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 Studied mathematics at ETH.

 Worked at the statistical consulting service and did a PhD

in statistics (at ETH).

 Excursion to the insurance industry.

 Since 2011: Senior scientist, Seminar für Statistik, ETH.

About Me
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 60 people of CAS / DAS in applied statistics (“WBL”).

 About 130 “regular” students
 Food science

 Statistics / Applied mathematics

 Environmental science

 Biology

 PhD students from various fields

 You (should) all have in common that you’ve attended an 

introductory course to probability and statistics.

 We use this knowledge as a basis.
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About You



 Applied lecture: we will not do all the mathematical 

details.

 We use the statistical computing software R. We will only 

do things “by hand” if it is helpful for your understanding.

 I will try to show you in class how the presented models 

can be fitted in R.

 There will be an introduction to R in today’s exercise 

session (for the regular students).
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Lecture



 Principles of experimental design

 Completely randomized designs

 Specific differences (contrasts)

 Factorial treatment structure

 Complete block designs

 Random effects

 Mixed effects

 Split plot designs

 Incomplete block designs

 Fractional factorials

 Response surface methods

 Power analysis
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Topics
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Book

 We mostly follow the book A first course in 

Design and Analysis of Experiments by

Gary Oehlert.

 Book is out of print (although mostly good) 

but PDF can be downloaded for free at
http://users.stat.umn.edu/~gary/Book.html

 Book contains ≈ 600 pages but we will not do all chapters 

/ details.

 I will try to give you a detailed chapter list what we will 

discuss next week (in case you like to prepare for class).

http://users.stat.umn.edu/~gary/Book.html


 Regular students

 Every other week there will be a 2 hour exercise session.

 Today: Introduction to R.

 Bring your own notebook, work on the current exercise series, 

ask questions. Discuss!

 No “classical” exercise session in the sense that you get hints and 

then try to solve it at home.

 CAS / DAS students
 Weekly, as usual in the computer rooms.
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Exercises



Introductory Example

7



 Polio caused hundreds of thousands victims (mainly 

children) in the first half of the twentieth century.

 By about 1950, several vaccines had been discovered, 

among others the one from Jonas Salk (the most 

promising).

 In the lab, everything looked good so far. 

 By 1954 the public health service was ready to try the 

vaccine in the real word (i.e., outside the lab on patients).

 How should they “measure” the effectiveness of the 

vaccine in the real world?

Salk Vaccine Field Trial (Freedman et al, 2007)
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 We love our children and polio is bad, so let us 

give the vaccine to a very large number of 

children this year!

 We can determine the incidence rate of polio this year

and compare it to the rate of last year.

 Doesn’t sound very complicated.

 Unfortunately, this is not a good idea because polio is an 

epidemic disease. 

 Incidence rate can vary substantially from year to year.
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Salk Vaccine Field Trial (Freedman et al, 2007)
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Salk Vaccine Field Trial (Freedman et al, 2007)

http://vaccines.procon.org/view.additional-resource.php?resourceID=005964



 Whatever effect we see, we can’t say whether it was the 

effect of the year, of the vaccine, or a combination of the 

two.

 We say that the two effects are confounded (mixed up).

 Therefore, we need to leave some children unvaccinated

this year and use them as a control group.

 This will allow us to measure the effectiveness of the 

vaccine by comparing the rates at which the children get 

polio in the two groups (treatment vs. control).
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Salk Vaccine Field Trial (Freedman et al, 2007)



 Of course, parents’ permission is required for vaccination.

 One possibility would be to build treatment and control 

groups based on the parents’ decision.

 However, higher-income parents would more likely 

consent to treatment than lower-income parents.

12

Salk Vaccine Field Trial (Freedman et al, 2007)



 In addition, children of higher-income parents are more 

vulnerable to polio (effect of hygiene).

 Hence, this design is biased against the vaccine (the 

family background is confounded with the effect of the 

vaccine).

 We need a control and a treatment group that come from 

the same population.

 Here: Only consider children whose parents consented to 

vaccination.

 Every child has a 50% chance of being put in the control 

or the treatment group (randomization).
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Salk Vaccine Field Trial (Freedman et al, 2007)



 Children in the control group were given a placebo and 

they were not told whether they are in the control or the 

treatment group.

 Reason: Want to make sure that the effect was due to the 

vaccine and not due to the “idea of getting treatment”.

