. ∼ 𝑁 𝜇𝑋, 𝜎
2 , 𝑖 = 1,… , 𝑛

 𝑌𝑗 i. i. d. ∼ 𝑁 𝜇𝑌, 𝜎
2 , 𝑗 = 1,… ,𝑚

 𝑋𝑖, 𝑌𝑗 independent

 𝒕-Test 

 𝐻0: 𝜇𝑋 = 𝜇𝑌

 𝐻𝐴: 𝜇𝑋 ≠ 𝜇𝑌 (or one-sided)

 𝑇 =
(  𝑋𝑛− 𝑌𝑚)

𝑆𝑝𝑜𝑜𝑙
1

𝑛
+

1

𝑚

∼ 𝑡𝑛+𝑚−2 under 𝐻0

 Allows us to test or construct confidence intervals for 

the true (unknown) difference 𝜇𝑋 − 𝜇𝑌.

 Note: Both groups have their “individual” mean but they 

share a common variance (can be extended to other 

situations). 7

Remember: Two Sample 𝑡-Test for Unpaired Data



 In the meat storage example we had 4 groups.

 Hence, the 𝑡-test is not directly applicable. 

 Could try to construct something using only pairs of

groups (e.g., doing all pairwise comparisons).

 Will do so later. Now we want to expand the model that

we used for the two sample 𝑡-test to the more general

situation of 𝑔 > 2 groups.

 As we might run out of letters, we use a common letter 

(say 𝑌) for all groups and put the grouping and replication

information in the index.
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From Two to More Groups



 We need two indices to distinguish between the different 

treatments (groups) and the different observations.

 Let 𝑌𝑖𝑗 be the 𝑗th observation in the 𝑖th treatment group, 

𝑖 = 1,… , 𝑔; 𝑗 = 1,… , 𝑛𝑖 .

 Cell means model: Every group (treatment) has its own

mean value, i.e.

𝑌𝑖𝑗 ∼ 𝑁 𝜇𝑖 , 𝜎
2 , independent

 Also called separate means model.

 Note: Variance constant across groups (as for standard 

two-sample 𝑡-test!)
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Cell Means Model

group 𝑖 observation 𝑗



 See R-Code: 02_model_illustration.R

 Or visit

https://gallery.shinyapps.io/anova_shiny_rstudio/

 Why cell means? Have a look at meat storage data:
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Illustration of Cell Means Model

Commercial Vacuum Mixed CO2
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 We can “extract” the deterministic part in 𝑌𝑖𝑗 ∼ 𝑁(𝜇𝑖 , 𝜎
2).

 Leads to 

𝑌𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗

with 𝜖𝑖𝑗 i. i. d. ∼ 𝑁 0, 𝜎2 . 

 The 𝜖𝑖𝑗 ’s are random “errors” that fluctuate around zero.

 In the regression context:
 𝑌 is the response. 

 Treatment is a categorical predictor (a factor).

 Hence, this is nothing else than a regression model with a 

categorical predictor.
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Cell Means Model: Alternative Representation



 We can also write 𝜇𝑖 = 𝜇 + 𝛼𝑖 , 𝑖 = 1,… , 𝑔.

 E.g., think of 𝜇 as a “global mean” and 𝛼𝑖 as the 

corresponding deviation from the global mean.

 𝛼𝑖 is also called the 𝑖th treatment effect.

 This looks like a needless complication now, but will be 

very useful later (with factorial treatment structure).

 Unfortunately this model is not identifiable anymore.

 Reason: 𝑔 + 1 parameters (𝜇, 𝛼1, … , 𝛼𝑔) for 𝑔 different 

means…
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Yet Another Representation (!)



 Need side constraint: many options available.

 Sum of the treatment effects is zero, i.e. 

𝛼𝑔 = − 𝛼1 + ⋯𝛼𝑔−1

(R: contr.sum)

 Sum of weighted treatment effects is zero: … 

(R: do manually)

 Set 𝜇 = 𝜇1, hence 𝛼1 = 0, 𝛼2 = 𝜇2 − 𝜇1, 𝛼3 = 𝜇3 − 𝜇1, …

i.e. a comparison with group 1 as reference level.
(R: contr.treatment)

 Only 𝑔 − 1 elements of the treatments effect are allowed to 

vary freely. We also say that the treatment effect has 𝑔 − 1
degrees of freedom (df).
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Ensuring Identifiability



 The encoding scheme (i.e., the side constraint being used)

of a factor is called contrast in R.

