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1 Introduction 

1.1 What is Regression? 

Regression analysis can be seen as the duct tape of statistics. The reason why it 
is widely used is because it may yield the answer to an everyday question, namely 
how a target value of special interest depends on several other factors or causes. 
Examples are numerous and include: 

 how fertilizer and soil quality affects the growth of plants 

 how size, location, furnishment and age affect apartment rents 

 how age, sex, experience and nationality affect car insurance premiums 

In all quantitative settings, regression techniques can provide an answer to these 
questions. They describe the relation between some explanatory or predictor 
variables and a variable of special interest, called the response or target variable. 
Regression techniques are of high practical importance, and probably the most 
widely used statistical methodology. 

Example 

In an applied research project at ZHAW, we tried to understand and manage the 
fresh water consumption on board of      Edelweiss Air planes. Fresh water is 
mostly used in the toilet. Minimizing the carried amount was identified as 
important, because this reduces the weight of the airplane, and thereby fuel 
consumption and cost. The project goal was to relate the consumption on the 
number of passengers and flight duration, but also on less obvious parameters 
such as daytime and destination. Furthermore, it was required to quantify a well-
calculated reserve, to set up a simple prediction scheme and to perform 
operations management on the filling of the tank. 
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1.2 Regression Mathematics 

In the Edelweiss Air example, we can identify the fresh water consumption as the 
target value and denote it as the response variable y . Among the explanatory 
causes or predictors are number of passengers, and flight duration, plus a few 
more. These are denoted with 1 2, ,..., px x x , assuming that there are p  predictors. 
The goal is linking the target to the predictors, which could happen with this model: 

 1 2( , ,..., )py f x x x E   

The target value is obtained as the sum of some function ( )f   applied on the 
predictors, plus an error term E . Why the error? In practice, it is highly unlikely 
that 1 2( , ,..., )pf x x x  yields an all-case perfect explanation of the fresh water 
consumption. The error is there to catch the imperfection and summarizes the 
remaining variation in the response. It is assumed to be random and can neither 
be controlled or predicted. On the other hand, 1 2( , ,..., )pf x x x  is called the 
systematic or deterministic part of the regression equation. 

The task is thus to learn about the function ( )f  . In full generality, without any 
restrictions, this is a very difficult problem: function space is infinite-dimensional, 
thus there are just too many options such that we could come to a unique solution 
based on just a few dozens of observations. It has proven practical to be very 
restrictive with the form of functions ( )f   that are considered, i.e. normally, a linear 
model is assumed: 

 0 1 1 2 2 ... p py x x x E          

This setup is called linear modeling. It boils down to determine some parameters 

0 1 2, , ,..., p     from observed data points, a task we call estimation in statistics. 
Please note that this is mathematically much simpler than finding ( )f   without 
imposing any conditions.  

One might of course fear that the limitation to linear modeling is too restrictive. 
However, practice proves this not to be the case, with the main reason being that 
only the parameters, but not the predictors need to enter linearly. In particular, the 
following structure is still a linear model: 

 2
0 1 1 2 1 3 2 4 1 2( ) log( )y x x x x x E           

For such models, it is possible to estimate the parameters from a relatively low 
number of data points with the least squares algorithm that will be presented 
shortly. Using variable transformations as outlined above, linear modeling 
becomes a very rich and flexible tool. Truly non-linear models are rarely absolutely 
necessary in practice and most often arise from a theory about the relation 
between the variables rather than from necessity in an empirical investigation. Of 
course, the right variable transformations need to be found, but using some simple 
guidelines and visual displays this is a manageable task, as we will see later. 
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1.3 Goals with Regression 

There are a variety of reasons to perform regression analysis. The two most 
prominent ones are: 

Understanding on the predictor-response relation, i.e. doing inference 

In the mortality example outlined in the chapter about multiple linear regression, 
one is be interested in testing whether air pollution affects mortality, under control 
of potentially confounding factors such as weather and the socio-demographic 
variables. We will see that regression, i.e. linear modeling offers tools to answer 
whether air pollution harms in statistically significant way. Drawing conclusions on 
true causal relationship, however, is a somewhat different matter. 

Target value prediction as a function of new explanatory variables 

In the fresh water consumption example from above, an airplane crew or the 
ground staff may want to determine the amount of water that is necessary for a 
particular flight, given its parameters. Regression analysis, i.e. linear modeling 
incorporates the previous experience in that matter and yields a quantitative 
prediction. It also results in prediction intervals which give a hint on the uncertainty 
such a prediction has. In practice, the latter might be very useful for the amount of 
reserve water that needs to be loaded. 
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2 Simple Regression 
The term simple regression means that there is a response and only one single 
predictor variable. This has several practical advantages: we can easily visualize 
the two variables and their relation in a scatterplot, and the involved mathematics 
is quite a bit easier. We will first address non-parametric curve fitting, also known 
as smoothing. Later, we proceed to linear modeling which in its most basic form 
amounts to laying a straight line into the scatterplot. But as we will see, linear 
modeling can also be used for fitting curves. 

2.1 Example: Zurich Airport Data 

The example we consider for developing the methodology is from Zurich Airport. 
Every month, the number of air traffic movements as well as the number of 
passengers is reported. The two variables are named ATM and Pax, with the 
former being the predictor, and the latter being the response. The goal is to predict 
passenger figures for future months based on the flight plan, and to quantify the 
uncertainty in these forecasts. The data are publicly accessible here: 
http://www.flughafen-zuerich.ch/desktopdefault.aspx/tabid-612/ 

 

 

 

 

 

 

to understand how  

 

We could display the figures in a table, but a much better solution is to visualize 
them in a scatterplot, as shown on the next page. As the first step, we need to 
import the data into R. Assuming that the data exist in form of an Excel spread 
sheet; we recommend exporting them in a comma- or tab-separated text file. In R, 
we can then use the function read.table(), respectively one of the tailored 
versions like read.csv() (for comma separation) or read.delim() (for tab 
separation), for importing the data. This will result in a so-called data frame, the 
structure which is most suitable for performing regression analysis in R. In our 
example, the Zurich Airport Data are stored in a data frame named unique2010. 
For producing a scatterplot, we can employ the generic plot() function, where 
several additional arguments can be set. 
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> plot(Pax ~ ATM, data=unique2010) 
> title("Zurich Airport Data: Pax vs. ATM") 

 

The question is how the systematic relation between Pax and ATM can be 
described. We could imagine that an arbitrary, smooth function ( )f   that fits well to 
the data points, without following them too closely, is a good solution. Another 
viable and popular option would be to use a straight line for capturing the relation. 

The advantages of smoothing are its flexibility and the fact that less assumptions 
are made on the form of the relation. This comes with the price that the functional 
form generally remains unknown, and that we can overfit, i.e. adapt too much to 
the data. With linear modeling, we have the benefit that formal inference on the 
relation is possible and that the efficiency is better, i.e. less data are required for a 
good estimate. The downside of the parametric approach is that it is only sensible 
if the relation is linear, and that it might falsely imply causality. 

2.2 Scatterplot Smoothing 

We start out with the smoothing approach. The goal here is to visualize the 
relation between Pax and ATM, but we are not after the functional form of ( )f  . 
Because there is no parametric function that describes the response-predictor 
relation, smoothing is also known as non-parametric regression analysis.  

2.2.1 Running Mean Estimation 

A simple yet intuitive smoother is the running mean. In colloquial language it 
involves taking a fixed width window on the x -axis, and compute the mean over all 
the within-window data point’s y -values. That value then is the estimate for the 
function value at the window center.  
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The above illustration shows the running mean estimate at 21'000ATM   with 
window width 2000  . The y -values of all the observations which fall into the 
grey highlighted region are averaged, which yields a value of 1'716'195 . The 
respective point is marked by the red symbol in the plot. The grey window is the 
slid over the x -axis which defines the running mean smooth. In mathematical 
notation, the running mean estimate for the unknown function ( )f   denoted as 
ˆ ( )f  , is defined as follows: 

 1

1

ˆ ( )

n

i i
i

n

i
i

w y
f x

w










, with weights 

1 | | / 2

0
i

i

if x x
w

else

 
 


. 

The parameter   is the window width and controls the amount of smoothing. 
Small values mean close adaptation to the data, while large values indicate 
averaging over more data points and thus a smoother solution. In R, running mean 
smoothing can be done with function ksmooth(): 

> fit <- ksmooth(unique2010$ATM,unique2010$Pax, kernel="box", 
                 bandwidth=1000, n.points=24, x.points= 
                 unique2010$ATM) 

The argument kernel="box" tells R to use a rectangular kernel, and the 
bandwidth=1000 argument steers the window width. Finally, n.points and 
x.points regulate at how many and which x -values the estimate is computed. 
We chose to do that for the observed ATM values. The solution can be plotted: 

> plot(Pax ~ ATM, data=unique2010, main="...") 
> title("Zurich Airport Data: Pax vs. ATM") 
> lines(fit, col="red", lwd=2) 
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Perhaps a little more smoothing is required here, because we would hardly believe 
in a (systematic) relation that shows a decrease in passengers if the number of air 
traffic movements raises from 20’500 to 21’000. However, we leave this as an 
exercise to the reader. To point out an important drawback of running mean 
estimation, we increase the number of evaluation points to 1000 that uniformly 
cover the range of ATM and then plot the result: 

> fit <- ksmooth(unique2010$ATM,unique2010$Pax, kernel="box", 
                 bandwidth=1000, n.points=1000) 
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We obtain a function that is not smooth at all, but this is not a surprise. By 
construction, due to the rectangular kernel, data points drop out of the running 
mean computation abruptly, and hence we have the jumps.  

2.2.2 Gaussian Kernel Smoothing 

We can fix the above problem by using a kernel with infinite support, i.e. none of 
the weights should be exactly zero. An obvious choice for a weighting scheme that 
puts emphasis on nearby data points, down weighs distant observations and is 
never zero is the probability density function of the Gaussian distribution. The 
definition is: 

 1

1

ˆ ( )

n

i i
i

n

i
i

w y
f x
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







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exp i

i

x x
w


 

  
 

. 

Thus, there is no longer a window that determines which data points take part in 
the running mean computation. But we use a Gaussian bell curve that determines 
the weights for the observations – no matter where, always all of them are used to 
compute the estimate. As we can easily imagine, this solves the issue with the 
data points that are lost abruptly, and the result is a smooth function 

 

Above, computing a Gaussian Kernel Smoother is illustrated. At 21'000x  , a 
weighted average over all data points’ y -values is taken. The weights come from 
the grey Gaussian bell curve. Its width is such that it corresponds to 
bandwidth=1000 in R, which means that the 25%-quantile of the distribution is at 

0.25 1'000 250     and the 75%-quantile is at 250 . Fitting in R is convenient, i.e.: 
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> fit <- ksmooth(unique2010$ATM, unique2010$Pax, 
                 kernel="normal", n.points=1000, 
                 bandwidth=1000) 

 

While visually, the solution may look more or less reasonable here, a closer 
inspection suggests that it is rather sensitive to outliers. Moreover, there is a 
severe boundary effect associated with both the running mean and the Gaussian 
kernel estimator. Because near the boundaries, we do not observe a full window, 
we have a bias. At the lower end of the x -range, the smoother overestimates, 
while at the upper end of the range, it underestimates. 

2.2.3 The LOESS Smoother 

There is a wealth of literature that suggests improvements on kernel smoothing. 
However, with this scriptum, we will not further embark in that topic. But we 
present the LOESS smoother: it is a robust procedure that has nicer mathematical 
properties than the kernel smoothers, and that should be preferred in practice. 
LOESS is based on local parametric regressions: for obtaining the estimate at x , 
linear or polynomial models are fitted using data points in a neighborhood of x , 
weighted by their distance from x . The type of models used (linear or polynomial), 
the size of the neighborhood and also the type of fitting algorithm (least squares or 
robust) can be controlled in R. We do here without giving any theoretical details 
about the LOESS estimator. This is beyond the scope of our course, and it also 
requires intimate knowledge of linear modeling, which we do not yet have. 
However, as we will encounter LOESS smoothers throughout our studies in linear 
modeling, and it is a handy tool for visualizing the relation between two variables, 
we provide the necessary R commands: 

> smoo <- loess.smooth(unique2010$ATM, unique2010$Pax) 
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For the loess.smooth() function, we need to specify the x  and y  variables. 
There are some further adjustments that can be made, but this is rarely necessary, 
because the default settings usually yield good results. Argument span controls 
the amount of smoothing and is set to 2/3. Per default, we have degree=1 which 
means local linear fitting, setting this to 2 means more flexibility through local 
polynomial fitting. Finally, argument family is set to "symmetric", thus robust 
fitting is applied. A least squares fitting routine can be invoked by using 
"gaussian". Lastly, we can control the number of points at which the smoother 
is evaluated. Mostly, the default of evaluation=50 is fine, though it may 
sometimes be required to increase that number for relations with high curvature. 
We leave it to the reader to experiment with those settings and focus on displaying 
the result. 

> plot(Pax ~ ATM, data=unique2010, main="...") 
> lines(smoo, col="red", lwd=2) 

 

We observe that the LOESS fit is almost, but not exactly a straight line, as it shows 
some progressive increase. Surely, when comparing to the Running Mean and the 
Gaussian Kernel Smoother, this is the most trustworthy result so far.  
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2.3 Simple Linear Regression 

Instead of the non-parametric smoothing approaches, we will now turn our 
attention to linear modeling in the case where there is a response variable y  and 
only one single predictor x . This problem is known as simple linear regression. 

2.3.1 The Model 

In our example, it seems logical that the more air traffic movements we have, the 
more passengers there are – at least on average. Also, it seems plausible that the 
systematic relation is well represented by a straight line. It is of the form: 

 0 1Pax ATM    , respectively 1( ) of x x    

While this is the mathematically simplest way of describing the relation, it proves 
itself as very useful in many applications. And as we will see later, just some slight 
modifications to this concept render it to a very powerful tool when it comes to 
describing predictor-response relations. The two parameters 0 1,   are called 
intercept and slope. The former is the expected value of y  when 0x  , and the 
latter describes the increase in y  when x  increases by 1 unit. 

We now bring the data into play. It is obvious from the scatterplot that there is no 
straight line that runs through all the data points. It may describe the systematic 
relation well, but there is scatter around it, due to various reasons. We attribute 
these to randomness, and thus enhance the model equation by the error term: 

 0 1i i iy x E    , for all 1,...,i n . 

The index i  stands for the observations, of which there are n  in total. In our 
example, we have 24n  . The interpretation of the above equation is as follows: 

iy  is the response or target variable of the 
thi  observation. In our example, 

this is the passenger number in the 
thi  month. Note that the response is a 

random variable, as it is the sum of a systematic and a random part. 

ix  is the explanatory or predictor variable, i.e. the number of air traffic 
movements in the 

thi  month. The predictor is treated as a fixed, 
deterministic value and has no randomness. 

0 1,   are unknown parameters, and are called regression coefficients. These 
are to be estimated by using the data points which are available. 0  is 
called intercept, whereas 1  is the slope. The latter indicates by how much 
the response changes, if the x -value is increased by 1 unit. 

iE  is the error term. It is a random variable, or more precisely, the random 
difference between the observed value iy  (which is seen as the realization 
of a random variable) and the model value fitted by the regression. 
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2.3.2 The Least Squares Algorithm 

The goal in simple linear regression is to lay a straight line through the data points. 
If we did this by eyeballing, the solution between different persons would perhaps 
be similar, but not identical. It is clear that we cannot leave any arbitrariness for 
the regression line. Thus, we need a clear definition for the best fitting line, as well 
as an algorithm that unveils it. 

Our paradigm for linear modeling is to determine the regression line 
such that the sum of squared residuals is minimal! 

There are a number of reasons for this paradigm which are explained below. We 
illustrate the least squares idea with the help of a very nice Java applet found at 
http://sambaker.com/courses/J716/demos/LeastSquares/LeastSquaresDemo.html: 

 

The applet allows interactive search of the solution by positioning the regression 
line according to the users wish. The squared residuals and their total sum can be 
displayed. While experimentation by hand will eventually lead to the minimum, it is 
cumbersome and laborious. Is there a mathematical procedure that finds the 
solution? The answer is yes, it is the ordinary least squares (OLS) algorithm. 

Picking up the above paradigm, the goal is to fit the regression line such that the 
sum of squared differences ir  between the observed values iy  and the regression 
line is minimal, given a fixed set of data points 1,...,( , )i i i nx y  . We can thus define the 
following function that measures the quality of the fit: 

2 2 2
0 1 0

1 1 1

ˆ( , ) ( ) ( ( )) min!
n n n

i i i i i
i i i

Q r y y y x   
  

          
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The goal is to minimize ( , )Q   . Since the data are fixed, this has to be done with 
respect to the two regression coefficients 0 1,  . Or in other words, the parameters 
need to be found such that the sum of squared residuals is minimal. The idea for 
the solution is to set the partial derivatives to zero: 

 
0

0
Q







 and 
1

0
Q







. 

We leave the calculus as an exercise, but the result is a linear equation system 
with two equations and the two unknowns 0 1,  . In linear algebra, these are known 
as the normal equations. Under some mild conditions (in simple linear regression 
this is: we have at least two data points with different values for ix ), the solution 
exists, is unique and can be written explicitly: 

1
1 2

1

( )( )ˆ
( )

n

i ii
n

ii

x x y y

x x
 



 






 and 0 1
ˆ ˆy x   . 

We put a hat symbol (“^”) on the optimal solutions. This is to indicate that they are 
estimates, i.e. determined from a data sample. Given the data pairs 1,...,( , )i i i nx y   
they could now be computed with a pocket calculator. Or better, and more 
conveniently, with R: 

> lm(Pax ~ ATM, data=unique2010) 
 
Call: 
lm(formula = Pax ~ ATM, data = unique2010) 
 
Coefficients: 
(Intercept)          ATM 
 -1197682.1        138.8 

The lm() command (from linear modeling) is based on the formula interface. The 
relation has to be provided in the form ~y x , and with argument data, it is 
specified in which data frame these variables can be found. The output repeats the 
function call and provides the estimates 0̂  and 1̂ .  

The interpretation of this solution is straightforward: every additional air traffic 
movement on average provides 1̂ 138.8   additional passengers. And if there 
were no air traffic movements, we would have 0

ˆ 1'197'682    passengers. While 
the solution for 1̂  is plausible, this is not the case for 0̂ . How can this happen? 

It is because the observed set of data points is very far to the right of 0x  . It tells 
us that the linear relation we identified does not hold for very small numbers of air 
traffic movements. From a practical viewpoint, this is well acceptable. If the 
demand was that much smaller at Zurich Airport, it would be serviced by smaller 
airplanes. Or in other words: the regression line (at best) holds for the data we 
observed, and not for hypothetical values far beyond the range of observed 
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x -values. Thus, we do not need to worry much about the negative value for 0̂ . 
Some further explanations on this as well as a potential remedy are provided later 
in this script. Using the estimated parameters, we obtain the fitted values, defined 
as: 

 0 1
ˆ ˆˆi iy x    for all 1,...,i n . 

These can of course be interconnected by the regression line. We here address 
the issue how the fitted values are accessed in R, and how the regression line is 
visualized: 

> fit <- lm(Pax ~ ATM, data=unique2010) 
> fitted(fit) 
      1       2       3       4       5       6       7  
1654841 1808312 2165068 2156465 2184911 2250545 2108731  
      8       9      10      11      12      13      14  
2062107 1493184 1902115 1456135 1679680 1637219 1718394  
     15      16      17      18      19      20      21  
2008267 1994391 2088333 2074873 1947490 1935418 1791799  
     22      23      24  
1733381 1406597 1566867 
 
> plot(Pax ~ ATM, data=unique2010, pch=20) 
> title("Zurich Airport Data: Pax vs. ATM") 
> abline(fit, col="red", lwd=2) 

 

The next issue that needs to be addressed is the quality of the solution. The OLS 
algorithm could be applied to any set of data points, even if the relation is curved 
instead of linear. In that case, it would not provide a good solution. The next 
section digs deeper and goes beyond the obvious. 
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2.3.3 Assumptions for OLS Estimation 

The negative value for the estimated intercept had raised some doubts as to 
whether the OLS solution is trustworthy. We argued that 0x   is far beyond the 
range of observed data, and that there is no guarantee that the regression line 
holds there. We can generalize this: on any dataset we perform regression, it 
remains (at best) unclear whether we can extrapolate the straight line, but most 
likely it is not the case. Within the range of observed data, we can make more 
statements. The OLS estimates are trustworthy, if: 

[ ] 0iE E   

The expectation (we could also say the best guess if we need to predict) for the 
errors is zero. This means that the relation between predictor and response is a 
linear function, or in our example: a straight line is the correct fit, there is no 
systematic deviation. Next, we require constant scatter for the error term, i.e.  