 In addition, doctors (who had to decide whether a child 

contracted polio during the experiment) were not told 

whether a child got the real vaccine or the placebo.

 Together, this is called double-blinding.

 Hence we have a so called randomized controlled 

double-blind experiment.
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Salk Vaccine Field Trial (Freedman et al, 2007)



 Results:

 Highly significant difference between rates (e.g., use 

Fisher’s exact test; we will not discuss it in this course).

 This field trial already illustrated many concepts of 

experimental design.

 We will now have a more detailed look at some of the 

aspects.
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Salk Vaccine Field Trial (Freedman et al, 2007)

Group size Rate (= per 100’000)

Treatment 200’000 28

Control 200’000 71

No consent 350’000 46



Why Experiment or Collect Data?

Cause and Effect of a Process or System

Terminology
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Typically, data is collected to discover a cause - effect

relationship of a “process” or a “system”.
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Cause and Effect

From Montgomery, 1991

Cause Effect



 What is the influence of different fertilizers on biomass?

 Is a new drug an effective cure for a disease? How do 

side-effects depend on dose?

 How do the settings of a chemical process influence 

yield?

 See more examples later.
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Typical Questions



 We also call the input factors explanatory variables or 

predictors and the output the response.

 Hence, we want to understand the relationship

 Ideally, we want to establish a causal relationship, i.e. we 

want to find out the effect on the response if we make 

an intervention on a predictor.

 Typically, a lot of predictors are involved.

19

Predictors and Response

Predictors Response(s)

Cause Effect
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Different Kinds of Predictors

One distinguishes between predictors that

1) are of primary interest and that can be (ideally) varied

according to our „wishes“: the conditions we want to

compare, or the „treatments“.

2) are systematically recorded such that potential effects

can be later eliminated in our calculations („controlling

for…”).

3) can be kept constant and whose effects can therefore

be eliminated.

4) we can neither record nor keep constant.

2) to 4) are also called nuisance variables.



 In ecological or agronomical studies:

 Soil properties (2)

 Weather (2)

 Material (2, 3)

 Personnel (2, 3)

 ...

 Measurements on humans:

 Age (2, 3)

 Weight (2, 3)

 Potential diseases (2, 3, 4)

 Stress-level (2, 3, 4)

 Fitness (2, 3, 4)

 Genotype (2, 4)

 …
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Examples of Nuisance Variables



 The response should be chosen such that it reflects 

useful information about the process under study.

 The response is what you measure to judge what 

happened in the process.

 It is your responsibility that the response is a 

reasonable quantity to study your research hypothesis.

 If not directly measurable, use surrogate response (e.g., 

use CD4 counts as surrogate for HIV progression).

 Hypothetical example: amount of sleep after taking 

tranquilizer

 Measure hours that person was sleeping.

 Measure number of coffees that person is drinking in the morning.

 …
22

Response



Observational Studies

Overview

Association vs. Causation

Confounding
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Experimental Study

 Can control (some) predictors

Observational Study

 Cross-sectional study

 Cohort study

 Case-control study
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





 Observation of subjects / objects in an existing

(uncontrolled) situation.

 Examples

 Consumer behaviour in different countries

 Epidemiological studies

 Air quality in ETH Mensa at different times and days

 Heavy metal pollution in soil at various locations

25

Observational Study



 Cross-sectional study

 “Snapshot” of population at a given time-point.

 Prospective: Cohort study

 What will happen if…?

 Determining the risk (e.g. lung cancer) of exposed (smokers) vs. 

non-exposed (non-smokers) subjects (people).

 Retrospective: Case-control study

 Why did it develop this way?

 Comparison of habits of healthy vs. non-healthy persons.
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Different Types of Observational Studies



 Consumer behavior survey 

 Response: Consumption of meat per household and 

year.

 Predictors according to different categories:

 (1) Regions

 (2) Age, profession, education of leading person, household size, income, 

number and ages of children, …

 (3) Method of collecting data, measurement method.

 (4) Genotype, social environment, health status, …
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Example for Cross-Sectional Study (Roth, 2014)
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Cohort Study (prospective)

 

exposed 

not 

exposed 

diseased 

diseased 

Begin of 

study 

time 

study 

population 

(disease free) 

healthy 

healthy 
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Case-Control Study
  

exposed 

not 

exposed 

cases 

controls 

Begin of 

study 

time 

exposed 

not 

exposed 

study 

population 
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Causality and Observational Studies

“I wish they didn’t turn on that seatbelt 

sign so much! Every time they do so,

it get’s bumpy”



 In an observational study we have no control (or no 

idea) of the mechanism that assigned the “subjects” to 

the different “treatment” groups.