 To summarize: we have a total of 𝑔 parameters: 

𝜇, 𝛼1, … , 𝛼𝑔−1 to parametrize the 𝑔 group means 𝜇1, … , 𝜇𝑔. 

 The interpretation of the parameters 𝜇, 𝛼1, … , 𝛼𝑔−1 strongly

depends on the parametrization that is being used.

 We will re-discover the word “contrast” in a different way 

later…
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Encoding Scheme of Factors



 Choose parameter estimates  𝜇,  𝛼1, … ,  𝛼𝑔−1 such that 

model fits the data “well”.

 Criterion: Choose parameter estimates such that 

 𝑖=1
𝑔  

𝑗=1
𝑛𝑖 𝑦𝑖𝑗 −  𝜇 −  𝛼𝑖

2

is minimal (so called least squares criterion, exactly as 

in regression).

 The estimated cell means are simply

 𝜇𝑖 =  𝜇 +  𝛼𝑖
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Parameter Estimation



 See blackboard (incl. definition of residual)
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Illustration of Goodness of Fit



Rule: If we replace an index with a dot (“⋅”) it means that we 

are summing up values over that index.
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Some Notation

Symbol Meaning Formula

𝑦𝑖⋅ Sum of all values in group 𝒊 𝑦𝑖⋅ =  

𝑗=1

𝑛𝑖

𝑦𝑖𝑗

 𝑦𝑖⋅ Sample average in group 𝒊  𝑦𝑖⋅ =
1

𝑛𝑖
 

𝑗=1

𝑛𝑖

𝑦𝑖𝑗 =
1

𝑛𝑖
𝑦𝑖⋅

𝑦⋅⋅ Sum of all observations 𝑦⋅⋅ =  

𝑖=1

𝑔

 

𝑗=1

𝑛𝑖

𝑦𝑖𝑗

 𝑦⋅⋅ Grand mean  𝑦⋅⋅ =
𝑦⋅⋅

𝑁



 “Obviously”, the  𝜇𝑖’s that minimize the least squares 

criterion are  𝜇𝑖 =  𝑦𝑖⋅.

 Means: Expectation of group 𝑖 is estimated with sample 

mean of group 𝑖.

 The 𝛼𝑖
′𝑠 are then simply estimated by applying the 

corresponding parametrization, i.e.

 𝛼𝑖 =  𝜇𝑖 −  𝜇 =  𝑦𝑖⋅ −  𝑦⋅⋅
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Parameter Estimates, the Other Way Round

The fitted values  𝜇𝑖 (and the residuals) are 

independent of the parametrization, but the 

 𝛼𝑖’s (heavily) depend on it!



 We denote residual (or error) sum of squares by

𝑆𝑆𝐸 =  𝑖=1
𝑔  

𝑗=1
𝑛𝑖 𝑦𝑖𝑗 −  𝑦𝑖⋅

2

 Estimator for 𝜎2 is 𝑀𝑆𝐸, mean squared error, i.e.

 𝜎2 = 𝑀𝑆𝐸 =
1

𝑁−𝑔
𝑆𝑆𝐸 =

1

𝑁−𝑔
 𝑖=1

𝑔
𝑛𝑖 − 1 𝑠𝑖

2

 This is an unbiased estimator for 𝜎2 (reason for 𝑁 − 𝑔
instead of 𝑁 in the denominator).

 We also say that the error estimate has 𝑁 − 𝑔 degrees of 

freedom (𝑁 observations, 𝑔 parameters) or

𝑁 − 𝑔 =  𝑖=1
𝑔

(𝑛𝑖 − 1 ).
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Parameter Estimation

empirical variance 

in group 𝑖



 Standard errors for the parameters (using the sum of 

weighted treatment effects constraint)