2( )i EVar E  . 

Finally, there must not be any correlation among the errors for different instances, 
which boils down to the fact that the observations do not influence each other, and 
that there are no latent variables (e.g. time) that do so. In particular, 

( , ) 0i jCov E E   for all i j .  

Last, we require that the errors are (at least approximately) normally distributed: 

2~ (0, )i EE N   

The OLS algorithm will not yield a good solution under the presence of severe 
outliers or with a skewed error distribution. Moreover, all significance tests and 
confidence intervals that are presented later strictly rely on the Gaussian 
assumption. 

2.3.4 Residual Plots 

Before the regression line is used, we need to check if the assumptions from 
section 2.3.3 are met. Some investigations on expectation, variance and 
distribution of the errors can be performed with the usual y  vs. x  scatterplot. 
However, it has proven more powerful to inspect residual plots that are directed 
towards identifying potential violations. As it turns out, the human eye is easily 
deceived when it needs to judge if some data points follow an inclined straight line. 
However, it is much better in detecting deviations from the horizon. This is utilized 
in the first residual plot, where the effect of the regression line is subtracted. This 
means that the residuals are plotted against the predictor. The visualization can be 
enhanced by adding a horizontal line and a scatterplot smoother (we choose a 
LOESS). 
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> ## Residuals vs. Predictor 
> xx <- unique2010$ATM 
> yy <- residuals(fit) 
> plot(xx, yy, xlab="ATM", ylab="Residuals", pch=20) 
> title("Residuals vs. Predictor ATM") 
> lines(loess.smooth(xx,yy),col="red") 
> abline(h=0, col="grey") 

Another option is to plot the residuals versus the fitted values. This is known as the 
Tukey-Anscombe plot, according to the researchers who made it popular. As can 
be seen below, the two plots are one and the same except for the different x -axis. 
This is no surprise, because the fitted value 0 1

ˆ ˆŷ x    stems from a linear 
transformation of x . While plotting residuals vs. predictor is perhaps the more 
natural way of doing it in simple regression, the Tukey-Anscombe plot provides a 
simple and intuitive summary in multiple regression, where several predictors 
exists. Thus, it is often also applied for simple regression. 

> ## Tukey-Anscombe Plot 
> uu <- fitted(fit) 
> plot(uu, yy, xlab="Fitted", ylab="Residuals", pch=20) 
> title("Residuals vs. Fitted Values") 
> lines(loess.smooth(uu,yy),col="red") 
> abline(h=0, col="grey") 

 

The smoother deviates from the horizon, and there is quite a clear kink in the 
relation. It seems as if the residuals for low and high ATM (resp. fitted) values are 
systematically positive, and negative for medium ATM values. If that is the case, it 
is a violation of the [ ] 0iE E   assumption; a straight line is not the correct fit and 
improving the model is mandatory. For the moment however, we keep in mind that 
some doubts are raised by this residual plot, but continue with developing theory. 
The constant variance assumption can also be judged from the above plot. It 
seems as if the scatter is more or less constant for the entire range of ATM values. 
Or maybe better: there is no obvious violation.  
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We proceed to checking if the residuals follow a Gaussian distribution. This can be 
done with a so-called Normal Plot, sometimes also named QQ-Plot, where the 
ordered residuals are shown versus quantiles of the Gaussian distribution. The 
data must more or less follow a straight line. This is sufficiently met here in our 
case; the residuals are even slightly short-tailed with respect to the Gaussian. An 
in-depth discussion about what still fits within the assumption and what does not is 
again postponed to later. 

> qqnorm(residuals(fit)) 
> qqline(residuals(fit)) 

 

One last assumption has not been verified yet, namely the one whether the errors 
are uncorrelated. In many regression problems, this is the most difficult to verify. 
Also here, we could ask ourselves whether events such as the 9/11 terror attacks, 
or the SARS lung disease might have unduly influence. They could have led to 
back-to-back months with lower seat load factors, thus less passengers than 
expected by the air traffic movements during normal periods, and by this induce 
correlated errors. Because none of these events falls within our period of 
observation, we do not pursue the issue here. It will be addressed in detail when 
we talk about multiple linear regression. 

2.3.5 History of Least Squares 

You may find it somewhat arbitrary that we chose the sum of squares residuals as 
the criterion to minimize. We might as well optimize the absolute values’ sum of 
the residuals, the so-called 1L -regression. There are a number of reasons to prefer 
the former. The first one lies in history, least squares was simply the first such 
algorithm that was used in practice. The English Wikipedia site on the term least 
squares holds the following information: 
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On January 1, 1801, the Italian astronomer Giuseppe Piazzi discovered the dwarf 
planet Ceres and was able to track its path for 40 days before it was lost in the 
glare of the sun. Based on these data, astronomers desired to determine the 
location of Ceres after it emerged from behind the sun without solving the 
complicated Kepler's nonlinear equations of planetary motion. The only predictions 
that successfully allowed relocating Ceres were those performed by the 24-year-
old Carl Friedrich Gauss using the least squares algorithm. 

Gauss did not publish the method until 1809, when it appeared in volume two of 
his work on celestial mechanics, together with a mathematical optimality result, the 
Gauss-Markov theorem (see below). In the meantime, the OLS algorithm was 
independently formulated by Adrian Marie Legendre, who was the first to publish it 
in 1806 as an appendix to his book on the paths of comets. Below, see a table of 
Piazzi’s observations, and portraits of Gauss (left) and Legendre (right).  

 

 

 

 

 

 

Was it by coincidence that OLS was invented first? The answer is no: the quality 
function ( , )Q    is differentiable, so that a unique solution can be found and written 
in explicit form. This is not possible with 1L -regression, because the absolute value 
function is not continuously differentiable. While this problem can nowadays be 
circumvented with numerical methods, this was not yet feasible at the beginning of 
the 19th  century. The reason why OLS is still popular today is because there are 
mathematical optimality results, and because under Gaussian errors, the exact 
distribution of the estimated coefficients and a number of test statistics is known. 

2.3.6 Mathematical Optimality of OLS 

The main result is the Gauss-Markov theorem (GMT) that dates back to 1809: 

Under the model assumptions from section 2.3.3 (zero expected value, 
constant variance and uncorrelatedness for the errors), the OLS estimates 

0 1
ˆ ˆ,   are unbiased (i.e. 0 0

ˆ[ ]E    and 1 1
ˆ[ ]E   ). Moreover, they have 

minimal variance among all unbiased, linear estimators, meaning that they 
are most precise. Please note that Gaussian errors are not required. 

This theorem does not tell us to use OLS all the time, but it strongly suggests 
doing so if the assumptions are met. In cases where the errors are correlated or 
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have unequal variance, we will do better with other algorithms than OLS. Also, 
note that even though normality is not required for the GMT, there will be non-
linear or biased estimates that do better than OLS under non-Gaussian errors. 

As we have seen just before, the regression coefficients are unbiased if the 
assumptions from section 2.3.3 are met. It is also very instructive to study the 
variance of the estimates. It can be shown that: 

2
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These results also show how a good experimental design can help to improve the 
quality of the estimates, or in other words, how we can obtain a more precisely 
determined regression line. Namely: 

- we can increase the number of observations n . 
- we have to make sure that the predictors ix  scatter well. 
- by using a suitably-chosen predictor, we can keep 2

E  small. 
- for 0̂  it helps, if the average predictor value x  is close to zero. 

If the errors are Gaussian, then 0 1
ˆ ˆ,   are normally distributed, too. With their 

expectation and variance specified as above, the distribution is fully known. 
Additionally, the OLS solution is also the maximum likelihood estimator under 
Gaussian errors. Some further useful properties of the OLS solution (that are 
independent of the error distribution) are: 

- the regression line runs through the center of gravity ( , )x y . 
- the sum of residuals adds up to zero: 0ir  . 

The last property also implies that the mean value of the residuals is always zero. 

2.3.7 Estimating the Error Variance 

Besides the regression coefficients, we also need to estimate the error variance. It 
is a necessary ingredient for all tests and confidence intervals. The estimate is 
based on the residual sum of squares (abbreviation: RSS). 

 2 2
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In the R summary, an estimate for the error’s standard deviation ˆE  is given as the 
Residual standard error.  
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2.4 Inference 

The goal in this section is to infer the response-predictor relation with performance 
indicators and statistical tests. Note that except for 2.4.1, the assumption of 
independent, identically distributed Gaussian errors is central to derive the results. 

2.4.1 The Coefficient of Determination 

An intuitive way of measuring the goodness-of-fit of a simple linear regression 
model is with the coefficient of determination 2R , also called multiple R-squared. It 
measures which portion of the total variation is accounted for by the regression. 

 

If we needed to predict the Pax number without any knowledge of the ATM value, 
the best guess is the average number of passengers over the last two years. The 
scatter around that prediction is visualized by the blue arrow. However, since we 
know ATM and the regression line, we can come up with a more accurate 
forecast. The then remaining scatter is indicated by the orange arrow. It is obvious 
that the regression line is more useful, the smaller the orange arrow is compared 
to the blue. This can be measured by taking one minus the quotient of the two: 
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In the numerator, the orange arrow is represented by the scatter of the data points 
around the fitted values, i.e. the RSS. The denominator has the scatter of the data 
points around their mean. This is the total sum of squares (TSS). 
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The maximum value is 2 1R  . It is attained if all data points are on the regression 
line. The other extreme case is 2 0R   and means that the blue and orange arrows 
have the same size. Then, the regression line is flat ( 1̂ 0  ) and does not have 
any explanatory power. The actual value can be read from the R summary: 

> summary(fit) 
Coefficients: Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.198e+06  1.524e+05  -7.858 7.94e-08 *** 
ATM          1.388e+02  6.878e+00  20.176 1.11e-15 *** 
--- 
Residual standard error: 59700 on 22 degrees of freedom 
Multiple R-squared: 0.9487,  Adjusted R-squared: 0.9464 
F-statistic: 407.1 on 1 and 22 DF, p-value: 1.11e-15 

The result here is 2 0.9487R  , thus most of the variation in the Pax variable is 
explained by ATM. It is important to note that for simple linear regression, 2R  is 
equal to the squared Pearson correlation coefficient between predictor and 
response. Moreover, the summary reports the adjusted R-squared. Its value is 
always smaller but usually close to 2R , because: 
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An important question is now: what is a good value for 2R ? Unfortunately, it 
remains without an answer. There are no general guidelines as to which value 
needs to be met for a regression to be useful, and there are no formal tests for 2R . 
And please note that a high value for 2R  does not automatically mean that we 
have a good fit that we can rely on – often, further improvement by alternative 
models (i.e. by using transformations) is still possible. 

2.4.2 Confidence Interval for the Slope 

The estimated slope 1̂  is a random variable and has variability. If the assumptions 
for the OLS algorithm are met, we have the Gauss-Markov theorem telling us its 
value will be close to the truth 1 , but not right there. Also, the value 1̂  was 
computed from a sample. Had we had a different one, or would we just omit one 
single data point from our current one, 1̂  would turn out different. The goal is to 
reflect that uncertainty with a 95% confidence interval (CI). The formula is: 

 
1̂

1 0.975; 2
ˆ ˆnqt


   , resp. 2 2

1 0.975; 2 1
ˆ ˆ ( )

n

n E ii
qt x x  

   ,  

where 0.975; 2nqt   is the 97.5% quantile of Student’s t-distribution with 2n  degrees 
of freedom. The colloquial interpretation is that the interval holds all values which, 
besides the point estimate 1̂ , are plausible for 1 . In R, one types: 

> confint(fit, "ATM") 
       2.5 %  97.5 % 
ATM 124.4983 153.025 
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We estimated the increase in passengers per additional air traffic movement as 

1̂ 138.8  . That is the best guess given the data, but values between 124.5 and 
153.0 are also plausible. This reflects the uncertainty and variability in our 
regression analysis. If the 95%-CI seems unacceptably wide, all we can do is 
trying to bring 

1̂

ˆ


  down, i.e. have more or better data, see section 2.3.6. 

2.4.3 Testing the Slope 

For finding out whether an arbitrary value b  is plausible for the slope, we can 
check whether it is contained in the 95%-CI from above. Alternatively, there is a 
test for the null hypothesis 0 1:H b  . The most popular variant is 0 1: 0H   : this 
is asking if the slope could be zero, which would mean that the regression line 
runs horizontally and the predictor x  has no influence on the response y . The 
natural goal is to reject the null for gaining evidence that the relation between y  
and x  exists. One usually tests two-sided on the 95% level, i.e. the alternative is 

1:AH b  . The test statistic and its distribution are as follows: 
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Student’s t-distribution with 2n  degrees of freedom can be used to determine 
acceptance and rejection regions, as well as the p-value. In fact, both the test 
statistic (t value) and the p-value (Pr(>|t|)) for 0 1: 0H    are routinely given 
in the R summary output: 

> summary(fit) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -1.198e+06  1.524e+05  -7.858 7.94e-08 *** 
ATM          1.388e+02  6.878e+00  20.176 1.11e-15 *** 
--- 
Residual standard error: 59700 on 22 degrees of freedom 
Multiple R-squared: 0.9487,  Adjusted R-squared: 0.9464 
F-statistic: 407.1 on 1 and 22 DF, p-value: 1.11e-15 

We have very strong evidence for 1 0   here, and thus the null hypothesis is 
rejected with a p-value of 151.1 10 . The fact of rejection was already clear from the 
95%-CI which contains all null hypotheses that are not rejected – and zero was not 
therein – with a huge margin, that is, and hence the extreme p-value.  

It is very important to stress again, that all confidence intervals and test results are 
only to be trusted if the assumptions for OLS fitting (i.e. zero expectation, constant 
variance, Gaussian distribution and uncorrelatedness of the errors) are closely 
met. If any clear deficiencies were found from the residuals plots, it is mandatory 
to improve the model before these results are reassessed! 
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2.4.4 Testing the Intercept 

In many simple linear regression problems, theory dictates that we have a 
response of 0y   whenever 0x  . That is the case with the Zurich Airport Data, 
too. If there were no air traffic movements, we would not see any passengers. 
However, it is hardly ever a good idea to fit a model without an intercept term. This 
forces the regression line to go through the origin which is a very strong restriction, 
that in most cases leads to a poor fit. 

Commonly, the reason for the poor fit is because the data points are far off 0x  . 
This leads to very high leverage with respect to 0 , and just some slight non-
linearity between response and predictor results in an intercept that is markedly 
different from zero. This happens in our example where 0

ˆ 1'197'682   . In 
analogy to sections 2.4.2 and 2.4.3, tests and confidence intervals for 0  exist. For 
the Zurich Airport data, the null hypothesis 0 0: 0H   is strongly rejected with a p-
value of 87.9 10 , and the confidence interval is: 

> confint(fit, "(Intercept)") 
               2.5 %    97.5 % 
(Intercept) -1513786 -881578.2 

However, both test and confidence interval for 0  are of relatively low practical 
importance. As a general rule, we should not fit regression models without an 
intercept term. If the null is not rejected and thus zero is a plausible value, it is still 
better and safer to keep it in the model. If it turns out to be significantly different 
from zero, take it as evidence for either some non-linearity or calibration errors in 
the data. In these latter cases, the results will be clearly worse (i.e. strongly 
biased) without the intercept. We close here with the remark that for many 
regression problems which need to run through the origin, using the log-log-model 
displayed in section 2.6.4 is the best choice. 

2.5 Prediction 

One of the primary goals with linear regression is to generate a prediction for y , 
given the value of x . The result is the conditional expectation for y  given x , i.e. 
what we expect for y  if the predictor value x  is known: 

 0 1
ˆ ˆˆ[ | ]E y x y x     

For 24‘000 air traffic movements, we expect 1'197'682 24'000 138.8 2'133'518     
passengers. Please note that only a prediction within the range of x -values that 
were present for fitting is sensible. This is called interpolation. On the other hand, 
extrapolation, i.e. a prediction beyond the boundaries of the x -values previously 
observed, has to be treated with great care: there is no guarantee that the 
regression line holds in non-observed regions of the predictor space. Thus, we 
must not predict the Pax figure for ATM values such as 50’000, 5’000 or 0. 
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In R, we can obtain the fitted values for the training data points by just typing 
predict(fit). If we want to use the regression line for forecasting with new 
x -values, they have to be provided in a data frame, where the column(s) are 
named equally to the predictor(s): 

> fit <- lm(Pax ~ ATM, data=unique2010) 
> dat <- data.frame(ATM=c(24000))  
> predict(fit, newdata=dat) 
1 2132598 

2.5.1 Confidence Interval for the Regression Line 

As we had seen above in section 2.4.2, the regression coefficients are random 
variables. Thus, also the regression line is a random variable, and might have 
turned out to be different with another sample (even if from the same population). 
Thus, it is important to understand, quantify and visualize the variability of the fitted 
value. This is done on the basis of a 95%-CI for the conditional expectation. The 
formula is: 

 95%-CI for [ | ]E y x : 
2

0 1 0.975; 2 2
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1 ( )ˆ ˆ ˆ
( )

n E n

ii

x x
x qt

n x x
  




    


 

The formula itself is of relatively little importance for the practitioner, because that 
functionality is pre-existing in R. The syntax is: 

> predict(fit, newdata=dat, interval="confidence") 
           fit     lwr     upr 
     1 2132598 2095450 2169746 

The meaning of this output is as follows: for an ATM value of 24'000 , we expect 
2'132'598  passengers. A 95%-CI for that conditional expectation ranges from 
2'095'450  to 2'169'746 .  

2.5.2 Prediction Interval for Future Data Points 

While the above 95%-CI tells characterizes the variability in the fitted value, it does 
not tell us where the (future) y -value will be, i.e. what number of passengers we 
will observe for a given ATM value. The reason is that (also within the training 
data), the observed y -values scatter around the regression line (i.e. their 
conditional expectation). Taking this into account, we can derive a 95% prediction 
interval (PI) for y . The formula is: 

 95%-PI for y : 
2

0 1 0.975; 2 2

1

1 ( )ˆ ˆ ˆ 1
( )

n E n

ii

x x
x qt

n x x
  




     


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The difference in the formula is that another unit of ˆE  is included to account for 
the scatter of the data points around the regression line. Again, the formula is 
implemented in R: 

> predict(fit, newdata=dat, interval="prediction") 
           fit     lwr     upr 
     1 2132598 2003343 2261853 

Because we are still predicting for an ATM value of 24'000 , we the conditional 
expectation remains at 2'132'598  passengers. A 95% prediction interval for a 
future observation when there are 24'000  air traffic movements ranges from 
2'003'343  to 2'261'853. 

2.5.3 Visualizing Confidence and Prediction Intervals 

It is very instructive to compute point-wise CIs and PIs and to display them in the 
xy -scatterplot, along with the regression line. There is no straightforward 
procedure in R to do so, but some rather tedious handwork is required. A possible 
solution is as follows: 

> dat  <- data.frame(ATM=seq(18000, 26000, length=200)) 
> ci   <- predict(fit, newdata=dat, interval="confidence") 
> pi   <- predict(fit, newdata=dat, interval="prediction") 
> plot(Pax ~ ATM, data=unique2010, pch=20) 
> title("Pax vs. ATM with 95%-CI and 95%-PI") 
> lines(dat$ATM, ci[,2], col="green") 
> lines(dat$ATM, ci[,3], col="green") 
> lines(dat$ATM, pi[,2], col="blue") 
> lines(dat$ATM, pi[,3], col="blue") 
> abline(fit, col="red", lwd=2) 

 

19000 21000 23000 25000

1
4

00
0

00
1

80
0

00
0

22
0

00
0

0

ATM

P
a

x

Pax vs. ATM with 95%-CI and 95%-PI

95%-CI
95%-PI



Applied Statistical Regression  2 Simple Regression 
 

 Page 27 

The result is a confidence region for the regression line, and a prediction region for 
future observations. The interpretation is that the former contains all plausible 
regression lines. The latter indicates how precisely we can forecast future 
observations. While the 95%-CI turns out to be rather small here, reflecting a high 
confidence in the estimated regression line, the 95%-PI is bigger an reflects the 
non-understood scatter of the observations due to reasons such as differing seat 
loads factors, cargo flights, et cetera. 