 It might very well be the case that some (hidden) 

predictors influence both the treatment “assignment” and 

the response, i.e. we have confounders.

 Let’s have a look at them in more detail.
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Causality and Observational Studies



 In an observational study you would see an association

between treatment and response, although there is no

underlying cause–effect relationship.

 “Solution” in observational studies: Record potential 

confounders, use them in models later on.

 But: What about hidden confounders?
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Confounder

Treatment Response

Confounder



 Argument of (famous) R.A. Fisher working for the tobacco 

industry: “There might be common cause involved” (i.e., 

a confounder)

 Here: Experiment not feasible due to ethical issues. Any 

volunteers?
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Early Research Regarding Smoking and Lung Cancer

Smoking Lung cancer

Genotype
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Spurious Associations: Widespread Phenomenon 

New England Journal of Medicine
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Spurious Associations: if you search long enough…

See http://www.tylervigen.com/spurious-correlations

http://www.tylervigen.com/spurious-correlations


Experimental Studies

Ingredients

Terminology

Randomization and Blocking

Comparison to Observational Studies
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What is an experiment?

From Montgomery (1991): 

“Literally, an experiment is a test. A designed experiment is 

a test or series of tests in which purposeful changes are 

made to the input variables of a process or system so 

that we may observe and identify the reasons for changes 

in the output response.”
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Experimental Study



 Observation of „subjects“ or „objects“ in a controlled

setting (according to your „wishlist“)

 Examples

 Salk vaccine trial, other clinical trials

 Field test to compare different fertilizers and / or harvesting

methods

 Infection tests in greenhouse

 Psychological or pedagogical experiments 

 Different settings to optimize yield of a food production process

 Determining the lifetime of objects under different “stress 

scenarios” in the lab.
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Experimental Study



An experiment study consists of

 Different treatments (the interventions you perform on 

the system), e.g. different kinds of fertilizers.

 Experimental units, the “things” (“subjects”, “objects”) to 

which we apply the treatments, e.g. plots of land receiving 

fertilizer.

 Method that assigns treatments to experimental units
 Randomization

 Restricted randomization (blocking)

 Response(s), e.g. biomass of plants.
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Ingredients of an Experimental Study



 Experimental unit

 The “things” to which we apply the treatments

 Rule: An experimental unit should be able to receive any treatment 

(independently of the others)”.

 Measurement unit

 Actual object on which the response is measured.

 Potentially: measurement unit ≠ experimental unit (!)

40

More on Experimental Units



From Oehlert (2000):

 Six classrooms of 25 first graders each are assigned at 

random to two different reading programs.

 Evaluation is at the end of the school year through a 

common reading exam.

 Are there 6 × 25 = 150 or 6 experimental units?

 Remember: an experimental unit should be able to 

receive any treatment, independently of the others.

 Therefore: Experimental unit =
Measurement unit =
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Experimental vs. Measurement Unit: Example



Similar problems:
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Experimental vs. Measurement Unit: Example



 We have seen: Confounding can be very problematic.

 How can we protect ourselves from known (or even 

worse: unknown) confounders?

 Use randomization!

 Randomization means: The allocation of the 

experimental units to the different treatments is 

random.

 Ensures that potential confounders are “averaged out”.
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Randomization



 Want to compare new drug treatment to surgery with 

respect to five-year survival.

 We have a total of 100 patients.

 We know: surgery might be problematic for patients with 

severe disease.

 Tempting to put these in drug group ( confounds

patient status with treatment)

 Better: make up basket with 50 red and 50 white balls (or 

toss a coin). Draw ball for each patient. Red means 

surgery, white drug.
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Randomization: Example (from Oehlert, 2000)



 Whatever feature of the experimental units are associated 

with our response, randomization ensures that 

approximately half of the patients with this feature is being 

put in each of the treatment groups.

 Here: Approximately half of the “strong” get the drug etc.

 Randomization ensures that the only systematic 

difference between the groups is the treatment.

 This is why a (properly) randomized experiment allows us 

to make a statement about causality.
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Why is Randomization so Powerful?
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Randomization Protects us from Confounders

Treatment Response

B
CA

F

D

E

?