 Therefore, a 95% confidence interval for 𝛼𝑖 is given by

 𝛼𝑖 ± 𝑡𝑁−𝑔
0.975 ⋅  𝜎

1

𝑛𝑖
−

1

𝑁
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Estimation Accuracy

Parameter Estimator Standard Error

𝜇  𝑦⋅⋅ 𝜎/ 𝑁

𝜇𝑖  𝑦𝑖⋅ 𝜎/ 𝑛𝑖

𝛼𝑖  𝑦𝑖⋅ −  𝑦⋅⋅ 𝜎
1

𝑛𝑖
−

1

𝑁

𝜇𝑖 − 𝜇𝑗 = 𝛼𝑖 − 𝛼𝑗  𝑦𝑖⋅ −  𝑦𝑗⋅ 𝜎
1

𝑛𝑖
+

1

𝑛𝑗

97.5% quantile of 𝑡𝑁−𝑔 distribution
𝑁 − 𝑔 degrees of freedom because of 

degrees of freedom of 𝑀𝑆𝐸



 Extending the null-hypothesis of the 𝑡-test to the situation 

where 𝑔 > 2, we can (for example) use the (very strong) 

null-hypothesis that treatment has no effect on the 

response.

 In such a setting, all values (also across different

treatments) fluctuate around the same “global” mean 𝜇.

 Model reduces to: 𝑌𝑖𝑗 i. i. d. ∼ 𝑁(𝜇, 𝜎2)

 Or equivalently: 𝑌𝑖𝑗 = 𝜇 + 𝜖𝑖𝑗 , 𝜖𝑖𝑗 i. i. d. ∼ 𝑁 0, 𝜎2 .

 This is the single mean model.

21

Single Mean Model



 Note: Models are “nested”, single mean model is a 

special case of cell means model.

 Or: Cell means model is more flexible than single mean 

model.

 Which one to choose? Let a statistical test decide.
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Comparison of models

Cell means 
model

Single 
mean 
model



 Classical approach: decompose “variability” of response 

into different “sources” and compare them.

 More modern view: Compare (nested) models.

 In both approaches: Use statistical test with global null 

hypothesis

versus the alternative

 𝐻0 says that the single mean model is ok.

 𝐻0 is equivalent to 𝛼1 = 𝛼2 = … = 𝛼𝑔 = 0.
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Analysis of Variance (ANOVA)

𝐻0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑔

𝐻𝐴: 𝜇𝑘 ≠ 𝜇𝑙 for at least one pair 𝑘 ≠ 𝑙



 See blackboard.
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Decomposition of Total Variability
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Illustration of Different Sources of Variability

CO2 Commercial Mixed Vacuum

3
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7

y

-

- -
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Between groups (“signal”)

Within groups (“noise”)
Grand mean
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ANOVA table

 Present different sources of variation in a so called 

ANOVA table:

 Use 𝑭-ratio (last column) to construct a statistical test.

 Idea: Variation between groups should be substantially

larger than variation within groups in order to reject 𝐻0.

 This is a so called one-way ANOVA.

Source df Sum of squares (SS) Mean Squares (MS) F-ratio

Treatments 𝑔 − 1 𝑆𝑆𝑇𝑟𝑡 𝑀𝑆𝑇𝑟𝑡 =
𝑆𝑆𝑇𝑟𝑡

𝑔−1

𝑀𝑆𝑇𝑟𝑡

𝑀𝑆𝐸

Error 𝑁 − 𝑔 𝑆𝑆𝐸 𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑁 − 𝑔

because only one factor involved



 It can be shown that 𝐸 𝑀𝑆𝑇𝑟𝑡 = 𝜎2 +  𝑖=1
𝑔

𝑛𝑖𝛼𝑖
2/(𝑔 − 1)

 Hence under 𝐻0: 𝑀𝑆𝑇𝑟𝑡 is also an estimator for 𝜎2

(contains no “signal” just “error”).

 Therefore, under 𝐻0: 𝐹 =
𝑀𝑆𝑇𝑟𝑡

𝑀𝑆𝐸
≈ 1.

 If we observe a value of 𝐹 that is “much larger” than 1, 

we will reject 𝐻0.

 What does “much larger” mean here?

 We need to be more precise: we need the distribution of 

𝐹 under 𝐻0.
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More Details about the 𝐹-Ratio



 Under 𝐻0 it holds that 𝐹 follows a so called 𝑭-distribution 

with 𝑔 − 1 and 𝑁 − 𝑔 degrees of freedom: 𝐹𝑔−1, 𝑁−𝑔.

 The 𝑭-distribution has two degrees of freedom 

parameters: one from the numerator and one from the 

denominator mean square (treatment and error).