2.6 Model Extensions 

So far, linear regression was synonym to fitting a straight line in an xy -scatterplot. 
However, it has to offer much more: we can also fit curves, as long as we can 
describe them with a relation that is linear in the regression coefficients. The 
following example motivates why fitting curves can be a necessity. 

2.6.1 Example: Automobile Braking Distance 

An automobile magazine tests summer tires with respect to the braking 
performance that is achieved. For acquiring data, a set of 26 test drives are made, 
where at various speeds the stopping distance is measured after a “pedal-to-the 
metal” braking procedure. The goal is to estimate the deceleration parameter. 

obs speed brdist 
1 19.96 1.60 
2 24.97 2.54 
3 26.97 2.81 
4 32.14 3.58 
5 35.24 4.59 
6 39.87 6.11 
7 44.62 7.91 
8 48.32 8.76 
9 52.18 10.12 

10 55.72 11.62 
11 59.44 13.57 
12 63.56 15.45 
... ... ... 
24 111.97 51.09 
25 115.88 50.69 
26 120.35 57.77 
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Apparently, the relation between braking distance and speed is not a straight line, 
but seems to have a parabolic form. This is not surprising, as it is well known from 
physics that the energy and thus the braking distance go with the square of the 
speed, i.e. at double speed it takes four times as long to standstill. Moreover, there 
is some variability in the data. It is due to factors that have not been taken into 
account, mostly the surface conditions, tire and brake temperature, head- and 
tailwind, etc. 

 

Fitting a plain linear function, i.e. laying a straight line through the data points 
results in a poor and incorrect fit. We have a strong systematic deviation from the 
regression line, and the Tukey-Anscombe plot shows a strong violation of the zero 
error assumption. As a way out, we better fit a quadratic function: 

2
0 1i i iBrDist Speed E     , respectively 

0 1i i iy x E      , where 2 2
i i ix x Speed    

The above model still is a simple linear regression problem. There is only one 
single predictor, the coefficients 0 1,   enter linearly and can be estimated with the 
OLS algorithm. Owing to the linearity, taking partial derivatives still works as usual 
here, and an explicit solution for 0 1

ˆ ˆ,   will be found from the normal equations. 
In R, the syntax for fitting the quadratic function is as follows: 

> fit.q <- lm(brdist ~ I(speed^2), data=abd) 

When using powers as predictors, we should always use function I(). It prevents 
that the power is interpreted as a formula operator, when it in fact is an arithmetic 
operation that needs to be performed on the predictor values. It is important to 
note that the quadratic relation can either be interpreted as a straight line in a 
y  vs. 2x  plot, or as a parabola in a regular y  vs. x  scatterplot. The following code 
can be used for visualizing the result: 
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> ## Braking Distance vs. Speed^2 
> plot(brdist~speed^2, data=abd, main="...") 
> abline(fit.q, col="red", lwd=2) 
>  
> ## Braking Distance vs. Speed 
> yy <- predict(fit.q, newdata=data.frame(speed=10:130)) 
> plot(brdist ~ speed, data=abd, main="...") 
> lines(10:130, yy, col="red", lwd=2) 

 

As it seems at first impression, the parabola yields a good fit to the braking 
distance data. The regression coefficients can be used to estimate the 
deceleration which turns out to be roughly 10 /m s . Some drawbacks of this 
model will be pointed out below. 

2.6.2 Curvilinear Regression 

From the automobile example, we conclude that simple linear regression is more 
than just fitting straight lines. In fact, any curvilinear relation can be fitted, e.g.: 

 •   0 1 ln( )y x E      

 •   0 1y x E      

 •   1
0 1y x E      , 

All these models, and many more, can be rewritten in the form 0 1y x E     , 
where the predictor is either ln( )x x  , x x   or 1x x  . Thus, estimating the 
parameters 0 1,   can be reduced to the well-known simple linear regression 
problem, for which the OLS algorithm can be used. While this may sound like the 
ideal solution to many regression problems, it is not, for a number of reasons. 

First, when the residuals from the quadratic model are plotted versus predictor 
speed, it turns out that the situation is far less than optimal. Clearly apparent is a 
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violation of the constant error-variance assumption. That is not so surprising, even 
without looking at the data; we might have expected that the scatter in braking 
distances becomes bigger as the speed increases. This is problematic because 
the high speed observations so (implicitly) obtain more weight in determining the 
regression coefficients. Consequently, we observe a bias for the low speed 
braking distances, because OLS focuses on the data points with large residuals on 
the right hand side, but puts less emphasis on what is going on at lower speeds. 

> plot(speed, resid(fit.q)) 
> title("Residuals vs. Speed with LOESS Smoother") 
> smoo <- loess.smooth(speed, resid(fit.q)) 
> lines(smoo, col="red") 
> abline(h=0, col="grey") 

 

Thus, while at first the parabola seemed to fit well to the data, closer inspection 
shows that we have not found a very good solution yet. Unfortunately, that is often 
the case when just single power terms are used as predictors. 

2.6.3 Example: Infant Mortality 

Our next goal is to study how infant mortality in a country depends on its wealth. 
We have observations from 105 countries; the data were first published in the New 
York Times in 1975. The infant mortality is measured as the (average) number of 
1000 live born babies that do not reach the age of 5 years. The living standard is 
given as per-capita income in US$. They data are accessible in R’s 
library(car) as data(Leinhardt). For clarity, we remove four countries with 
partly missing values and two outliers: Saudi Arabia and Lybia, both oil-exporting 
countries with an inhomogeneous population consisting of a few very rich leaders 
and mostly poor population. The data can be displayed in a scatterplot: 
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> plot(infant ~ income, data=im, pch=20) 
> title("Infant Mortality vs. Per-Capita Income") 

Since the relation between mortality and income seems to be inversely 
proportional, we might try a curvilinear regression model of the form: 

 1
0 1~ ( )infant income E      

As explained in 2.6.2, this is a simple linear regression problem where we can 
estimate the coefficients with OLS. The result is added to the scatterplot. 

> fit <- lm(infant ~ I(income^-1), data=im) 
> xx  <- data.frame(income=seq(0, 6000, length=200)) 
> yy  <- predict(fit, newdata=xx, interval="prediction") 
> lines(xx$income, yy[,1], col="red", lwd=2) 
> points(infant ~ income, data=im, pch=20) 

 

The resulting fit is poor, as the infant mortality is strongly overestimated in all rich 
countries. One might conclude that this is because we failed to identify the correct 
exponent for the income variable. Rather than just trying a few different powers, 
we might be tempted to estimate it from data, with a model such as: 

2
0 1y x E      

That however, is no longer a relation that is linear in the parameters. Least 
squares fitting, i.e. taking partial derivatives in the quality function will not lead to a 
linear equation system, because the result is of more complicated form. 
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2.6.4 The log-log Model 

In the above example, we are looking for a viable alternative to solve the 
regression problem. We could (and potentially would) resort to a numerical 
solution for minimizing the RSS, if there was not a much better analytical solution 
that is based on a simple, yet very powerful trick. The transformation 

 log( ), log( )y y x x    

is of great help, as we can see with a scatterplot in the log-log scale: 

> plot(log(infant) ~ log(income), data=im, pch=20) 
> title("log(infant) vs. log(income)") 
> fit <- lm(log(infant) ~ log(income), data=im) 
> abline(fit, col="red", lwd=2) 
> plot(fitted(fit), resid(fit), pch=20) 
> abline(h=0, col="grey") 
> smoo <- loess.smooth(fitted(fit), resid(fit)) 
> lines(smoo, col="red") 
> title("Residuals vs. Fitted Values") 

 

After the variable transformations, the relation seems to be a straight line. The 
OLS regression line fits the data well, and the Tukey-Anscombe plot does not 
show strongly violated assumptions, except for a maybe slightly non-constant 
variance (that we accept here). What has happened? If a straight line is fitted on 
the log-log-scale, i.e.: 

 0 1y x E          where log( ), log( )iy y x x    

we can derive the relation on the original scale by taking the exponential function 
on both sides. The result is as follows: 

 1 1
0 0exp( ) exp( )y x E x E         , with 0 0exp( )   and 1 1  . 
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The slope from the log-log-scale is the exponent to x  on the original scale. 
Moreover, we have a multiplicative rather than an additive model, where the error 
term follows a log-normal distribution. Hence, the errors will scatter more the 
bigger x  is, and are skewed towards the right, i.e. bigger values. While this model 
may seem arbitrary, it fits well in many cases, even more often than the canonical, 
transformation-free approach. The coefficients are: 

> lm(log(infant) ~ log(income), data=im) 
Coefficients: 
(Intercept)  log(income)   
     7.4134      -0.5661   

The interesting part is the interpretation of the model equation. It is relative, in the 
following way: if x , i.e. the income increases by 1% , then y , i.e. the mortality 
decreases by 1̂ 0.56%  . In other words, 1  characterizes the relative change in 
the response y  per unit of relative change in x . 

For obtaining predictions of the infant mortality, we can use the regression model 
on the transformed scale, and then just re-exponentiate to invert the log-
transformation: 

 ˆ ˆexp( )y y  

However, some care is required: due to the skewness in the lognormal distribution, 
the above is an estimate for the median of the conditional distribution |y x , but not 
for its mean [ | ]E y x . Often, the difference is small and can be neglected. However, 
in cases where we unbiased estimation is key, we can use a correction factor. 

 2ˆ ˆ ˆexp( / 2)Ey y    

Owing to the exponential back-transformation, the fit on the original scale cannot 
take negative values. This is another aspect that here strongly speaks for fitting on 
the log-log-scale. A model that predicts negative values for infant mortality would 
not be plausible in practice. 

For the confidence and prediction intervals, we can simply compute these as usual 
on the transformed scale. Simple re-exponentiating brings them back to the 
original scale. There is no need for a correction factor as we are dealing with 
quantiles of the respective distributions: 

 [ , ] [exp( ),exp( )]l u l u  

> ## Predictions 
> po  <- exp(predict(fit)) 
> poc <- exp(predict(fit)+(summary(fit)$sigma^2)/2) 
>  
> ## Scatterplot with Fitted Curves 
> plot(infant ~ income, data=im, pch=20) 
> lines(sort(im$income), po[order(im$income)], col="red") 
> lines(sort(im$income), poc[order(im$income)], col="orange") 
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Again, an important advantage of the log-log-model is that neither of these 
intervals does take negative values on the original scale. Moreover, they are no 
longer symmetric, reflecting the fact that there is more room for error towards 
bigger values, and less towards smaller errors. 

> poci  <- exp(predict(fit, interval="confidence")) 
> popi  <- exp(predict(fit, interval="prediction")) 
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2.6.5 The Logged Response Model 

This far, we considered log-transformations for both variables, as well as for the 
predictor only. If one sees this as a trick, rather than having a specific model 
formulation in mind, we might try to work with a logged response but the original 
predictor. As it turns out, also this model is widely used and accepted in practice. 
We illustrate it with the following example: 

 

The data originate from a research project of the author. The goal was to study the 
daily cost in neurological rehabilitation. In seven hospitals, a random sample of 
473 patients was studied, most of whom were originally suffering from 
craniocerebral injuries or apoplectic strokes. The total (time) effort for care, 
therapy and medical examinations was measured, expressed as CHF/day and 
serves as the response variable. Also, for each patient an ADL assessment was 
taken. It is based on about 20 items that quantify the autonomy of a patient in the 
activities of daily life, i.e. personal hygiene, feeding, etc..  

Above, the data are visualized in a scatterplot. A simple linear regression model 
had been fitted, along with a Tukey-Anscombe plot for judging the quality of the fit. 
At first impression, the straight line does not fit too badly, but a closer inspection 
shows that there is a bias (i.e. non-zero expectation for the error), and a right-
skewed error distribution. These are strong model violations, and thus, the simple 
linear model yields a poor explanation of the daily rehabilitation cost. As a way out, 
we suggest to log-transform the response variable, but to leave the predictor as is: 

 log( ),y y x x    

This simple trick yields a good fit, see below. Also, we will soon outline that the 
log-transformation is indicated for any right-skewed variable such as cost, whereas 
the uniformly distributed ADL predictor does not require action. The model is: 

 0 1log( )y y x E      , respectively, 
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if we back-transform such that the response is on the original scale: 

 0 1exp( ) exp( ) exp( )y x E    . 

This is a multiplicative model. In contrast to the log-log model, 1  is not an 
exponent controlling the curvature, but only a scale parameter to the predictor. 
The usual assumption for the error is 2~ (0, )EE N  , and thus, we again have a 
multiplicative lognormal error term on the original scale. This results in right-
skewed scatter that increases with increasing daily cost, matching what we 
observe in the data. The interpretation is as follows: an increase by one unit in the 
predictor x  multiplies the fitted value by 1exp( ) . In our case, one additional ADL 
point, meaning less autonomy of the patient, increases the cost on average by 
2.36%. We then display fit, diagnostics and prediction interval: 

> lm(log(cost) ~ adl, data=rehabilitation) 
 (Intercept)          adl 
    5.75106      0.02331 
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It turns out that after the transformation, a straight line provides a reasonable fit. 
Still, the Tukey-Anscombe plot exhibits a slight bias. The residuals follow a 
symmetric, but prominently long-tailed distribution. Hence, not all assumptions for 
OLS fitting are 100% fulfilled, but the situation is already much, much better than 
previously, with .daily cost vs ADL . Moreover, there are no more simple tricks or 
transformations with which we could improve the model further. 

As a side note, we remark that further model improvement is possible here by 
using advanced methods such as Box-Cox transformations, or a generalized linear 
model based on the Gamma distribution. These topics are (far) beyond the scope 
of this introductory section on simple linear regression and thus not discussed 
here. It is also important to mention that while they are beneficial to the quality of 
the prognosis interval and the parameter tests, they do not improve the precisions 
of the point forecasts much. 

2.6.6 When and How to Log-Transform 

From the above examples, it is evident that variable transformations lead to novel 
predictor-response relations, often strongly improve the fit and are of tremendous 
importance to many applied regression problems. Thus, when and how to 
transform? Long-time practical experience has led to a few simple guidelines. A 
log-transformation of a variable, i.e. log( )x x   and/or log( )y y   is indicated and 
often very beneficial for the model fit if: 

 Practice dictates that the regression line must run through (0 / 0) . 

 Generally if a variable is on a scale that is left-closed with zero as the 
smallest possible value, but open to the right so that it can theoretically take 
arbitrarily large values. 

 If the marginal distribution of a variable, as we can observe it from a 
histogram, is clearly skewed to the right. This is often the case for the 
above-mentioned variables that only take positive values. 

 If a variable is “on a relative scale”, i.e. a change from 1 to 2 does not mean 
the same or have the same impact as from 100 to 101, but we rather need 
to care about the relative/percentage increase. 

In summary, I dare to say that using the log-transformation is almost the norm 
rather than the exception when we talk about linear modeling. On the other hand, 
there are also variables where a transformation would be wrong, or is not possible 
at all. The latter concerns all variables that take negative values and even when 
there are zero values, we may run into problems, because the logarithm is defined 
for strictly positive values , 0x y   only. In summary: 

 For predictor/response variables that take negative values, the log-
transformation, and hence the log-log model is typically not suitable. 
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 If either 0y   or 0x   appears, the log-transformation is still not possible. 
Do not exclude these data points from the analysis, this leads to a 
systematic error. One can though additively shift the variable: x x c   

 The usual choice for the constant is 1c  . However, this makes the 
regression model no longer invariant versus scale transformations. Thus, it 
is better (and recommended) to set c  to the smallest value 0 . 

2.6.7 Final Considerations 

By reflecting the previous examples, we notice that in the Leinhardt data both 
infant mortality and income are right-skewed variables which only take positive 
values. Thus, a log-transformation needs to be considered for both, and as the 
results from section 2.6.4 show, yields good results. Moreover, the daily cost in 
neurological rehabilitation is right-skewed and positive, while the predictor ADL is 
not. Hence only the response was log-transformed, again with good outcome. 
Finally, we turn our attention back to the Zurich Airport example. One aspect is 
that the residual plots in section 2.3.4 raised some doubts whether the straight line 
is a trustworthy result. And then, both Pax and ATM are positive variables what 
makes them candidates for a transformation. 

 log( ), log( )ATM ATM Pax Pax    

The code for fitting the model and producing a scatterplot is: 

> fit        <- lm(Pax ~ ATM, data=unique2010) 
> fit.log    <- lm(log(Pax) ~ log(ATM), data=unique2010) 
> fit.y.orig <- exp(fitted(fit.log)[order(unique2010$ATM)]) 
> plot(Pax ~ ATM, data=unique2010, main="...") 
> lines(sort(unique2010$ATM), fit.y.orig, col="blue") 
> abline(fit, col="red") 
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The result no longer corresponds to a straight line into the scatterplot, but a curve. 
Additionally, the increase in Pax is no longer linear with ATM, but relative. The 
difference between the two solutions seems to be minimal. Still, the variable 
transformations improve, as we can see from the residual plots: 

> xx <- unique2010$ATM 
> yy <- residuals(fit) 
> plot(xx, yy, xlab="ATM", ylab="Residuals", main="...") 
> lines(loess.smooth(xx,yy),col="red") 
> abline(h=0, col="grey") 
> xx <- log(unique2010$ATM) 
> yy <- residuals(fit.log) 
> plot(xx, yy, xlab="log(ATM)", ylab="Residuals", main="...") 
> lines(loess.smooth(xx,yy),col="red") 
> abline(h=0, col="grey") 

 

The log-log-model manages to reduce the bias of the plain linear one, although 
there is still some kink in the residuals. But the log-log-model has another 
attractive point: it does no longer predict negative Pax values - though that does 
not mean it is safe for extrapolation! The coefficients are: 

> lm(log(Pax) ~ log(ATM), data=unique2010) 
Coefficients: 
(Intercept)     log(ATM)   
     -2.116        1.655   

Thus, the fitted relation corresponds to: 

1.655exp( 2.116)y x   , resp. 1.6550.120Pax ATM   

So, if ATM increases by 1%, then Pax increases by 1.655%. That is at least as 
plausible as an increase of 138.8 passengers per additional flight, because it is 
well known that the seat load factor is higher and bigger airplanes are used in 
busy times with more air traffic movements. 
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3 Multiple Linear Regression 
It is very rare that the variation in a response variable y  is due to one single 
predictor only. Even for the relatively trivial Pax vs. ATM example, the seat load 
factor and the amount of cargo that is handled may play an important role, too. For 
the other examples that were considered in section 1.1, the dependency on 
several input variables was clearly pointed out. We will now address the 
methodology for estimating multiple linear regression models where: 

 0 1 1 ... p py x x E       . 

We will continue using OLS for estimating the coefficients 0,..., p  . However, a 
number of new issues arise here; the most important perhaps being the fact that 
visualizing the relation is no longer easily possible. Thus, understanding the input 
and output becomes an important and challenging task. 

3.1 Example: Air Pollution and Mortality 

Since the beginning of the environmental movement, attention has focused on the 
protection of human health. Soon, air pollution was identified as a major threat to 
well-being. Therefore, researchers at General Motors collected data on 59 US 
Standard Metropolitan Statistical Areas for a study whether air pollution 
contributes to the age-adjusted mortality of the population. The apm dataset 
includes predictors measuring demographic characteristics of the cities, variables 
measuring climate parameters and finally three records for the air pollution in the 
ambient air: concentrations of hydrocarbons ( HC ), nitrous oxide ( xNO ) and sulfur 
dioxide ( 2SO ). An excerpt of the data is as follows: 

 

Most of the variables are self-explanatory: the temperatures are averages in 
degrees Fahrenheit, humidity is a percentage, the rainfall is given as annual sum 
in inches, education is the median number of years in the population, which itself 
is given as an absolute number, as well as a density per area and housing unit. 
Moreover, we have the percentages of non-white inhabitants and white collar 
workers, the median per-capita income and finally the concentrations of the 
pollutants. 