 Cochran and Cox (1957):

“Randomization is somewhat analogous to insurance, in 

that it is a precaution against disturbances that may or 

may not occur and that may or may not be serious if they 

do occur. It is generally advisable to take the trouble to 

randomize even when it is not expected that there will be 

any serious bias from failure to randomize. The 

experimenter is thus protected against unusual events 

that upset his expectations.”

 Oehlert (2000): 

“Randomization generally costs little in time and trouble, 

but it can save us from disaster.”

47

Randomization



 We can and (should) also randomize (or use blocking)

 Order in which experimental units are used (if not used 

simultaneously).

 Locations at which experimental units are used (if not all at the 

same location).

 If using multiple measuring instruments: randomize which units 

are measured on which instruments.

 …
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Randomizing other Things



 In the preceding experiment we would better consider 
 age

 gender, 

 health status

 etc.

and do the randomization and comparison “within” 

homogeneous groups.

 This strategy is known as blocking.

 A block is a subset of the experimental units that is 

more homogenous than the entire set.

 We already know that the response of different blocks 

can be (substantially) different.

 Blocking increases precision of an experiment, 

because we use subsets of homogeneous units.
49

Blocking, a Restricted Randomization Scheme



General rule is:
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Randomization and Blocking.

“Block what you can; randomize what you cannot”



 Different experimental units will give different responses 

to the same treatment. 

 Applying the same treatment to the same experimental 

unit (if possible) will result in different responses.

 Experiments must be designed such that we have an 

estimate of this so called experimental error. 

 This is achieved by using replicates, i.e. applying the 

same treatment to multiple experimental units.

 If we have no idea of the experimental error, we cannot

compare treatments (i.e., no statistical inference is 

possible)!
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Experimental Error



 As recently seen on Swiss TV…

 Plant 1: Treatment with Music 𝐴 (just one experiment)

 Plant 2: Treatment with Music 𝐵 (again just one experiment)

52

Example: Missing Replicates



 Measure biomass after 4 weeks.

 Is the potential difference that we see due to the 

treatments (music) or is this natural variation from plant to 

plant?

 Unfortunately, the experiment doesn’t give us any 

information about the variation from plant to plant.

 We would need replicates: multiple plants receiving the 

same treatment! 
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Example: Missing Replicates



 Blinding (see also Salk vaccine field trial)

 Blinding: Evaluators don’t know which treatment is given to which 

experimental unit. 

 With humans (patients): double-blinding: Neither the evaluators

nor the patient know the assignment.

 Insurance against (unintentional) bias (e.g., due to 

expectations).
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Some More Terminology



 Control treatment

 “Standard” treatment used as a baseline for comparison with 

other treatments.

 “Null” treatment (no treatment at all)

 Important, still often forgotten (see next slide)

 Placebo

 Null treatment in case that simply the act of applying a treatment 

(whatever) has an effect.

 Often used with humans, but can also be useful in other settings.
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Some More Terminology



 Meet Mike, physiotherapist who developed a new (costly) 

therapy.

 Mike: “On average, my new daily therapy reduces the 

pain score of my patients by 30% one month after knee 

surgery.”
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Why are Controls Important? (partly based on a true story)



However…

 People not getting any treatment at all have a reduction 

of about 60% of their pain score (on average)!

 Want to make an appointment?

 Not always as obvious as here…

 You should always ask: “How does that compare to the 

standard / null treatment?”
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Why are Controls Important?



 Statement of problem / hypotheses

 Select response variable

 Determine sources of variation in response (predictors):
 factors of interest 

 nuisance factors (blocking, randomization)

 factors that can be held constant

 Choose a proper design and randomization scheme
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Guidelines for Designing Experiments (Montgomery, 1991)
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Comparison Experiment vs. Observational Study

Experiment Observational Study

Situation
Controlled:
“The settings you wish are 

the ones you get”

Given:
“What you observe is what you 

get”

Analysis Typically easy Difficult

Interpretation Causal (if properly set up) Association
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Statistical Methodological Point of View

Generalized Linear Models (GLMs)

Linear Regression

Analysis of Variance (ANOVA)

Yij = ®i + ¯j + "ij

Yi =
Pp

j=1 x
(j)

i ¯j + "i

g(E(Yi jxi)) = xTi ¯

Mostly our focus