 Technically: 𝐹𝑛, 𝑚 =
1

𝑛
(𝑋1

2+⋯𝑋𝑛
2)

1

𝑚
(𝑌1

2+⋯𝑌𝑚
2 )

where 𝑋𝑖 , 𝑌𝑗 are i.i.d. 𝑁(0,1).

 Illustration and behaviour of quantiles: see R-Code.

 We reject 𝐻0 if the corresponding 𝒑-value is small enough 

or if 𝐹 is larger than the corresponding quantile (the 𝐹-test 

is always a one-sided test).
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𝐹-Distribution



 It holds that 𝐹1,𝑛 = 𝑡𝑛
2 (the square of a 𝑡𝑛-distribution)

 It can be shown that the 𝐹-test for the 𝑔 = 2 case is 

nothing else than the squared 𝑡-test.

 The 𝐹-test is also called an omnibus test (Latin for "for 

all“) as it compares all group means simultaneously.
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More on the 𝐹-Test



 Use function aov to perform “analysis of variance”

 When calling summary on the fitted object, an ANOVA 

table is printed out.
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Analysis of Meat Storage Data in R 

Reject 𝐻0 because p-

value is very small



 Coefficients can be extracted using the function coef or 

dummy.coef

 Compare with fitted values (see R-Code).
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Analysis of Meat Storage Data in R 

Useless if encoding 

scheme unknown. 

Interpretation for 

computer trivial. 

For you?

Coefficients in terms of 

the original levels of the 

coefficients rather than 

the “coded” variables.

𝜇CO2
= 5.9 − 2.54 = 3.36

𝜇Commercial = 5.9 + 1.58 = 7.48
𝜇Mixed = 5.9 + 1.36 = 7.26

𝜇Vacuum = 5.9 − 0.40 = 5.50



 Because 𝑆𝑆𝑇 = 𝑆𝑆𝑇𝑟𝑡 + 𝑆𝑆𝐸 we can rewrite the nominator 

of the 𝐹-ratio as

(𝑆𝑆𝑇 − 𝑆𝑆𝐸)/(𝑔 − 1)

 Or in other words, 𝑆𝑆𝑇𝑟𝑡 is the reduction in residual sum 

of squares when going from the single mean to cell 

means model.

 If we reject the 𝐹-test, we conclude that we really need 

the more complex cell means model.
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ANOVA as Model Comparison

Residual sum of squares of 

single mean model

Residual sum of squares of 

cell means model
Difference in number of 

model parameters



 Statistical inference (e.g., 𝐹-test) is only valid if the model 

assumptions are fulfilled.

 Need to check

 Are the errors normally distributed?

 Are the errors independent?

 Is the error variance constant?

 We don’t observe the errors but we have the residuals as 

proxy.

 Will use graphical assessments to check assumptions.
 QQ-Plot

 Tukey-Anscombe plot (TA plot)

 Index plot

 …
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Checking Model Assumptions



 Plot empirical quantiles of residuals vs. theoretical 

quantiles (of standard normal distribution).

 Points should lie more or less on a straight line if 

residuals are normally distributed.

 R: plot(fit, which = 2)

 If unsure, compare with (multiple) simulated versions from 

normal distribution with the same sample size

qqnorm(rnorm(nrow(data))

 Outliers can show up as isolated points in the “corners”.
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QQ-Plot (is normal distribution good approximation?)
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QQ-Plot (Meat Storage Data)
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 Plot residuals vs. fitted values

 Checks homogeneity of variance and systematic bias 

(here not relevant yet, why?)

 R: plot(fit, which = 1)

 “Stripes” are due to the data structure (𝑔 different groups)
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Tukey-Anscombe Plot (TA-Plot)
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Tukey-Anscombe Plot (Meat Storage Data)
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Constant Variance?
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 Plot residuals against time index to check for potential 

serial correlation (i.e., dependence with respect to time).

 Check if results close in time too similar / dissimilar?

 Similarly for potential spatial dependence.
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Index Plot



 Transformation of response (square root, logarithm, …) 

to improve QQ-Plot and constant variance assumption.

 Carefully inspect potential outliers. These are very 

interesting and informative data points.

 Deviation from normality less problematic for large 

sample sizes (reason: central limit theorem).

 Extend model (e.g., allow for some dependency 

structure, different variances, …)

 Many more options…

 More details: Exercises and Oehlert (2000), Chapter 6.
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Fixing Problems