City Mortality JanTemp JulyTemp RelHum Rain Educ Dens NonWhite WhiteCllr Pop House Income HC NOx SO2
Akron, OH 921.87 27 71 59 36 11.4 3243 8.8 42.6 660328 3.34 29560 21 15 59
Albany, NY 997.87 23 72 57 35 11.0 4281 3.5 50.7 835880 3.14 31458 8 10 39
Allentown, PA 962.35 29 74 54 44 9.8 4260 0.8 39.4 635481 3.21 31856 6 6 33
Atlanta, GA 982.29 45 79 56 47 11.1 3125 27.1 50.2 2138231 3.41 32452 18 8 24
Baltimore, MD 1071.29 35 77 55 43 9.6 6441 24.4 43.7 2199531 3.44 32368 43 38 206
Birmingham, AL 1030.38 45 80 54 53 10.2 3325 38.5 43.1 883946 3.45 27835 30 32 72
Boston, MA 934.70 30 74 56 43 12.1 4679 3.5 49.2 2805911 3.23 36644 21 32 62
Bridgeport, CT 899.53 30 73 56 45 10.6 2140 5.3 40.4 438557 3.29 47258 6 4 4
Buffalo, NY 1001.90 24 70 61 36 10.5 6582 8.1 42.5 1015472 3.31 31248 18 12 37
Canton, OH 912.35 27 72 59 36 10.7 4213 6.7 41.0 404421 3.36 29089 12 7 20
Chattanooga, TN 1017.61 42 79 56 52 9.6 2302 22.2 41.3 426540 3.39 25782 18 8 27
Chicago, IL 1024.89 26 76 58 33 10.9 6122 16.3 44.9 606387 3.20 36593 88 63 278
Cincinnati, OH 970.47 34 77 57 40 10.2 4101 13.0 45.7 1401491 3.21 31427 26 26 146
Cleveland, OH 985.95 28 71 60 35 11.1 3042 14.7 44.6 1898825 3.29 35720 31 21 64
Columbus, OH 958.84 31 75 58 37 11.9 4259 13.1 49.6 124833 3.26 29761 23 9 15
Dallas, TX 860.10 46 85 54 35 11.8 1441 14.8 51.2 1957378 3.22 38769 1 1 1
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The task is to study how air pollution contributes to mortality. Thus, the influence of 
the three pollution variables is of primary interest. The remaining ones can be 
seen as potentially confounding factors, for which we try to correct. Since we know 
that mortality is affected by other causes than just the pollution alone, we have to 
correct for the effect of these covariates. Just studying the relation between 
mortality and pollution would lead to flawed results. Fortunately, with multiple 
linear regression we can incorporate all covariates and derive sound conclusions. 

3.2 Preparing the Data 

For simple regressions, we were able to visualize the data in an xy -scatterplot. 
This was beneficial for identifying the correct response-predictor relation, making 
variable transformations, detecting outliers and some further potential problems. In 
the present example, the data live in a 15-dimensional space, and there is no plot 
that can show them in full generality. Still, gaining an impression of the data and 
preparing them well for regression analysis is absolutely essential. 

3.2.1 Marginal Plots 

As a way out, we can visualize the univariate distribution of response and 
predictors with histograms (or barplots, should there be categorical predictors). As 
mentioned above, this does not give the full multivariate picture, but it still allows 
for detecting skewness in the variables, the presence of outliers and perhaps other 
important specialties such as missing values that are coded with numerical values. 

> par(mfrow=c(4,4)) 
> for (i in 1:15) hist(apm[,i], title=”...”) 
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What immediately catches the attention is the extreme skewness of the pollution 
variables. This needs to be addressed with variable transformations; else the 
results from a multiple linear regression will be poor. Furthermore, also the 
population is right-skewed. Apart from this, there do not seem to be too many 
peculiarities in the apm data. An analysis using the R command 

> any(is.na(apm)) 
[1] FALSE 

shows that there are no missing values coded by NA. Neither do we have any 
suspicions that they might be coded by some numerical value. If that was the 
case, we urgently need to clarify the issue, and set the respective values to NA. 
Besides the histograms, one could also do scatterplots of the response variable 
vs. each of the predictors (or boxplots, in case of categorical predictors). Again, 
this does not visualize the multivariate setting in full depth, and is mostly less 
useful than the histograms shown above. 

3.2.2 Variable Transformations 

Regression results will be much easier to understand if the data are in units that 
we are well familiar with. In the context of the mortality example that means 
converting the temperatures to degrees Celsius rather than Fahrenheit, and 
rainfall in /cm year  rather than /inches year . We copy the original data frame, 
generate the new variables and drop the old ones: 

> apm$JanTemp  <- (5/9)*(apm$JanTemp-32) 
> apm$JulyTemp <- (5/9)*(apm$JulyTemp-32) 
> apm$Rain     <- (2.54)*apm$Rain 

All of the above are linear variable transformations of the form x ax b   . It is very 
important to notice that these do not change the regression output: all fitted 
values, tests and the prediction interval will remain identical. The only thing that 
changes is the coefficient j  and its standard error, but only to account for 
transformation that was made. 

This is clearly not the fact for non-linear transformations such as the log (or also 
the square root, the inverse, etc.): they ultimately change the regression relation 
and all results (fitted values, tests, confidence intervals, ...) will be different. The 
change is not necessarily for the bad, and thus we carry out the transformations 
that are indicated on the apm data. That includes taking the log( )  for the three 
pollution variables plus the population. Most other predictors are annual sums or 
averages, show sufficiently symmetrical distribution and are left alone.  

Implementation-wise, we do not carry out these transformations in the data frame, 
but choose the convenient option of writing the log(Pop), log(HC), log(NOx) 
and log(SO2) terms directly into the model equation, see below. 
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3.3 Model and Estimation 

What to do with such cases, where multiple predictor variables are available? The 
poor man’s approach would be to do many simple linear regressions on each of 
the predictors separately. This has the somewhat doubtful advantage that the 
relation between each predictor and the response can be displayed in a two-
dimensional scatterplot. However, it is very important to note that doing many 
simple linear regressions is not equivalent to a multiple linear regression. The 
findings, i.e. the regression coefficients and their p-values, will generally be 
different. The only case when they are identical is if the predictors are exactly 
orthogonal; and this is almost never the case with data from observational studies. 

As indicated above, the appropriate tool for simultaneously including the effects of 
several predictors at a time is multiple linear regression. Geometrically speaking, 
one tries to fit the least squares hyperplane in the ( 1)p  -dimensional space  
( p  is the number of predictors). Generally, this fit cannot be visualized if 2p  . 
We start our discussion with a simple example that illustrates some of the 
peculiarities of multiple linear regression. 

Example 

In this artificial example, there are only 2 predictors and 8 observations. Because 
the optimal solution is obvious, we do not need to estimate the regression 
coefficients but can guess them. The data are as follows: 

Observation x1 x2 yy 

1 0 -1 1 

2 1 0 2 

3 2 1 3 

4 3 2 4 

5 0 1 -1 

6 1 2 0 

7 2 3 1 

8 3 4 2 

The optimal solution of the multiple regression problem for the above data is 

 1 22i i iy x x   for all 1,...,8i   

We are in a very special situation and have a perfect fit, thus there are no errors. 
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Because there are only two predictors plus the response, we can visualize the fit in 
a 3d-scatterplot. As we observe below, the data points lie in a plane, the 
regression plane. 

> toy.ex <- data.frame(x1=c( 0,1,2,3, 0,1,2,3), 
                       x2=c(-1,0,1,2, 1,2,3,4), 
                       yy=c( 1,2,3,4,-1,0,1,2)) 
> library(Rcmdr) 
> attach(toy.ex) 
> scatter3d(yy ~ x1 + x2, axis.scales=FALSE) 
> detach(toy.ex) 

 

To convince ourselves that single and multiple linear regression is not one and the 
same thing, we regress 1~y x  and 2~y x . We can visualize these fits in two-
dimensional scatterplots. 
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The slope estimates from the simple regressions turn out to be 1.00 and 0.11, 
respectively. Hence they are both different than the coefficients for 1x  and 2x  in 
the (perfect) solution from multiple linear regression. Moreover, we do not achieve 
a perfect fit in neither of the two simple models. Hence, for describing the variation 
in y , we need to build on both variables 1x  and 2x  simultaneously. 

3.3.1 Notation 

We turn our attention back to the mortality example in dataset apm. In colloquial 
formulation, the multiple linear regression model is as follows: 

 0 1 2 14 2... log( )i i i iMortality JanTemp JulyTemp SO E             

More generally and technically, the multiple linear regression model specifies the 
relation between response iy  and predictors 1,...,i ipx x  for observations 1,...,i n , 
including a random error term iE . The double index notation is defined as: 

 0 1 1 ...i i p ip iy x x E       , for 1,...i n . 

The term 0  is still called intercept and corresponds to the (theoretical) mortality 
value when all predictors 1 2 ... 0i i ipx x x    . The remaining parameters 1,..., p   
are, in contrast to simple regression, no longer called slope(s), but just regression 
coefficients. The interpretation is as follows: 

The regression coefficient j  is the increase in the response y  when 
predictor jx  increases by 1 unit, but all other predictors remain unchanged. 

A more convenient way of writing down a multiple linear regression model is with 
the so-called matrix notation. It is simply: 

 y X E  , with 
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The terms in this equation are called the response vector, the design matrix, the 
coefficient vector and the error vector. If a matrix multiplication is carried out and 
the result is written down, we are back with the double index notation. This also 
illustrates the role of the particular first column of the design matrix: it is the 
intercept, which is also part of multiple linear regression. 

Our next goal is to fit a multiple linear regression model. The task which needs to 
be done is to estimate the coefficient vector   from the data; in a way that the 
solution is optimal. The criterion is still to minimize the sum of squared residuals. 
The next section illustrates the concept with an example and then focuses on the 
solution plus some technical aspects. 
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3.3.2 OLS: Method & Identifiability 

For illustrating the concept of least squares regression, we consider the mortality 
data with two predictors only: NonWhite and JanTemp. The regression coefficients 
are estimated such that the sum of squared residuals is minimal. The fitted 
regression plane with the residuals looks as follows: 

> scatter3d(Mortality~NonWhite+JanTemp, axis.scale=FALSE) 

 

We observe that the mortality decreases with higher winter temperatures, and 
increases in urban regions with more non-white population. The basis for finding 
this solution lies in the residuals, which are: 

0 1 1( ... )i i i p ipr y x x       . 

Then, we choose the parameters 0 ,..., p   such that the sum of squared residuals 
is minimal. We again formulate the quality function. 

 2 2
0 1 0 1 1

1 1

( , ,..., ) ( ( ... ))
n n

p i i i p ip
i i

Q r y x x     
 

         

We need to minimize this function, which can be tackled by taking partial 
derivatives and setting them to zero. This results in the so-called normal 
equations. We do now take full advantage of the matrix notation that was 
introduced above and can write the normal equations as 

 ( )T TX X X y  . 

If TX X  is invertible (or regular), we can obtain the least squares estimates of the 
regression coefficients by some simple matrix calculus as 1ˆ ( )T TX X X y   .  
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If the regularity condition for TX X  is fulfilled, there is a unique and explicit solution 
for the regression coefficients ̂ , and thus no numerical optimization is needed. A 
side remark: in software packages, the inverse of TX X  is usually not computed 
for numerical reasons, but the computations will be based on a QR -decomposition 
or similar methods of simplifying TX X . In R, multiple linear least squares 
regression is carried out with command lm(). The syntax is as follows: 

fit <- lm(Mortality ~ JanTemp + JulyTemp + RelHum + Rain +  
                       Educ + Dens + NonWhite + WhiteCollar +  
                       log(Pop) + House + Income + log(HC) +  
                       log(NOx) + log(SO2), data=apm) 

As in simple linear regression, we have the response variable on the left hand 
side. It is related to the predictors on the right hand side, which are joined by ‘+’ 
signs. Note that potential log-transformations of predictors and/or response can 
directly be written into the formula, and that we need to specify the data frame 
from which the variables need to be taken.  

It is worth noting that there is a simple variant of specifying regression problems 
with many predictors in R. The notation lm(Mortality ~ ., data=apm) 
means that mortality is explained by all the other variables that exist in data frame 
apm. However, in our example these two commands will not yield identical results, 
because of the log-transformations that are missing in the short notation. Once the 
model is fitted, we can extract the regression coefficients, here rounded to two 
digits, by: 

> round(coef(fit),2) 
(Intercept)     JanTemp    JulyTemp       RelHum        Rain 
    1297.38       -2.37       -1.75         0.34        1.49 
        Educ        Dens   NonWhite  WhiteCollar    log(Pop) 
      -10.00        0.00       5.15        -1.88        4.39 
       House      Income    log(HC)     log(NOx)    log(SO2) 
      -45.74        0.00     -22.04       33.97       -3.69 

We claimed above that the normal equations have a unique solution if and only if 
TX X  is regular and thus invertible. This is the case if X  has full rank, i.e. all 

columns of the design matrix, or in other words, all predictor variables are linearly 
independent. This is often the case in practice, and whenever the full rank 
condition for X  is fulfilled, we are fine.  

On the other hand, there will also be cases where X  does not have full rank and 
TX X  is singular. Then, there are usually infinitely many solutions. Is this a 

problem? And how does it occur? The answer to the first question is “yes”. When 
the design matrix X  does not have full rank, the model is “poorly formulated”, 
such that the regression coefficients   are at least partially unidentifiable. It is 
mandatory to improve the design, in order to obtain a unique solution, and 
regression coefficients with a clear meaning. Below, we list some typical mistakes 
that lead to a singular design. 
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1) Duplicated variables 

It could be that we use a person’s height both in meters and centimeters as 
a predictor. This information is redundant, and the two variables are linearly 
dependent. One thus has to remove one of the two. 

2) Circular variables 

Another example is when the number of years of pre-university education, 
the number of years of university education and also the total number of 
years of education are recorded and included in the model. These 
predictors will be linearly dependent, thus X  does not have full rank. 

3) More predictors than cases 

Note that a necessary (but not sufficient) condition for the regularity of TX X  
is p n . Thus, we need more observations than we have predictors! This 
makes sense, because the regression is over-parameterized (or super-
saturated) else and will not have a (unique) solution. 

What does R do in non-identifiable problems? 

Generally, statistics packages handle non-identifiability differently. Some may 
return error messages; some may even fit models because rounding errors kill the 
exact linear dependence. R handles this a bit different: it recognizes unidentifiable 
models and fits the largest identifiable one by removing the excess predictors in 
reverse order of appearance in the model formula. The removed predictors will still 
appear in the summary, but all their values are NA, and a message also says 
“Coefficients: k not defined because of singularities”). While 
this still results in a fit, it is generally better in such cases to rethink the formulation 
of the regression problem, and remove the non-needed predictors manually. 

Estimation of the Error Variance 

An additional quantity that is a necessary ingredient for all tests and confidence 
intervals needs to be estimated from the data: it is the error variance 2

E . The 
estimate can be obtained by standardizing the sum of squared residuals with the 
appropriate degrees of freedom, which is the number of observations n  minus the 
number of estimated parameters. With p  predictor variables and an intercept, this 
amounts to 1p  , and the error variance estimate is: 

 2 2

1

1
ˆ

( 1)

n

E i
i

r
n p





   . 

In the next section, we will discuss if and when the OLS results are a good 
solution. The assumptions are identical to the ones we had in simple linear 
regression, as is the main result, the Gauss-Markov theorem. By assuming a 
Gaussian distribution for the errors, we can show even more and lay the basis for 
inference in multiple linear regression. 
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3.3.3 Properties of the Estimates 

The use of the least squares procedure is attractive due to its simplicity and the 
explicit solution that can be found without any numerical optimization. Additionally, 
there are some mathematical optimality results that further justify its application. 
However, we require some conditions for being able to derive them, namely: 

[ ] 0iE E  . 

Again this means that there is no systematic error, i.e. the true relation between 
predictors and response is the linear function that we imposed. Or in other words: 
the hyper plane is the correct fit. Additionally, we require constant variance of the 
error term, i.e.  

2( )i EVar E  . 

Finally, there must not be any correlation among the errors for different instances, 
which boils down to the fact that the observations, respectively their errors, do not 
influence each other, and that there are no latent variables (e.g. time/sequence of 
the measurements) that do so. In particular, 

( , ) 0i jCov E E  for all i j .  

Under these three conditions, we can derive that the coefficient estimates are 
unbiased and find their covariance matrix. The Gauss-Markov theorem states that 
there is no other linear, unbiased estimator that is more efficient. 

 ˆ[ ]E    and 2 1( ) ( )T
ECov X X    ,  

As in simple linear regression, the precision of the regression coefficients depends 
on the design and the number of observations which are present. While the 
Gauss-Markov theorem does not require the assumption of normally distributed 
errors iE , be careful in case of clearly non-Gaussian distribution. On one hand, 
there may be non-linear estimators that are clearly more efficient than OLS, and 
even more importantly, all inference results (i.e. tests, confidence intervals, 
prediction interval) to be discussed below ultimately require independent Gaussian 
errors. Hence it is standard to also require 

 iE  i.i.d. 2~ (0, )EN   

for OLS regression. Then, and only then, the estimators for the regression 
coefficients will follow an exact Gaussian distribution, as will the distribution of the 
fitted values. The specifications are as follows: 

  2 1ˆ ~ , ( )T
EN X X     and 2 1ˆ ~ ( , ( ) )T T

Ey N X X X X X    

For error distributions that deviate from the Gaussian, we can rely on the central 
limit theorem. It tells us that asymptotically (i.e. for large samples) the normal 
distribution of the estimates will still hold. Thus, small deviations from Gaussian 
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errors may be tolerable in practice. It is generally an expert call what is alarming 
and what is acceptable, but the bigger the dataset and the less extreme the error 
distribution deviates, the more tolerable one can be. Also, deviations from normal 
errors are usually less worrying if the task is prediction, but more so if one is after 
inference with exact p-value reporting. 

As mentioned above, both ̂  and ŷ  are unbiased estimates and since their 
covariance matrices and distribution is known, confidence intervals and tests can 
be determined. Another important result from mathematical statistics is also that 
under Gaussian distribution, OLS is the maximum likelihood estimator (MLE). 
Hence there cannot be any other unbiased estimator that is asymptotically more 
efficient than OLS. Please note that this statement is stronger than the Gauss-
Markov theorem, but it requires more, namely normal errors. 

In summary, there are very good reasons to prefer OLS over other methods to 
estimate the linear regression coefficients. However, we require that the four 
assumptions made are at least roughly fulfilled. This needs to be verified by a 
number of model diagnostic plots, as shown in section 3.7 of this scriptum. In case 
of clear violations, one usually tries to improve the model with variable 
transformations, which rightly done serves to achieve better behaved errors. 
Alternatively, more complicated estimation procedures that require fewer 
assumptions can sometimes be used instead. 

Hat Matrix 

For the mathematically interested, we will now take further advantage of the matrix 
notation and study the solution of the OLS algorithm. We can write the fitted 
values ŷ  very simply as 

 ˆŷ X  . 

We now do some further calculus and plug-in the solution for ̂  from above. We 
then observe that the fitted values ŷ  are obtained by a matrix product, namely the 
hat matrix H , with the observed response values y : 

 1ˆˆ ( )T Ty X X X X X y Hy     

The matrix H  is called hat matrix, because “it puts a hat on the y ’s”, i.e. 
transforms the observed values into fitted values. This clarifies that the OLS 
estimator is linear and opens the door to a geometrical interpretation of the 
procedure: the hat matrix H  is the orthogonal projection of the response y  onto 
the space spanned by the columns of the design matrix X . Please note that 
(except for some rare cases with perfect fit), we cannot linearly combine the 
columns of the design matrix to generate the response y . The OLS solution then 
is the best approximation, in the sense of an orthogonal projection.  

Disclaimer: do not worry if this geometric notion of OLS regression is hard to 
grasp. It is a nice interpretation for those with imagination and the necessary 
background in linear algebra , but it is of little practical importance. 
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3.4 Inference 

Here, we will discuss some methods for inferring the relation between response 
and predictor. While a few topics are a repetition to the inference topics in simple 
linear regression, quite a number of novel aspects pop up, too. Please note that 
except for the coefficient of determination, the assumption of independent, 
identically distributed Gaussian errors is central to derive the results. 

3.4.1 The Coefficient of Determination 

In simple linear regression, we had presented the coefficient of determination 2R
as an intuitive goodness-of-fit measure that compares the scatter in y -direction 
with and without knowing the regression line. Though visualization is no longer 
possible with multiple linear regression, the idea (and formula) behind is identical: 

2R  expresses which portion of the total variation in the response y  is accounted 
for by the regression hyperplane. The definition is as follows: 
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In the numerator, we measure the scatter of the data points around the fitted 
values, i.e. the RSS. The denominator has the scatter of the data points around 
their mean. This is the total sum of squares (TSS). Again, the maximum value is 

2 1R  . It is attained if all data points are on the regression hyperplane. The other 
extreme case is 2 0R   and means that there is no explanatory power in the 
regression fit, and 1 2

ˆ ˆ ˆ... 0p      . The actual value is provided in the R 
summary in the second to last row: 

> summary(fit) 
 
Call: 
lm(formula = Mortality ~ JanTemp + JulyTemp + RelHum + Rain +  
    Educ + Dens + NonWhite + WhiteCollar + log(Pop) + House +  
    Income + log(HC) + log(NOx) + log(SO2), data = apm) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.297e+03  2.934e+02   4.422 6.32e-05 *** 
JanTemp     -2.368e+00  8.851e-01  -2.676   0.0104 *   
JulyTemp    -1.752e+00  2.031e+00  -0.863   0.3931     
[output partly ommitted...] 
log(SO2)    -3.687e+00  7.359e+00  -0.501   0.6189     
--- 
Residual standard error: 34.48 on 44 degrees of freedom 
Multiple R-squared: 0.7685,  Adjusted R-squared: 0.6949 
F-statistic: 10.43 on 14 and 44 DF,  p-value: 8.793e-10 
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The result is 2 0.7685R  , hence a good portion of the response variation is 
explained by the predictors. However, the raw 2R  should be interpreted with care: 
the more predictors that are added to a multiple linear regression model, the 
smaller its residual sum of squares becomes, and the higher 2R  is. This 
improvement may be bigger or smaller according to the predictive power of the 
added predictor, but the goodness-of-fit never gets worse. This makes the multiple 
R-squared a cumbersome tool for comparing models with different number of 
predictors. However, one can overcome this by using the adjusted R-squared. The 
definition is: 

 2 21
1 (1 ) [0,1]

( 1)

n
adjR R

n p


    

 
 

As we can see, there is a penalty term for more complex models, i.e. models 
where the number of predictors p  is higher. Consequently, the adjusted R-
squared is always smaller than the multiple R-squared. The difference is most 
pronounced when there are few observations, many predictors and a poor signal. 
Vice versa, it becomes almost nil if we have lots of observations, just few 
predictors and strong signal. Final advice in this topic: for not privileging models 
with excess predictors, we recommend the use of the adjusted R-squared only.  

3.4.2 Confidence Intervals for the Coefficients 

The confidence intervals for the regression coefficients j , 0,...,j p  provide a 
way of expressing the uncertainty in these estimates. They contain all the null 
hypotheses j b   which the corresponding individual hypothesis test fails to 
reject and hence all values which are plausible for j . A quick but approximate 
way of computing these confidence intervals is: 

 2Coefficient Estimate Standard Error   

The necessary information can be found in the R summary and it is valuable to 
know about his ad-hoc method for quickly assessing the precision of the estimated 
coefficients. The actual, precise formula for computing a 95% confidence interval 
for the regression coefficient j  is: 

 1
ˆ0.975; ( 1) 0.975; ( 1)

ˆ ˆˆ ˆ ( )
j

T
j n p j n p E iiqt qt X X


    

          

Knowing this exact formula by heart is somewhat less important for the 
practitioner. However, it is important to be familiar with the command confint() 
that computes the exact confidence intervals in R: 

> round(confint(fit),2) 
              2.5 %  97.5 % 
(Intercept)  706.15 1888.61 
JanTemp       -4.15   -0.58 
JulyTemp      -5.84    2.34 
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... 
[output partially omitted] 
... 
log(NOx)       5.26   62.68 
log(SO2)     -18.52   11.14 

As it has been mentioned above, the confidence intervals contain all values which 
can be seen as plausible for the regression coefficients. If in particular zero lies 
within the intervals, it is a plausible value, too. Hence it might be that the predictor 
in question does not contribute to the variation in the response and thus it is non-
significant. This leads us to the individual hypothesis tests that will be discussed in 
the next section. 

3.4.3 Individual Hypothesis Test 

For finding out whether an arbitrary value b  is plausible for the regression 
coefficient j , we can check whether it is contained in the 95%-CI from above. 
Alternatively, there is a test for the null hypothesis 0 : jH b  . The most popular 
variant is 0 1: 0H   : this is asking if the coefficient could be zero, which would 
mean that the predictor jx  has no influence on the response y . The natural goal is 
to reject the null for gaining evidence that the relation between y  and the predictor 
exists. One usually tests two-sided on the 95% level, i.e. the alternative is 

1:AH b  . The test statistic and its distribution are as follows: 

 
0: ( 1)
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On this basis, it is straightforward to determine acceptance and rejection regions, 
as well as p-values. All the necessary ingredients together with the test statistic (t 
value) and the p-value (Pr(>|t|)) for 0 : 0jH    are routinely given in the R 
summary output: 

> summary(fit) 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.297e+03  2.934e+02   4.422 6.32e-05 *** 
JanTemp     -2.368e+00  8.851e-01  -2.676   0.0104 *   
JulyTemp    -1.752e+00  2.031e+00  -0.863   0.3931     
... 
[output partially omitted] 
... 
log(NOx)     3.397e+01  1.425e+01   2.384   0.0215 *   
log(SO2)    -3.687e+00  7.359e+00  -0.501   0.6189     

As an additional example, we test 1 5   . The value of the test statistic is 
( 2.368 5) / 0.8851 2.973675   . The acceptance region is easily computed from R: 

> qt(0.975,df=44) 
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[1] 2.015368 

Hence, we reject the null hypothesis, if the observed value of the test statistic 
exceeds 2.015  in absolute value. This is the case, and hence 0 1: 5H     is 
rejected. The p-value with which this happens is computed by: 

> 2*pt(-abs((-2.368+5)/0.8851),df=44) 
[1] 0.004760858 

We conclude that our null hypothesis is quite clearly rejected. While these tests 
are simply carried out and are useful in practice, their interpretation is a bit tricky 
and has a few traps that one must not fall victim to, namely: 

1) The multiple testing problem: if we repeatedly do hypothesis testing on the 
 =5% significance level, our total type I error increases. In particular, for p  
hypothesis tests, it is 1 (1 ) p  . Note that for example with 30 predictors, 
the chance of making at least one false rejection in the individual 
hypothesis tests is already 0.785, a pretty high value! 

2) It can happen that all individual hypothesis tests fail to reject the null 
hypothesis (say at the 5% significance level), although it is in fact true that 
some predictor variables have a known effect on the response. This does 
often occur due to correlation among the predictor variables, so that the 
predictive power is distributed and none seems too important in the 
presence of the others. 

Another important point is the interpretation of the individual hypothesis test: it 
verifies the effect of predictor jx  on the response in the presence of all the other 
predictors. As a consequence, any change in the predictor set leads to 
(sometimes drastically) different test results. This is especially important because 
decisions about the omitting of variables are often based on the individual 
hypothesis tests. Due to the above, one must not drop more than one non-
significant variable at a time – this need be done step-by-step. 

3.4.4 Comparing Hierarchical Models 

The idea behind the test presented in this section is a correct comparison of two 
multiple linear regression models when the smaller has more than one predictor 
less than the bigger. This can be useful in practice, i.e. for evaluating whether air 
pollution (which appears as 3 predictors) has an effect on mortality. Moreover, the 
test will also be required for correct handling of categorical predictors, the so-
called factor variables (see in section 3.6). We assume that there are two models. 

 Big model: 0 1 1 1 1... ...q q q q p py x x x x             

 Small model: 0 1 1 ... q qy x x       

The big model must contain all the predictors that are in the small model, else the 
models cannot be considered as being hierarchical and the test which is presented 
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below does not apply. The null hypothesis is that the excess predictors in the big 
model do not bring any benefit, hence: 

 0 1 2: ... 0q q pH         

We test against the alternative that at least one of the excess predictors has an 
effect, i.e. 0, 1,...j j q p    . The comparison of the two models will be based on 
the residual sum of squares (RSS). This quantity will always be smaller for the big 
model; the question is just by how much. If the difference is small, then one might 
not accept the additional variables, if it is big, then one should. The method for 
quantifying this is as follows: 

 , ( 1)

( 1)
~Small Big

p q n p
Big

RSS RSSn p
F F

p q RSS   

 
 


 

Apparently, we have a relative comparison of the model adequacy, and also the 
number of observations, the total number of predictors and the difference in the 
number of predictors are taken into account. Under the null hypothesis, i.e. if the 
excess predictors do not contribute, the test statistic has an F-distribution with 
p q  and ( 1)n p   degrees of freedom. Using that distribution, we can decide if 

the difference between the models is of significance or not. As an example, we 
consider the mortality data. Here, we want to test if the three predictors that are 
linked to air pollution can be omitted from the multiple linear regression model 
without any loss. We do this in R: 

> fit.small <- update(fit, .~.-log(HC)-log(NOx)-log(SO2)) 
> anova(fit, fit.small) 
Analysis of Variance Table 
 
Model 1: Mortality ~ JanTemp + JulyTemp + RelHum + Rain + 
                     Educ + Dens + NonWhite + WhiteCollar + 
                     log(Pop) + House + Income + log(HC) + 
                     log(NOx) + log(SO2) 
Model 2: Mortality ~ JanTemp + JulyTemp + RelHum + Rain + 
                     Educ + Dens + NonWhite + WhiteCollar + 
                     log(Pop) + House + Income 
  Res.Df   RSS Df Sum of Sq      F  Pr(>F)   
1     44 52312                               
2     47 61142 -3   -8829.3 2.4755 0.07388 . 

Note that the small model was defined with an update from the big model. It is not 
required to do so, we could also write it explicitly using the lm() command. The R 
function for the hierarchical model comparison is anova(). As input, it takes the 
big and small model. In the output, the two model formulas are repeated, before 
the quantitative result is presented. We recognize the RSS for the two models, 
also the degrees of freedom and the value of the test statistic are given. This is 
gauged against the F  distribution, which in this particular case looks as follows: 
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If the excess predictors (i.e. the air pollution) do not have an effect and hence 
under the null hypothesis, we expect the test statistic to be smaller than: 

> qf(0.95,3,47) 
[1] 2.802355 

This is the case, hence we are in the acceptance region and the null hypothesis 
cannot be rejected. The p-value is provided in the R output, it is 0.074. In 
conclusion, it might be that the air pollution, in the way it was measured here, does 
not affect mortality. At least we failed to reject the null that it does not have 
influence on the outcome with the current data and model. We finish this section 
by remarking that if a hierarchical model comparison is done for two models where 
the difference is only one single predictor, it coincides with the individual 
hypothesis test. 

3.5 Prediction 

Besides inference, the other very important application of the multiple regression 
fit is prediction. As soon as we are given the predictor values 1,..., px x   for a new 
observation that was not part of the fitting and where the response is potentially 
unknown, we can provide its predicted value, i.e. the conditional expectation: 

1 0 1 1
ˆ ˆ ˆˆ[ | ,..., ] ...p p pE y x x y x x            

In simple regression, we had explained that a prediction within the range of 
observed x -values is safe if the regression line does not have a systematic error. 
The very same can be said about multiple regression, however here it is much 
more difficult to say what is within the range of observed x -values, and what is 
beyond. For understanding this, it is important to keep in mind that (usually, except 
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some very few special cases) cannot overlook and visualize the p -dimensional 
predictor space. Moreover, even when all individual values in the new 
observations’ predictors jx  lie within the values of the observed 1 ,...,j njx x  in that 
predictor, it is not guaranteed that we are still not extrapolating. This phenomenon 
is known as the curse of dimensionality: the p -dimensional predictor space is 
huge and even when staying within the hypercube defined by the observed 
predictor values, the new observation can be in a location where no data were 
present for the fitting process. However, as long as the fit is free of a systematic 
error, and when the new observation is within that hypercube, the predictions are 
usually safe. 

Besides producing predictions, it is also very important to understand their 
precision. As in simple regression, we can provide both a 95% confidence interval 
for the conditional expectation 1[ | ,..., ]pE y x x   , as well as the 95% prediction 
interval for the future observation. The meaning of these two intervals is exactly 
the same as in simple regression. The formulae are best written in matrix notation, 
in particular: 

 95% confidence interval:   1

0.975; ( 1)ˆ ˆ T T
n p Ey t x X X x



       

 95% prediction interval:   1

0.975; ( 1)ˆ ˆ 1 T T
n p Ey t x X X x



        

In this notation, 1(1, ,..., )T
px x x    is the predictor vector for the new observation, 

including the intercept term. The computation of these intervals is implemented in 
R’s predict() function. As input for this routine, we need to provide the 
regression fit, the new predictor values 1,..., px x   in form of a data frame with 
column names that are identical to the ones that were used for the fit. We illustrate 
with the following example, where we predict the mortality in a fictional city: 

> new.x <- data.frame(JanTemp=32, JulyTemp=75, RelHum=55, 
           Rain=51, Educ=10, Dens=3500, NonWhite=8.7, 
           WhiteCollar=42, Pop=1200000, House=3, 
           Income=41000, HC=22, NOx=18, SO2=38) 
> 
> predict(fit, newdata=new.x, interval="confidence") 
       fit      lwr     upr 
1 979.4028 936.9754 1021.83 
> 
> predict(fit, newdata=new.x, interval="prediction") 
       fit      lwr      upr 
1 979.4028 897.9834 1060.822 

We observe that the predicted mortality is 979.4, with a 95% confidence interval 
ranging from 937.0 to 1021.8. The 95% prediction interval is (as always) wider and 
marks the range where we would expect a new observation. The numerical value 
of this interval is 898.0 to 1060.8. 
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3.6 Categorical Predictors 

The variables we considered so far were all continuous, i.e. temperature, distance, 
pressure, et cetera. While the response must be continuous, it is perfectly valid to 
use categorical predictors, such as e.g. sex (male or female), status variables 
(employed or unemployed), shifts (day, evening, night). In general, these 
categorical variables have no natural scale of measurement. Thus, we must 
assign a set of levels to a categorical variable to account for the effect that the 
variable may have on the response. This is done through the use of indicator 
variables. In the regression context, they are better known as dummy variables. In 
the following sections, we will study the use of categorical predictors. 

3.6.1 Example with 1 Categorical Predictor 

The simplest case is a model where we have a continuous response y  and one 
single categorical predictor x . The example that we consider is from a lathe (in 
German: “Drehbank”), where y  is the lifetime of the cutting tool and the 
categorical predictor x  refers to two different tool types A and B. A typical way of 
displaying observed lifetimes in relation to the two tool types is with boxplots: 

> boxplot(hours ~ tool, data=lathe) 

 

We observe that the lifetimes of tools of type B are considerably higher than the 
ones of type A. The usual question in this setting is to estimate the expected 
lifetimes for the two tool types and answering the question whether the two means 
are identical. The boxplots let us assume that this is not the case. We can 
quantitatively undermine this by performing a Student’s t-Test for non-paired data. 
The R command is as follows: 
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> t.test(hours ~ tool, var.equal=TRUE, data=lathe) 
Two Sample t-test 
data:  hours by tool 
t = -6.435, df = 18, p-value = 4.681e-06 
alternative hypothesis: true diff in means is not equal to 0 
95 percent confidence interval: 
-19.655814  -9.980186 
sample estimates: 
mean in group A mean in group B  
         17.110          31.928 

What does this have to do with regression analysis? More than you think. We can 
achieve the very same quantitative results by fitting a regression of ~y x . 
Because regression is a technique for numerical variables, we need to replace the 
categorical predictor x  by an indicator variable that takes values 0 and 1 to 
identify the tool types – this is a so-called dummy variable. 
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 
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The choice of 0 and 1 to identify the levels of this categorical predictor is arbitrary. 
In fact, any two distinct values for x  would be satisfactory, although 0 and 1 are 
the normal choice. Then, if we consider the simple linear regression model 

 0 1i i iy x E    , 

this becomes 0i iy E   for observations i  with tool type A and hence 0ix  . 
Then, for observations j  with tool type B, 1jx   and the regression equates to 

0 1j jy E    . Consequently, 0  is the expected lifetime for tools of type A, and 

0 1   the one for tools of type B. Or we can also say that 1  is the difference in 
the two lifetime expectations. With R, fitting regression models with categorical 
predictors is straightforward. We do not even need to take care of the generating 
the dummy variable, but can just provide a factor variable, i.e. 
class(lathe$tool)= "factor ". The summary output is as follows: 

> summary(lm(hours ~ tool, data=lathe)) 
 
Call: lm(formula = hours ~ tool, data = lathe) 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   17.110      1.628  10.508 4.14e-09 *** 
toolB         14.818      2.303   6.435 4.68e-06 *** 
--- 
Residual standard error: 5.149 on 18 degrees of freedom 
Multiple R-squared: 0.697, Adjusted R-squared: 0.6802 
F-statistic: 41.41 on 1 and 18 DF, p-value: 4.681e-06 

We observe that the regression coefficients are identical to the results from the 
testing procedure above, where arithmetic means were drawn. Furthermore, the 
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test for the null hypothesis 1 0   addresses exactly the same question as the t-
test for non-paired data does. However, not only the question is identical, but also 
the answer (and the methodology behind). The p-values with both approaches are 
one and the same. Hence, if we can do regression, we could in fact retire the non-
paired t-test altogether. 

3.6.2 Mix of Categorical and Continuous Predictors 

We now enhance our previous example and want to relate the lifetime y  of a 
cutting tool on the speed of the machine in rpm ( 1x ) and the type of cutting tool 
used ( 2x ). The first predictor is continuous, while the second is categorical, again 
with levels A and B. As before, it will be replaced it by an indicator or dummy 
variable that takes values 0 and 1 to identify the tool types. 
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We can display the data in a scatter plot of hours vs. rpm, and distinguish the two 
tool types by different plotting characters. 

 

The plot also shows parallel regression lines for tool types A and B. We will now 
explain how they are found. The regression model for the situation with one 
continuous and one categorical predictor is as follows: 

 0 1 1 2 2y x x E       or in R notation hours ~ rpm + tool. 

The summary output for this regression model is: 
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> summary(lm(hours ~ rpm + tool, data = lathe)) 

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 36.98560    3.51038  10.536 7.16e-09 *** 
rpm         -0.02661    0.00452  -5.887 1.79e-05 *** 
toolB       15.00425    1.35967  11.035 3.59e-09 *** 
--- 
Residual standard error: 3.039 on 17 degrees of freedom 
Multiple R-squared: 0.9003,  Adjusted R-squared: 0.8886  
F-statistic: 76.75 on 2 and 17 DF,   p-value: 3.086e-09 

We will now turn our attention to the interpretation of this regression model. We 
first consider an observation i  where the tool is of type A. There, we have 2 0ix   
and thus the model simplifies to: 

 0 1 1 2 0 1 10i i i i iy x E x E            . 

Thus, the relation between tool life and lathe speed for tool type A is a straight line 
with intercept 0 36.99   and slope 1 0.027   . Important: note that the slope is 
generally not equal to the one we would obtain from a simple linear regression for 
tools of type A only! Now conversely, for any observation j  with tool type B, we 
have 2 1jx  , and thus: 

 0 1 1 2 0 2 1 11 ( )j j j j jy x E x E               

That is, for tool type B the relation between tool durability and lathe speed is also a 
straight line with the same slope 1 0.027   , but different intercept 0 2 51.99   . 
Thus, the model estimates a common, identical slope coefficient for the two tool 
types. The regression coefficient 2  of the dummy variable 2x  accounts for the 
additive shift in durability of tool type B vs. tool type A, i.e. measures the difference 
in mean tool life when changing from tool type A to tool type B. Note that the two 
regression lines are parallel by definition. To make the analysis complete, we 
would need to check the diagnostic plots. We leave this as an exercise, because 
there are no peculiarities for this specific example. For the diagnostic plots, it is 
helpful to use different plotting symbols for tool types A and B. 

3.6.3 Interaction Terms 

Above, the regression line for tools A and B had different intercept, but identical 
slope. In this example, the fit seemed to be pretty well even under this restriction. 
However, we can easily imagine a situation where two parallel regression lines are 
not appropriate. The question this section deals with is whether and how a model 
with two different regression lines can be fitted. It is possible to model this situation 
with a single regression equation by using indicator variables. The model is: 

 0 1 1 2 2 3 1 2y x x x x E         or hours ~ rpm + tool + rpm:tool. 
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An interaction term or cross product 1 2x x  has been added to the model. To 
interpret the parameters in this model, we first consider an observation i  with tool 
type A. Remember; this means that the dummy variable 2 0ix  . 

 0 1 1 2 3 0 1 10 0i i i i iy x E x E                

Thus, this is again a regression line with intercept 0  and slope 1 . However, the 
slope 1  will generally be different to the one found with the main effect model 
from section 3.6.2. For an observation j  with tool type B, we have 2 1jx   for the 
dummy variable. Thus, the regression model becomes: 

 0 1 1 2 3 1 0 2 1 3 11 1 ( ) ( )j j j j j jy x x E x E                    

This is a straight-line model with intercept 0 2   and slope 1 3  . Thus, the 
interaction model defines two regression lines with different intercepts and 
different slopes. Therefore the parameter 2  reflects the change in the intercept 
associated with changing from tool type A to tool type B, and 3  indicates the 
change in the slope associated with this change. 

 

The scatterplot of hours vs. rpm is shown above, together with the two regression 
lines that are no longer parallel. There is a large vertical shift between the two 
regression lines. The slope however, only differs little. An obvious question is 
whether fitting two regression lines with different slopes is necessary, i.e. whether 
the difference is statistically significant or whether we could also do with the 
simpler model that has two parallel lines. This amounts to testing 

 0 3: 0H    against 3: 0AH   . 
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This is an individual parameter test for the interaction term, and the result can be 
directly read from the summary output. 

> summary(lm(hours ~ rpm + tool + rpm:tool, data = lathe)) 
Coefficients:   Estimate Std. Error t value Pr(>|t|)     
(Intercept)    32.774760   4.633472   7.073 2.63e-06 *** 
rpm            -0.020970   0.006074  -3.452  0.00328 **  
toolB          23.970593   6.768973   3.541  0.00272 **  
rpm:toolB      -0.011944   0.008842  -1.351  0.19553     
--- 
Residual standard error: 2.968 on 16 degrees of freedom 
Multiple R-squared: 0.9105, Adjusted R-squared: 0.8937 
F-statistic: 54.25 on 3 and 16 DF,  p-value: 1.319e-08 

The p-value for our null hypothesis is 0.196, thus the interaction term is not 
statistically significant. This leads to the conjecture that if there are no further 
(practical) reasons strongly speaking for different slopes, we would (and could) fit 
parallel lines. Note that the (full) interaction model always yields the same result as 
two separate simple linear regressions on tools of type A, and tools of type B. 
Does that mean we should prefer simple regressions? The answer is definitely no, 
because with the common model we can formally test to which extent the two tools 
behave identically. From the above test, we can accept the hypothesis that the 
rpm variable has the same effect on lifetime for both tool types. Another, more 
general but equally interesting question is if there is any difference at all between 
the two tools with respect to lifetime. The associated null hypothesis is: 

 0 2 3: 0H     against 2 3: 0 / 0AH and or   . 

Under the null, both the dummy and interaction coefficient are zero, meaning that 
there would be a common regression line for both tools. Our graphical display 
shows that this is implausible, but it is helpful to formally test the claim. Because 
we are testing two coefficients simultaneously, we require a partial F-test. The  
R-code and the output are as follows: 

> fit1 <- lm(hours ~ rpm, data=lathe) 
> fit2 <- lm(hours ~ rpm + tool + rpm:tool, data=lathe) 
> anova(fit1, fit2) 
Model 1: hours ~ rpm 
Model 2: hours ~ rpm + tool + rpm:tool 
  Res.Df     RSS Df Sum of Sq      F    Pr(>F)     
1     18 1282.08                                   
2     16  140.98  2    1141.1 64.755 2.137e-08 *** 

We observe that the p-value is very small, and the partial F-test thus highly 
significant. While there is no evidence for different slopes in this example, there is 
strong evidence of a difference (in either slope or intercept). Regarding the 
scatterplot, with the pronounced vertical shift between tool types A and B, this 
does not surprise us. 
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Finally, we conclude this section by stating that the use of interaction models is not 
restricted to a combination of continuous and categorical predictors. In this case, 
they can be visualized most easily. However, we can have them between any 
types of predictors. They are appropriate whenever there is, or whenever we 
suspect a change in the effect of one predictor on the response, conditional on the 
level of another predictor. 

3.6.4 Categorical Input with More than Two Levels 

An obvious extension to the previous example with lathe cutting tools would be to 
consider three or more types of tools instead of only two. The tool variable then is 
still categorical, but no longer binary, and we need more dummy variables. For 
example, suppose that there are three tool type A, B and C. We then require two 
dummy variables to incorporate them into the model. The coding is as follows: 

2 3

0 0

1 0

0 1

x x

for observations of type A

for observations of type B

for observations of type C

 

In general, a qualitative variable with   levels is represented by 1  dummy 
variables, each taking values 0 and 1. Be careful, categorical variables must be 
represented in this fashion, and generally cannot be numerically coded in one 
single variable with values 0,1,..., 1 . Please also note that with the here 
presented dummy encoding, the first level (here: tool type A) is always the 
reference. This is also how R codes categorical input variables by default: the first 
factor level is the reference. There are, however, different options for coding, 
called contrasts. This is more of a topic in analysis of variance, thus we do not 
pursue that issue here. The main effects regression model with three types of tools 
and their respective dummy variables is now: 

 0 1 1 2 2 3 3y x x x E        , or in R simply hours ~ rpm + tool. 

This will fit three parallel regression lines, where each has a different intercept. 
However, when we closely observe the scatter plot below, we gain the impression 
that the durability of tool type C seems to depend much less on rpm than the other 
two. While at slow speeds, its lifetime seems to be inferior to the type B tools, they 
seem to last longer at faster speeds. Because the main effects model cannot deal 
with the apparently different slopes, we fit the interaction model hours ~ rpm + 
tool + rpm:tool: 

 0 1 1 2 2 3 3 4 1 2 5 1 3y x x x x x x x E             

The interpretation of this model is as before with binary categorical input. We leave 
it as an exercise to write down the cases for observations i , j  and k  of tool types 
A, B and C. The regression fit with R is again straightforward; we only need the 
tool variable to be a factor with multiple levels: 
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> summary(lm(hours ~ rpm + tool + rpm:tool, data = abc.lathe) 

Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 32.774760   4.496024   7.290 1.57e-07 *** 
rpm         -0.020970   0.005894  -3.558  0.00160 **  
toolB       23.970593   6.568177   3.650  0.00127 **  
toolC        3.803941   7.334477   0.519  0.60876     
rpm:toolB   -0.011944   0.008579  -1.392  0.17664     
rpm:toolC    0.012751   0.008984   1.419  0.16869     
--- 
Residual standard error: 2.88 on 24 degrees of freedom 
Multiple R-squared: 0.8906, Adjusted R-squared: 0.8678  
F-statistic: 39.08 on 5 and 24 DF,  p-value: 9.064e-11 

The interpretation of this summary output now needs to be done with care. 
Individual parameter tests for dummy variable coefficients of categorical predictors 
with more than two levels are not meaningful! Thus, from the above output, we 
cannot conjecture that we can do without a different intercept for tool C, because 
the test for 0 3: 0H    is not significant. Moreover, also the coefficients 4  and 5  
for the interactions have p-values above 0.05. Does that mean that we can do 
without the interaction? No! We can only either exclude all the interaction terms at 
once, i.e. test the hypothesis  

 0 4 5: 0 0H and    against 4 5: 0 / 0AH and or   . 
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This is again a partial F-test. Furthermore, we can also ask the question whether 
there is a difference between the regression lines of the three tool types 
altogether. Thus, we also test for the sub-model with only rpm as a predictor: 

 0 2 3 4 5: 0H         against 2 3 4 5: , , , 0AH any of      . 

While many software packages have troubles with this, R is very convenient and 
very quick. We can just do anova(fit.abc) and obtain the following output: 

> anova(fit.abc) 

Analysis of Variance Table 
          Df  Sum Sq Mean Sq F value    Pr(>F)     
rpm        1  139.08  139.08 16.7641  0.000415 *** 
tool       2 1422.47  711.23 85.7321 1.174e-11 *** 
rpm:tool   2   59.69   29.84  3.5974  0.043009 *   
Residuals 24  199.10    8.30                       

The command performs some hierarchical model evaluation. The bottom row 
entitled rpm:tool contains the partial F-test for the null 0 4 5: 0 0H and    
from above. It checks whether the interaction term with its two coefficients can be 
kicked out of the model. The consequence of this action is that all three tool types 
obtain the same slope. The result is weakly significant, thus there is some mild 
statistical evidence that there is a difference in life time diminishment caused by 
the speed for tool types A, B and C. In that case, testing further hypotheses with 
more parameters set to zero is obsolete. 

For deeper understanding, we still explain the second row entitled with tool. It 
shows test statistic and p-value for the null 0 2 3 4 5: 0H        , i.e. no 
difference among the tools at all. The p-value is way below 0.05, we thus have 
very strong evidence that there is a difference between the tools. That is not too 
surprising given the scatterplot. However, the test results is very useful indeed. 
Keep in mind that many (most!) regression problems cannot be visualized so 
easily, such that we have to rely on test results rather than visualization for being 
able to draw conclusions. 

3.6.5 Categorizing Quantitative Predictors 

A sometimes useful trick is to generate a categorical predictor out of a continuous 
one. In the lathe example from above, we could for example categorize the 
continuous predictor rpm into bins ranging from 400-600rpm, 600-800rpm, and 
800-1000rpm. Does this make sense? At the first glance, there does not seem to 
be an advantage for doing so, and in this particular example, there is in fact none. 

Also, the disadvantage of the categorization is that more parameters are required 
to represent the information of the continuous predictor. Thus, we increase the 
model complexity by this categorization. However, under the presence of enough 
data, this is sometimes desired, because it does not require the analyst to make 
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any prior assumptions about the functional form of the relationship between the 
response and the predictor variable and enhances the flexibility. 

Another advantage of the categorization approach is that it allows dealing with 
missing observations, without having to delete them. If they are numerous in a 
certain predictor, we could just categorize it, and assign all observations with 
missing information in that predictor the label “unknown”. Within the model, we 
would just estimate the effect of unknown status in that predictor. Such a 
categorization of continuous predictors is in some fields quite popular among data 
analysts. The approach is also known as “poor man’s GAM”. 

3.7 Model Diagnostics 

We need to check the assumptions we made for fitting a multiple linear regression 
model. Why? One reason is because we want to make sure that the estimates we 
produce and the inference we draw is valid. This seems quite technical and also 
somewhat fussy and boring. Still, it is absolutely essential to perform residual 
analysis before any findings from the summary output, confidence intervals or 
predictions are reported. If the model that was used is flawed, all these results 
might be dead wrong and presenting them unverified could bring you into a very 
uncomfortable situation. 

However, there is a second, usually equally important reason to perform model 
diagnostics: any potential flaws that appear can help us to improve the model and 
enhance our understanding of the relation between response and predictors. In 
fact, we can go as far as saying “it is all in the residuals”, i.e. most of what we can 
learn about how to better shape a regression analysis is derived from some clever 
diagnostic plots. Such enhancements include response and/or predictor 
transformations, inclusion of further predictors or interaction terms among them, 
weighted regression analysis or in some situations also the use of more generally 
formulated or more robust models that are not based on OLS. This is explorative 
data analysis at its best – we fit a model, try some ideas, check the results and try 
to improve. 

3.7.1 What Do We Need to Check For, and How? 

We restate the assumptions we made for using the OLS procedure when fitting 
multiple linear regression model and drawing inference from them. One goal in 
model diagnostics is to detect potential deviations from them. 

[ ] 0iE E  , 

2( )i EVar E  , 

( , ) 0i jCov E E  for all i j , 

2~ (0, ), . .i EE N I i i d . 
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While the first three conditions are necessary for performing least square 
estimation and the validity of the fitted values, the last condition is only required for 
any hypothesis tests, confidence intervals and prediction intervals. Since these are 
very important and the OLS estimator quickly becomes inefficient under non-
Gaussian distribution, the normal assumptions shall also always be verified. While 
zero error, constant variance and the Gaussian property are relatively easy to 
check and will be addressed in the next subsection, uncorrelatedness or 
independence are more delicate matters that are postponed to a later chapter. 
Please also note that most of our diagnostic techniques are visual. This requires 
some expertise for their interpretation, but has the benefit of a very wide scope 
and good power for detecting what is important to be found. 

3.7.2 Checking Error Assumptions 

In this section, we present methods for checking the zero expectation, constant 
variance and normality assumptions of the errors iE . These themselves are not 
observable, but we can examine the residuals ir  which are estimates of the errors. 
However, iE  and ir  are not the same, and to a certain extent, also have different 
properties. Even when the conditions on the errors are exactly met and hence 

2( ) EVar E I , the residuals will be weakly correlated and heteroskedastic: 

2( ) ( ) EVar r I H   . 

This is induced by the OLS estimation of ir  and the heteroskedasticity is relatively 
easy to understand. We already know that the confidence interval for [ | ]E y x  gets 
wider the further x  lies from x . Hence, there is more uncertainty in the fitted value 
for such observations and consequently, their residual has higher variance. This 
raises the question whether it is sensible to verify the error assumptions with the 
residuals. Fortunately, in well-posed regression problems where enough data are 
present, the effects of estimation-induced residual correlation and 
heteroskedasticity will be minor and can usually be neglected. Moreover, one can 
try to standardize or studentize the residuals for mitigating the heteroskedasticity. 
The two terms refer to a division of each residual by its estimated standard 
deviation to bring them on a scale with unit variance: 

 
ˆ 1

i
i

E ii

r
r

h



 . 

Here, iih  is the thi  diagonal element of the hat matrix and ˆE  is an estimate of the 
residual standard error. Depending on whether ˆE  comes from the full fit or from 
an alternate regression without the thi  data point, one speaks of standardized 
respectively studentized residuals. The distinction between the two types is mostly 
for academic purpose and not too relevant for practical application. Standardized 
and studentized residuals can be obtained in R through functions rstandard() 
and rstudent(), respectively. However, the difference between either of these 
and the raw residuals ir  can be pronounced for data points with extreme x  values. 
We compare the rescaled raw and standardized residuals for the mortality data: 
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> plot(resid(fit)/sd(resid(fit)), rstandard(fit), pch=20) 

 

Except for the Tukey-Anscombe plot, the forthcoming residuals plots will be based 
on standardized residuals. This is how things are implemented in R and unless 
you know much better, it is recommended to stick to this. 

Tukey-Anscombe Plot 

This plot of residuals ir  vs. fitted values ˆiy  is named after the two researchers 
(who were brothers-in-law) that made it popular and is the most important 
diagnostic tool for any multiple linear regression fit. It is mainly aimed at verifying 

[ ] 0iE E   and so evaluates whether the model is correct and makes unbiased 
predictions. However, please note that is not possible to check the assumption of 
zero expectation for each error individually – some residuals will be large and 
some will be small, but this proves nothing. What we need to check is whether the 
local mean of the residuals is related to some other quantity. This should not be 
the case, no matter what that quantity is. The easiest way to generate a Tukey-
Anscombe plot in R is with the plot.lm() function, i.e. the command is simply 
plot(fit, which=1). Because it is more instructive, we here show the code to 
self-generate the plot and display it along R’s default version. As you can see, the 
two plots are nearly identical, except for some minor differences in the smoother 
which is due to the different algorithms that were used. Also, plot.lm() always 
annotates the name of the three data points with the biggest residuals which is 
very useful in practice. 

> plot(fitted(fit), resid(fit), main="Tukey-Anscombe") 
> lines(loess.smooth(fitted(fit), resid(fit)), col="red") 
> abline(h=0, lty=2) 
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Producing a Tukey-Anscombe plot is one thing, drawing the correct conclusions 
from it the other. Some artificial examples illustrate the concept: 

 

800 850 900 950 1000 1050 1100

-6
0

-4
0

-2
0

0
2

0
4

0
6

0
8

0

Tukey-Anscombe Plot

Fitted Values

R
e

si
d

u
a

ls

800 850 900 950 1000 1050 1100

-5
0

0
5

0

Residuals vs. Fitted

Fitted values

R
e

si
d

u
a

ls

New Orleans,LA

Memphis, TN
Lancaster, PA

0 20 40 60 80 100

-3
-2

-1
0

1
2

R
es

id
ua

ls

Gaussian iid Residuals: OK

0 20 40 60 80 100

-2
-1

0
1

2

R
es

id
ua

ls

Gaussian iid Residuals: OK

0 20 40 60 80 100

-2
0

-1
0

0
10

20

R
es

id
ua

ls

Heteroskedasticity: Not OK

0 20 40 60 80 100

-3
-2

-1
0

1
2

3

R
es

id
ua

ls

Systematic Error: Not OK



Applied Statistical Regression  3 Multiple Linear Regression 
 

 Page 72 

For the zero error expectation [ ] 0iE E   assumption to hold, we require that the 
smoother does not systematically deviate from the x -axis. This is the case in the 
top two panels, because the “residuals” there originate from an iid Gaussian 
distribution. Hence, any deviation can be attributed to randomness alone. The 
situation is different in the bottom right panel: here, there is a systematic deviation 
of the smoother from the x -axis, and under no circumstances we could tolerate 
such a faulty model. The bottom left panel shows a situation where [ ]iE E  does not 
systematically deviate from zero, but ( )iVar E  massively increases for large fitted 
values. Also this is a violation of the assumptions for OLS regression, although a 
less severe one. 

So when does a smoother systematically deviate from the x -axis, and when is this 
just due to random variation? Generally, this is an expert call based on the 
magnitude of the deviation and the number of data points which are involved. An 
elegant way out of these (sometimes difficult) considerations is given by a 
resampling approach. It is based on keeping the fitted values ˆiy  as they are, but 
for each data point a “new” residual *

ir  is assigned, obtained from sampling with 
replacement among the ir . Then, with the new data pairs *ˆ( , )i iy r , a smoother is 
fitted and it is added to the Tukey-Anscombe plot as a grey line. The entire 
process is repeated for a number of times, e.g. 100x. Clearly, because the 
residuals were randomly assigned to the fitted values, there cannot be a 
systematic (but just a random) deviation of the smoother. Hence, these resampled 
smoothers illustrate the magnitude which a random deviation from the x -axis can 
take and help us to assess the true smoother. 

> plot(fitted(fit), resid(fit), pch=20, main="...") 
> for (i in 1:100) { 
> +   sresid <- sample(resid(fit), replace=TRUE)) 
> +   lines (loess.smooth(fitted(fit), sresid), col="grey")} 
> lines(loess.smooth(fitted(fit), resid(fit)), col="red") 
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The result on the previous page tells us that up to fitted values which are 1050 , 
the original red smoother lies well within the grey scatter and thus just randomly 
deviates from the x -axis. At the right hand boundary, the situation remains fuzzy. 
The original smooth is at the edge of what can be generated by random sampling, 
but not clearly beyond. Also because it is only due two data points with strongly 
negative residuals, the author feels that we cannot reject the hypothesis [ ] 0iE E  . 
Hence, we here attribute the deviation of the smoother to randomness. 

But what could we do in case of a systematic error? The answer is simple; we 
need to fit a better model. The difficult part is to find the correct way to improve the 
model. Often, (log-)transformations of the response and/or predictor variables 
help. In other cases, a systematic error may be cured by adding further predictors, 
higher order terms or interactions. In some (pretty rare) cases, we may also need 
to conclude that multiple linear regression modelling is not the correct way to 
approach the problem at hand. We conclude this section with a brief summary: if 
the smoother in the Tukey-Anscombe plot systematically deviates from the x -axis, 
the regression model has a systematic error. In this case, we should not generate 
predictions or report findings from the summary output, but need to improve the 
model. The most generic trick that helps in many situations is to consider log-
transformations for the variables where this is sensible. 

Normal Plot 

The assumption of normally distributed errors can be checked with the normal plot, 
i.e. for 1,...,i n  we plot the ordered residuals against the / ( 1)i n  quantiles of the 
standard normal distribution. If the errors iE  are Gaussian, then this also holds for 
the residuals ir . Thus, the data points in the normal plot should align, i.e. not show 
a systematic deviation of the line that is fitted through the 1st and 3rd quartiles of 
the two distributions. This may again raise some discussion as when a deviation is 
random or systematic. We can again support this decision by resampling, i.e. 
drawing 100 random samples of length n  from a Gaussian distribution that shares 
mean and standard deviation with the residuals. 

> qq <- qqnorm(resid(fit), pch=20, main="...") 
> for (i in 1:100) { 
> +   sresid <- rnorm(length(qq$y), mean(qq$y), sd(qq$y)) 
> +   lines(sort(qq$x), sort(sresid), col="grey")} 
> points(qq$x, qq$y, pch=20); box() 
> qqline(resid(fit), lty=2) 

The result is displayed on the next page. We observe that all residuals from the 
mortality dataset fall within the resampling based confidence region, thus there is 
no systematic deviation from the normal distribution. The question which remains 
is what to do if there is a systematic deviation. This depends on the type of non-
Gaussian residuals that are observed. The OLS estimator is not tolerant to skewed 
residuals, especially because they mostly coincide with a systematic error, i.e. a 
violation in the Tukey-Anscombe plot. Heavy- and especially short-tailed residual 
distributions are less worrying, as long as they are symmetrically distributed. In 
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that case, they hardly have an adverse effect on the fitted values, which are still 
unbiased and trustworthy. In contrast, the accuracy in the levels of the confidence 
intervals that are computed and the precision of the tests suffers – an issue, which 
definitely has to be kept in mind. What also needs to be mentioned is that the 
efficiency of the OLS estimator degrades quickly for heavy-tailed distributions, 
meaning that there are other (i.e. robust) estimators that can estimate the 
regression coefficients with higher precision. 

 

For illustrating some prototypical normal plots, see the next page. In clockwise 
order, starting from the top left, they show residuals from a normal distribution, 
then from the right-skewed lognormal distribution, the long-tailed Student’s  

2t -distribution and finally a short-tailed Uniform distribution. 

Scale-Location Plot 

This plot facilitates detecting non-constant variance, i.e. heteroskedasticity. We 
had argued above that one can also detect this by looking sharply at the Tukey-
Anscombe plot, but the Scale-Location plot is more specific. It displays the square 
root of the absolute value of the standardized residuals ir  versus the fitted 
values. The crucial operation is the absolute value. It means that the bottom half of 
the Tukey-Anscombe plot is folded over, hence we can better detect a potential 
relation of the residuals’ magnitude with the fitted value. Again, a smoother is 
added and if there is no heteroskedasticity, it will run horizontally. Also here, the 
task is to identify systematic deviations. We can again use the resampling idea of 
randomly drawing new data pairs *ˆ( , )i iy r  to produce a confidence region in the 
Scale-Location plot. The result is displayed on the next page. It seems as if the 
variance in the residuals grows with increasing fitted value. A popular cure for this 
is to apply a log-transformation to the response variable. If one tries (not displayed 
in this scriptum), there is a small benefit. 

-2 -1 0 1 2

-6
0

-4
0

-2
0

0
2

0
4

0
6

0
8

0
Normal Plot with Resampling

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
til

e
s



Applied Statistical Regression  3 Multiple Linear Regression 
 

 Page 75 

 

 

 

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

Normal

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

-3 -2 -1 0 1 2 3

0
5

10
15

Right-Skewed

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

-3 -2 -1 0 1 2 3

-1
0

0
10

20

Long-Tailed

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Short-Tailed

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

800 850 900 950 1000 1050 1100

0
.0

0
.5

1
.0

1
.5

Scale-Location-Plot with Resampling

Fitted Values

sq
rt

(a
b

s(
S

ta
n

d
a

rd
iz

e
d

 R
e

si
d

u
a

ls
))



Applied Statistical Regression  3 Multiple Linear Regression 
 

 Page 76 

3.7.3 Leverage and Influential Data Points 

There are situations where the regression coefficient estimates are strongly 
influenced by one single, or just a few data points. This is suboptimal; it is 
important to recognize such situations and to identify these data points. However, 
the previously discussed residual plots are not always very useful for this task. 

Leverage 

A leverage point is one with extreme x -values, i.e. lies “far” from the bulk of data. 
It is not necessarily influential, but has a high potential to be so. The plots below 
illustrate this: the top left shows a “normal” situation without leverage points. Top 
right, a leverage point was added, but it is not influential. This is different at the 
bottom left: the leverage point now has influence, i.e. the red regression line differs 
markedly from the blue one, which was computed by omitting the leverage point. 
Finally, the bottom right panel shows an outlier, which has only little influence on 
the regression line. This is because it has an x -value which is close to x . 
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The leverage of a data point is relatively easy to determine. It simply corresponds 
to iih , the thi  diagonal element of the hat matrix H . This makes sense, as if the 
response iy  changes by iy , then ii ih y  is the change in the fitted value ˆiy . Thus, 
a high leverage for the thi  data point means that it has a strong potential to alter 
the regression line and force it to fit well to it. We have: 

0 1iih   for all i , and 1iih p  .  

All data points with values exceeding 2( 1) /iih p n   are regarded as leverage 
points. As we have seen above, observations that have high leverage and at the 
same time a large residual are most influential. We need to identify these! 

Cook’s Distance 

In brief summary, a leverage point tells us how strongly a data point may force the 
regression line to run through it. Whether it does so or not largely depends on the 
size of its residual. A direct measure for the change in the regression fit by a 
certain data point can be obtained by omitting the thi  data point and re-computing 
the fit without it. This is the basis for defining Cook’s Distance: 
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Data points with Cook’s distance 0.5iD   need further investigation; because it 
might well be that they spoil the regression analysis. As evident from the plots on 
the previous page, Cook’s distance contours are shown in the leverage plot. Note 
that in cases where they do not exist, it is because they are not visible as they do 
not fall within the plotting region. However, it is always possible to obtain the 
Cook’s distance plot in R, just use plot(fit, which=4). The two plots also 
shed light on some model deficiencies for the mortality data: there seems to be 
some odd systematic relation between the residuals and the leverage and there 
are two data points with problematic influence. These are the cities of York (PA) 
and New Orleans (LA). 

Dealing with Influential Data Points and Outliers 

We have seen above that the “most dangerous” data points are the ones that are 
leverage points and outliers at the same time. Also, we explained that Cook’s 
Distance is a well suited measure to identify such points. However, here are some 
more things to consider about the presence of influential data points: 

1) An influential data point in one model may disappear in another where 
variables have been changed or transformed. One needs to reinvestigate 
the question of influential data points when the model is changed. 

2) The error distribution may not be Gaussian and thus, larger residuals may 
need to be expected. For example, day-to-day relative changes in stock 
indices seem Gaussian over large periods of times, but large changes also 
happen once in a while. 

3) A single or very few outliers are usually much less of a problem in larger 
datasets. A single point will mostly not have the leverage to affect the fit 
very much. It is still worth identifying outliers if these types of observations 
are worth knowing about in the particular application.  

Suppose that you detected one or several influential data points or outliers in your 
data. What to do with them? The following can serve as a practical guide: 

a) Check for typos first, if the original source of the data is available. 

b) Examine the physical context – why did it happen? Sometimes, influential 
data points may be of little interest. On the other hand, it was often the case 
that scientific discoveries arose from noticing unexpected aberrations. 

c) Exclude the influential data points from the analysis, and re-fit the model. 
The differences can be substantial and make the difference between getting 
a statistically significant result, or having some “garbage” that cannot be 
published. To avoid any suggestion of dishonesty always report the 
existence of data points that were removed from the final model. 

d) Suppose there are outliers that cannot be reasonably identified as mistakes 
or aberrations, but are viewed as naturally occurring, e.g. due to long-tailed 
error distribution. Rather than excluding these instances and the using least 
squares, it is more efficient and reliable to use robust regression. 
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3.7.4 Example: Mortality Dataset 

From the model diagnostics, we conjecture that York and New Orleans are the 
most influential data points. To be on the safe side, it is reasonable to re-run the 
regression analysis without these two data points. The most important 
observations from this analysis are that the residual standard error is now smaller, 
and the coefficient of determination increased. Thus, the fit is better now.  

We now turn our attention to the interesting question why the cities of York and 
New Orleans were influential data points. Plotting some of the predictors, maybe 
even against other predictors and identifying outlying data points may help. In the 
plots below, we observe that the city of York has a considerably higher population 
density than all the other towns. It turned out that the definition of districts with 
which the population density was defined was somewhat suboptimal. 

Moreover, it is also striking that the average years of education in York are much 
lower than elsewhere, but the percentage of white collar workers is higher. This 
anomaly is explained by the predominance of Amish people in that region. It is 
thus, an inhomogeneity of the sample. 

 

3.7.5 Further Residual Plots 

It is perfectly valid to plot the residuals from a regression model against any 
variable we like, be it a predictor, a not yet used potential predictor or other 
variables such as the time or sequence of the observations. There is one 
important rule for all these plots: if any non-random structure is evident, the model 
has deficiencies and can be improved. We will illustrate this using a dataset where 
the prestige of 102 occupations was measured with a survey. The prestige score 
is the response variable and there are 5 potential predictors, namely the average 
number of years of education that people in that profession have, the average 
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income, the percentage of women, the census (which is an occupational code) 
and the type, a categorical variable with the 3 levels professional/managerial, blue 
collar and white collar. For the purpose of exposition, we first fit a very simple 
model, i.e. 

 prestige ~ income + education 

The further three potential predictors are omitted from the model, such that we can 
study the deficiencies that appear. We first fit the model and study the 4 standard 
residual plots in R, enhanced with the resampling based confidence regions. The 
author has implemented that functionality in a procedure called resplot(): 

> fit <- lm(prestige ~ income + education, data=Prestige) 
> resplot(fit) 

 

From the summary, we gather that the global F-test is highly significant and that 
the R-squared reaches a value close to 0.8. Also when inspecting the residual 
plots, the fit seems reasonable. There may be a slight systematic error visible in 
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the Tukey-Anscombe plot and we observe two leverage points, namely physicians 
and general managers. These are the two professions with the highest average 
income. These problems are not severe and overall, the model is certainly of a 
reasonable quality. .However, as we will see below, it is pretty easy to come up 
with a better model for prestige. 

Residuals vs. Potential Predictors 

As mentioned in the introduction, we may plot the residuals against any variable 
we like. Here, we first study what we observe if the residuals are plotted versus the 
potential further predictors. 

> plot(resid(fit) ~ Prestige$women, pch=20) 
> lines(loess.smooth(Prestige$women, resid(fit)), col="red") 
> abline(h=0, col="grey", lty=3) 
> plot(resid(fit) ~ Prestige$census, pch=20) 
> lines(loess.smooth(Prestige$census, resid(fit)), col="red") 
> abline(h=0, col="grey", lty=3) 
> plot(resid(fit) ~ Prestige$type, col="limegreen") 
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There does not seem to be much of a relation between the percentage of women 
in a profession and the residuals, but the other two variables census and type 
certainly have a non-random relation with the residuals. Especially for census, we 
quite strongly underestimate the prestige of jobs with values in the 4000-6000 
range. A similar observation is made for the type: the prestige of managerial jobs 
is underestimated by our current model, while the one of white collar professions is 
overestimated. We can and should cure these problems by integrating the 
predictors into the model. 

Partial Residual Plots 

In many applied problems, it is very interesting to understand and visualize the 
relation between the response and some arbitrary predictor kx . However, a plot of 
y  vs. kx  can be deceiving, because in a multiple regression setting, all other 
predictors 1 1 1,..., , ,...,k k px x x x   will simultaneously have an effect on the response. 
Hence, what we should aim for is displaying the relation of y  vs. kx  under the 
presence of the other predictors. That is what the partial residual plot does. We try 
to illustrate the idea with an excerpt from the mortality dataset. 

 

The left panel shows the plain relation between the response and the logged 
nitrous oxide. The problem with this plot is that mortality in the different cities is 
affected by other factors than log( )xNO , too. We try to improve upon this with the 
plot on the right. It shows the partial residual plot for log( )xNO . The basic idea is to 
generate an updated y  variable, where the effect of all other predictors is 
removed from the response. This is the verbal definition of a partial residual. 
Mathematically, the partial residuals for predictor kx  are: 

 ˆ ˆ ˆˆj j j j k k
j k j k

y x y r x x r  
 

        

As we can see from the formula, the initial idea is to adjust the response by the 
estimated effect of the other predictors. We can reformulate this as adjusting the 
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residuals by the estimated effect of predictor kx . While the latter is a bit more 
difficult to comprehend, it is much more convenient for computation. The partial 
residuals can easily be accessed in R by typing: 

> residuals(fit, type="partial") 

This yields a n p  matrix that has the partial residuals for all the predictors. Even 
more convenient functionality can be found in the function crPlots() in 
library(car). We display the result for the prestige example: 

 

The partial residual plots are enhanced with the red dashed line that illustrates the 
actual fit according to the multiple linear regression model. The green solid line is 
a smoother that was added for visualizing the true relation between partial residual 
and predictor. This allows for gaining a lot of insight into the model. As we can 
see, the income variable has a non-linear (but approximately logarithmic) relation 
to its partial residuals. Hence, it would be wise to use log(income) rather than 
the untransformed variable. This should not come as a surprise, as its properties 
with only positive values on a right-open, relative scale and a right-skewed 
marginal distribution speak for that, too. Even more interesting is the observation 
in the left hand panel. There seems to be a pronounced difference in the prestige 
of jobs that require >12 years of education, i.e. a university degree. Hence, adding 
a factor variable that codes for jobs that require a degree might improve the fit 
strongly. As some further experimentation shows, this is indeed the case. A similar 
effect is achieved if variable type is added to the model, as the prof/managerial 
jobs are the ones requiring >12 years of education. 

We finish this section by summarizing that the partial residual plots allow for 
perceiving how the predictors act in a multiple linear regression model. If there 
appears a significant difference between their actual, linear fit and the true relation 
indicated by the smoother, one should improve the model. Sometimes, we can 
transform predictors to achieve this; at other times adding additional predictors 
and/or interaction terms may help.  
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3.8 Variable Selection 

There is usually a wealth of predictors and potential predictors available to explain 
a target variable of interest. Here, we show how we can select the “best” subset of 
predictors. We first motivate why this is useful, then turn our attention to some 
strategies for finding the subset, and also discuss the meaning of the word “best” 
in terms of regression modeling. 

3.8.1 Why Variable Selection? 

Only in some rare special cases, we do already know the functional form with 
which a few specified predictors 1,..., px x  explain the response y . In these cases, 
we would still be interested in learning about the regression coefficients, do some 
hypothesis tests, and potentially give some prediction and confidence intervals. 

Much more often however, we want to use regression in an explorative fashion. 
This is usually when we do not know previously how the relation between 
response y  and some potential predictors jx  is, usually we do not even know 
which predictors to use. In these situations it has become standard to collect data 
from many potential predictors. Our goal with regression analysis will then be to 
learn not only about the form of the relation between response and predictors, but 
also about required variable transformations, and probably most importantly, about 
the predictors that have a relevant impact on the outcome. 

Thus, there is motivation for variable selection arising purely from applied aspects. 
However, there is some more technical reasoning for keeping a model small: 

1) We generally want to explain the data in the simplest way, and thus remove 
redundant predictors. This follows the idea that if there are several plausible 
explanations (i.e. models) for a phenomenon, then the simplest is the best. 

2) Unnecessary predictors in a regression model will add noise to the 
estimation of the coefficients for the other predictors. Or in other words: we 
need more observations to have the same estimation accuracy.  

3) What is stated in 2) above becomes even more pronounced if there is 
collinearity among the predictors, i.e. if there are too many variables trying 
to do the same job. Removing excess predictors facilitates interpretation. 

4) If the model is to be used for prediction, we will be able to save effort, time 
and/or money if we do not have to collect data for redundant predictors. 

Please note that variable selection is not a method. It is a process that cannot 
even be separated from the rest of the analysis. For example, outliers and 
influential data points will not only change a particular model – they can even have 
an impact on the model we select. Also variable transformations will have an 
impact on the model that is selected. Some iteration and experimentation is often 
necessary for variable selection, i.e. to find smaller, but better models. 
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Example 

We will illustrate the variable selection process on data coming from the US 
Bureau of Census. They contain information from 50 US states recorded around 
1970. The target variable is life expectancy, and there are 7 continuous predictors: 

 Population: as of July 1, 1975 
 Income:  per capita income, estimated 1974 
 Illiteracy:  percent of populations, 1970 
 Murder:  number of murders per 100’000 people (1976) 
 HS.Grad:  percent high-school graduates (1970) 
 Frost:  number of days with minimum temperature below freezing 
 Area:  land area in square miles 

Some variable transformations are required: Population and Area are very 
skewed, thus we apply a log-transformation on them. Moreover, Murder and 
Frost are counts, this is why a square root transformation is appropriate. Finally, 
Illiteracy and HS.Grad are proportions, for which we do an arcsine 
transformation. Income is almost symmetrically distributed, and does not need 
any transformation. The model diagnostics (not shown here) look fine when one is 
using the transformed input variables. The summary output is as follows – so now 
what are the driving predictors for life expectancy? 

> summary(lm(Life.Exp ~ ., data = state.trsf) 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  6.878e+01  2.806e+00  24.511  < 2e-16 *** 
Population   2.799e-01  1.238e-01   2.261   0.0290 *   
Income      -5.601e-05  2.345e-04  -0.239   0.8124     
Illiteracy  -5.885e-01  7.663e+00  -0.077   0.9392     
Murder      -1.510e+00  2.188e-01  -6.905 1.99e-08 *** 
HS.Grad      5.845e+00  2.458e+00   2.378   0.0220 *   
Frost       -9.968e-02  4.821e-02  -2.067   0.0449 *   
Area         3.361e-02  1.036e-01   0.325   0.7472     
--- 
Residual standard error: 0.7109 on 42 degrees of freedom 
Multiple R-squared: 0.7596,   Adjusted R-squared: 0.7195 
F-statistic: 18.96 on 7 and 42 DF,    p-value: 3.867e-11 

The signs of the coefficients mostly match what we would expect. Higher murder 
rate decreases life expectancy which certainly confirms our a priori ideas. 
Additionally, we observe that there are some weakly significant variables: 
Population, HS.Grad and Frost, and a few which are non-significant: Income, 
Illiteracy, and Area. 

The question is now how we could find out which ones are required in this model, 
and which ones can be omitted. Remember again that is not a valid approach to 
kick all predictors with non-significant p-values out of the model simultaneously. 
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3.8.2 Backward Elimination 

We have seen above that reducing the model by more than one variable at a time 
is problematic. However, we could do some stepwise backward elimination. This 
is the simplest of all variable selection procedures. It can easily be run without any 
special software. On the other hand, it can only be conducted if there is a 
reasonable balance between the number of predictors and the number of 
observations. There is a general rule of the thumb, saying that there should be at 
least 5 times as many observations as the number of coefficients that are 
estimated. 

We start with a model where all potential predictors are included. We then remove 
the predictor with the highest p-values greater than crit . Next, we refit the model 
and again remove the least significant predictor, provided its p-value is greater 
than crit . Sooner or later, all “non-significant” predictors will be removed, and the 
selection process will be complete. One usually uses the arbitrary 0.05crit  , 
although for prediction, often a 0.15  or 0.20  cutoff yields better results. 

In our example, Illiteracy is the least significant predictor with a p-value of 
0.939. We will omit it, and fit the model again. From the summary output (not 
shown here), we learn that Income is now the least significant predictor and has 
p-value of 0.804. Thus, income is omitted, and the model gets refitted. Then, Area 
has a p-value of 0.675, and is excluded. Now, the least significant predictor is 
Population with a p-value of 0.012, i.e. the backward elimination is terminated. 

> summary(lm(Life.Exp ~ Population + Murder + HS.Grad +      
                        Frost, data = state.trsf) 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 68.78767    1.75860  39.115  < 2e-16 *** 
Population   0.27663    0.10600   2.610 0.012259 *   
Murder      -1.49218    0.17046  -8.754 2.83e-11 *** 
HS.Grad      5.83746    1.37130   4.257 0.000104 *** 
Frost       -0.09671    0.03669  -2.636 0.011477 *   
--- 
Residual standard error: 0.6888 on 45 degrees of freedom 
Multiple R-squared: 0.7582,   Adjusted R-squared: 0.7367 
F-statistic: 35.28 on 4 and 45 DF,    p-value: 2.416e-13 

When comparing this output with the full model, we observe that Murder, 
HS.Grad, Frost and Population have lower p-values than initially. The reason 
is that some of their predictive power was covered by the removed variables Area, 
Income and Illiteracy. This does not come as a surprise, because the 
percentage of high school graduates is correlated with illiteracy, and also income.  

Moreover, it is important to understand that the removed variables are still related 
to the response, as a regression of Life.Exp on Area, Income and 
Illiteracy would show. We do not show the output here, and leave this as an 
exercise. 
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3.8.3 Forward Selection 

This is an analogue to the backward elimination. However, forward selection starts 
with an empty model, i.e. a model where only the intercept, but no predictors are 
present. The, we add predictors in a stepwise manner: in every step, we add the 
one which is the most important one, i.e. has the lowest p-value, when added to 
the model. We do so, until no terms with p-values lower than crit , usually set 
equal to 0.05 , can be added to the model. 

This approach is feasible also in situations where there are more predictors than 
there are observations. Since it is also computationally cheap, it was popular in the 
early days of regression analysis. 

3.8.4 Stepwise Regression 

This is a combination of backward elimination and forward selection, and is what R 
does by default in function step(). It addresses the situation where variables are 
added or removed early in the process and we want to change our mind about 
them later. At each stage of the selection process, a variable may be added or 
removed. As before, we can base our decisions on the p-values from individual 
hypothesis tests. 

3.8.5 Testing-Based Variable Selection 

With the backward, forward and stepwise approaches, the decisions for variable 
selection were based on individual hypothesis tests. While this is computationally 
cheap, it also has some drawbacks: 

1) Because of the “one-at-a-time” nature of adding/dropping predictors, it is 
possible to miss the “best” model. 

2) The p-values should not be treated too literally. We are subject to the 
multiple testing problem. Moreover, the removal of less significant 
predictors tends to increase the significance of the remaining ones. One 
thus often overstates the importance of the remaining predictors. 

3) The testing based variable selection procedures are not directly linked to 
the final objectives of prediction or explanation. With any variable selection 
method, it is important to keep in mind that model selection cannot be 
divorced from the underlying purpose of the analysis. 

4) The testing based procedures tend to select models that are smaller than 
desirable for prediction purposes. Consider the following simple example to 
understand this: in a simple linear regression, we would go with the 
intercept only if the predictor is not significant. However, for prediction it 
could still be better to use it. 
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3.8.6 Criterion Based Variable Selection: AIC/BIC 

On the other hand, if we have some idea about the purpose for which a model is 
intended, we might propose some measure of how well a given model meets that 
purpose. It would be appealing to scan a big variety of different models. In the 
case where there are a fixed number of m  predictors, we can build 2m  different 
regression models: for each variable we can decide, whether it will be included in 
the model or not.  

Obviously, this all subsets regression approach only works when the number of 
potential predictors is limited, else it will be too time consuming and we need to 
economize on computing time. Also note that we here cannot any longer use the 
p-values from individual hypothesis tests as a criterion, but we need something, 
that judges the quality of the model more generally. The following quantities are 
potential candidates: 

a) Coefficient of determination 2R  

b) Test statistic or p-value of the global F-test 

c) Estimated error variance 2ˆE  

For a fixed number of predictors m , they will all lead to the same order among all 
possible models. Another property they share is that they judge the goodness-of-
fit, and thus generally tend to improve if more terms are added to the model. 
However, as we can easily imagine, bigger models are not necessarily better than 
smaller ones. It would thus be preferable to employ a criterion which is not only 
based on goodness-of-fit, but also penalizes for the model size. A potential 
candidate is the adjusted 2R . In practice, one nowadays almost exclusively uses 
the Akaike or Bayes Information Criteria (AIC/BIC), which are defined as 
follows: 

 
2max(log ) 2

log( / ) 2

AIC likelihood p

const n RSS n p

  
  

 

and 

 
2max(log ) log

log( / ) log

BIC likelihood p n

const n RSS n p n

  
  

 

Because the constant (const ) is the same for a given dataset and any assumed 
error distribution, it can be ignored for model comparisons on the same data.  

The goal in practice is to find the model which minimizes AIC or BIC. Larger 
models will fit better, and thus have smaller residual sum of squares RSS . 
However, they use more parameter and are thus penalized by the terms 2 p  (AIC) 
and logp n  (BIC). Note that BIC punishes larger models more heavily and so will 
tend to prefer smaller models in comparison to AIC. 
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Finally, we note here that the use of AIC/BIC is not limited to all subset regression. 
These criteria can also be applied in the backward, forward or stepwise 
approaches. In R, variable selection is generally performed by function step(), 
which by default employs the stepwise approach with AIC as a criterion. We 
illustrate this with the state data: 

Example 

> step(lm(Life.Exp ~ ., data=state.trsf)) 
Start:  AIC=-26.84 
Life.Exp ~ Population + Income + Illiteracy + Murder + 
           HS.Grad + Frost + Area 
 
             Df Sum of Sq    RSS      AIC 
- Illiteracy  1    0.0030 21.231 -28.8291 
- Income      1    0.0288 21.256 -28.7682 
- Area        1    0.0532 21.281 -28.7109 
<none>                    21.228 -26.8361 
- Frost       1    2.1603 23.388 -23.9903 
- Population  1    2.5844 23.812 -23.0918 
- HS.Grad     1    2.8591 24.087 -22.5183 
- Murder      1   24.0982 45.326   9.0927 
 
[Output partly omitted...] 
 
Step:  AIC=-32.55 
Life.Exp ~ Population + Murder + HS.Grad + Frost 
 
             Df Sum of Sq    RSS     AIC 
<none>                    21.347 -32.555 
- Population  1     3.231 24.578 -27.508 
- Frost       1     3.296 24.643 -27.376 
- HS.Grad     1     8.596 29.944 -17.635 
- Murder      1    36.352 57.699  15.161 

When we did a backward elimination based on the AIC criterion, the sequence of 
predictor removal was exactly the same as when our decision was based on 
hypothesis testing. The process also stops at the same spot, and the resulting 
model is exactly equal to the one we found before. Please note that this is a 
coincidence – one generally does observe differences when using different 
variable selection schemes. 

A final remark on variable selection: every procedure may yield a different “best” 
model. However, if we could obtain another sample from the same population, 
even a fixed procedure might result in another “best” model. Thus, there is an 
element of chance in this declaration. How can we mitigate this in practice? It is 
usually advisable to not only consider the “best” model according to a particular 
procedure, but to check a few more models that did nearly as good, if they exist. 
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3.8.7 Correct Treatment of Hierarchical Models 

For models with interactions, it does not result in a valid model if a main effect is 
removed, but the interaction is kept within the model. The reasons are similar as 
with the polynomial models above. We leave it as an exercise to study the effects 
of removing a main effect, but keeping the interaction. 

When there are categorical predictors, we need dummy variables to incorporate 
them into the model. Now if a single dummy coefficient is non-significant, we 
cannot just kick this term out of the model! Thus, we have to test the entire block 
of indicator variables. When we work manually and testing based, this will be done 
with a partial F-test, whose p-value can be compared against the ones from the 
other variables (even if they may arise from individual hypothesis tests). 

When we use a criterion based approach with function step(), then R deals 
correctly with categorical predictors, and also with interactions and hierarchical 
models. Be careful with other software though – not all statistics packages can 
correctly handle variable selection with such input. 
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4 Extending the Linear Model 
Linear models are central to the practice of statistics and can be seen as part of 
the core knowledge of any applied statistician. While they are very versatile, there 
are situations that cannot be handled within the standard framework. Here, we will 
take care of some of these. 

4.1 What is the Problem? 

In all our previous theory, the response iy  was assumed to be a continuous 
random variable whose range was (at least theoretically) reaching from minus to 
plus infinity. The principal goal was to estimate and predict the conditional 
expectation, i.e. ˆ [ | ]i i iy E y X  from the data. All theory, algorithms, tests and 
confidence intervals operated under the assumption that the conditional 
distribution was Gaussian, i.e. 2ˆ| ~ ( , )i i i Ey X N y  . The figure below shows the 
density of these in a simple linear regression at 0x  , 0.75x   and 1.50x  . 

 

On the other hand, there are response variables that are not continuous, but 
binary, i.e. with values in  0,1 , or which are a proportion in [0,1] . Still, it can be 
very worthwhile to study the dependence of this response on a number of 
predictors with a regression approach. However, applying the standard multiple 
regression framework will ultimately result in responses that are beyond the set of 
values which are foreseen in that problem. Thus, we need some additional 
techniques which can deal with these types of situations. Depending on how 
exactly the response variable is, there are several different approaches, which all 
fit within the framework of a more widely formulated concept entitled generalized 
linear modeling (GLM). Here follows a brief overview of the covered topics: 
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4.1.1 Binary Response 

In toxicological studies, one tries to infer whether a lab mouse survives when it is 
given a particular dose of some poisonous medication. In human medicine, we are 
often interested in the contrary case: how much “dose” has an effect, i.e. reduces 
pain or other symptoms. Here, the response variable is a binary variable in  0,1 , 
standing for either survival vs. death, or status quo vs. reduction. The conditional 
distribution of the response is | ~ ( )i i iy X Bernoulli p  and hence much different from 
a Gaussian. Our interest lies in modeling the expectation of this conditional 
distribution which is [ | ]i i iE y X p , the probability of death resp. pain reduction. We 
illustrate this with an example where we acquired the response for a cohort of 72 
patients and also the dose given per bodyweight (in [ / ]mg kg ) was known. The 
data present themselves as follows: 

 

The naïve approach is to use simple linear regression with the 0/1 outcome as 
response and the dose as predictor. This yields the blue regression line. 
Obviously, this results in fitted values outside of the interval [0,1] , whose 
interpretation is unclear. A good statistical model for the above example must yield 
a [0,1]-restricted probability for positive response. This is a coherent approach and 
takes into account that for a given (intermediate) concentration, we will only have 
an effect on some of the subjects, but not on all of them. A potential solution is 
offered by the red dotted line in the above plot. The question is how the curved red 
line is obtained/estimated. While the full details are covered in section 4.2, we 
briefly mention that fitting such a logistic regression model is based on estimating 
the positive response probability ( 1| )i i ip P y x   for each observation i  such that: 
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The regression parameters 0 1,   are determined by optimizing the goodness-of-fit 
of the ip  with a maximum likelihood approach, for details see section 4.2. 
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4.1.2 Count Response 

What are predictors for the abundance of starfish (in German: Seestern) at several 
locations in the sea? For answering this question, we could analyze a dataset 
consisting of counts in different areas, plus the values of several predictors. 
Obviously, the response iy  is a count – the simplest and natural model for the 
conditional distribution |i iy X  is a Poisson distribution. We then assume that the 
parameter i  at location i  depends on the predictors. Since 0i  , we must use a 
log-transformation to link it to the linear combination: 

 | ~ ( )i iy X Pois   where 0 1 1log( ) ...i i p ipx x       . 

4.1.3 Categorical Response 

Another extension of the linear model is necessary for the case where we try to 
predict a nominal response variable. For example, we may be interested in giving 
probabilities for the favorite political party of a person, depending on predictors 
such as education, age, etc. Such data can be summarized and displayed in 
contingency tables. The goal is modeling conditional probabilities ( | )i iP y k X  for 
the categories 1,...,k K . 

4.1.4 Generalized Linear Models 

The above mentioned models for binary, count and categorical response all fit 
within the framework of generalized linear models, which also encompasses the 
multiple linear regression approach from chapter 3. GLMs are based on the notion 
that the suitably transformed conditional expectation of the response iy  has a 
linear relation to the predictors, i.e.: 

 0 1 1( [ | ]) ...i i i p ipg E y X x x      . 

As we had argued above, in case of multiple linear regression the link ( )g   will be 
the identity function, and the conditional distribution |i iy X  is a Gaussian. The 
specifics of the model extensions for counts and categorical response will be 
discussed on the following pages. Please note that formally, GLMs also require 
that the responses’ variance iy  is of the form ( [ ])v E y  , where   is an additional 
parameter, and ( )v   a specific function. Moreover, the choice of conditional 
distributions |i iy X  that are tractable within the limits of GLMs is restricted. 

While the GLM formulation and the restrictions may sound complicated, they allow 
for formulating a unified mathematical theory that encompasses common basic 
principles for estimation, inference and model diagnostics. We will not deeply 
embark into the formal aspects, but limit ourselves to the practically relevant do’s 
and dont’s of applied generalized linear modeling. For readers who are interested 
in pursuing the theory on GLMs, we refer to the seminal work “Generalized Linear 
Models” by McCullagh and Nelder (Chapman and Hall, 1989). 
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4.2 Logistic Regression 

As explained above, datasets with a binary response variable are not multiple 
linear regression problems. Here, we will discuss the necessary extension. While 
in many aspects, techniques and ideas are similar to what is already known, some 
novel issues appear as well. We will take care of model formulation, estimation, 
inference, diagnostics, prediction and model choice. 

4.2.1 Example: Survival after Premature Birth 

We discuss an example dealing with survival after premature birth. A study of 
Hubbard (1986) contains data of 247 early born babies. Predictors for survival are 
birth weight (in grams), birth age (in weeks of pregnancy), the apgar scores 
(judging the vital functions one and five minutes after birth) and the pH-value of the 
babies’ blood (providing information on oxygen saturation). For reasons of 
simplicity, we limit ourselves to the two most informative predictors, age and 
weight. Due to positive skewness, we perform a log-transformation for the latter. 

If we color-code the response, i.e. survival with red dots and death with blue 
triangles, the data can be displayed in a 2d-scatterplot, see below. It is apparent 
that the proportion of surviving babies depends on age and weight: the older and 
heavier a baby is born prematurely, the better the odds for surviving are. The goal 
with our logistic regression analysis will be the quantitatively model the probability 
for survival conditional on the two predictors weight and age. 

> plot(age ~ weight, data=baby, log="x", type="n") 
> points(age ~ weight, subset=(survival==0), data=baby, ...) 
> points(age ~ weight, subset=(survival==1), data=baby, ...) 
> title("Survival after Premature Birth") 
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4.2.2 Model and Estimation 

In the premature birth example, the response is binary: {0,1}iy  . Hence iy  follows 
a Bernoulli distribution, whose parameter (called the “success probability”) is 
denoted by ip . Typically, the parameter and the distribution are conditional on the 
predictor(s), for which we use the general notation iX : 

 ( 1| ) [ | ]i i i i i ip P y X E y X     , 

It is important to note that ip  is not only the parameter of the responses’ Bernoulli 
distribution, but also the conditional expectation i  of the response variable iy . In 
that situation, the logistic regression model is defined as 

0 1 1log ...
1

i
i ip

i

p
x x

p
  

 
     

 

As we can see, the linear predictor 0 1 1 ...i i p ipx x        is linked to the 
conditional expectation i ip   via the logit function log( / (1 ))p p p , which 
maps from [0,1]  to ( , )  . Thus, we are “safe” to use a linear combination of the 
predictors, i.e. it is certain that the output will always be a [0,1]-restricted 
probability. The logit function has a descriptive interpretation: / (1 )p p  is called 
the odds (“Wettverhältnis” in German) for an event. A probability of 1/ 2  yields to a 
1:1 odds, i.e. both outcomes are equally likely. If we have 1/ 4ip  , then the odds 
turns out to be 1:3 , i.e. the second outcome is three times as likely. Odds are 
always positive, so that we require a log-transformation to obtain a full real-valued 
scale. Thus, logistic regression equals describing the log-odds with a linear model.  

A peculiarity of logistic regression is that there is no explicit, additive error term as 
in multiple linear regression. It is not needed because we model ip : the variation in 
the babies’ survival for a given combination of birth age and weight is already dealt 
with by the Bernoulli distribution of the response variable with parameter ip . 

Estimation 

For practical application, it is important to estimate the regression coefficients 

0,..., p   on a given dataset. While it would conceptually be possible to minimize 
the sum of squared raw residuals i i ir p y  , this approach is not theoretically 
sound and does not prove to be fruitful in practice. Instead, we perform maximum 
likelihood estimation (MLE) where the regression coefficients j  are determined 
such that the likelihood of the observed data is maximized. By assuming 
independence of the cases, this boils down to determine the parameters such that 
the Bernoulli log-likelihood 

  
1

( ) log( ) (1 ) log(1 )
n

i i i i
i

l y p y p


     

is maximized. Note that this is a sensible goodness-of-fit measure. For all 
observations with 1iy   we aspire for high ip  to keep the contribution to ( )l   low, 
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and vice versa for the observations with 0iy  . The dependence of ( )l   on the 
data and the regression coefficients becomes more obvious if ip  is replaced with: 

 0 1 1

0 1 1

exp( ... )

1 exp( ... )
i p ip

i
i p ip

x x
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x x
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The log-likelihood maximization can be approached by taking partial derivatives of 
( )l   with respect to 0,..., p  . This still yields an equation system, but in contrast to 

multiple linear regression, it is no longer a linear one that is easy to solve. 
However, under some mild conditions, the maximum exists, though it cannot be 
written in closed form. We thus require numerical optimization. It turns out that a 
good method is to employ linear approximations that are solved using a sequence 
of iteratively reweighted least squares regressions (the IRLS algorithm). We do 
without giving further details, but instead focus on the practical application. 

R-Code for Estimating Logistic Regression Models 

In R, routines for estimating logistic regression models are readily available. We 
illustrate their syntax on the premature birth example: 

> glm(survival~log10(weight)+age, family=binomial, data=baby) 
 
Coefficients: 
  (Intercept)  log10(weight)            age   
     -33.9711        10.1685         0.1474   

This is only a part of the output, but for the moment the most interesting one, 
namely the estimated coefficients 0 1

ˆ ˆ,   and 2̂ . Please note that this is a 
numerically optimized solution, so it may happen that the following warning 
message appears: 

Warning message: 
glm.fit: algorithm did not converge 

It obviously means that the IRLS algorithm did not converge, and hence the 
coefficients are not trustworthy. Unfortunately, it is not possible to make general 
statements on how to achieve convergence. On the other hand, convergence 
problems are rare in well-posed regression problems. Another issue (and warning) 
that can arise is the one of fitted 0 or 1 probabilites: 

Warning message: 
glm.fit: fitted probabilities numerically 0 or 1 occurred 

This is also known as the Hauck-Donner phenomenon and indicates that there is a 
subspace in predictor space with perfect separation of observations with 0y   and 

1y  . If that is the case, the optimal regression coefficient estimates could be 
arbitrarily large what makes it difficult to explicitly determine them. As a way out, R 
artificially limits the estimated coefficients to a maximum of +/- 10 and issues the 
above warning. Working with such models is usually fine despite the warning. 
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Displaying the Fit 

A simple option for displaying the GLM fit is to plot the response vs. the linear 
predictor. This always works, no matter how many predictor variables ones uses. 
The following code is required: 

> fit <- glm(survival ~ log10(weight) + age, family=binomial) 
> fvl <- predict(fit, type="link") 
> fpr <- predict(fit, type="response") 
> plot(fvl, survival, type="n", xlab="linear predictor") 
> points(fvl[survival==0], survival[survival==0]) 
> points(fvl[survival==1], survival[survival==1], col="red") 
> lines(sort(fvl), sort(fpr), lty=3) 
> title("Survival vs. Linear Predictor") 

 

Small values in the linear predictor correspond to low survival probability, and vice 
versa. The fitted values show their typical S-shaped curve that is created by the 
inverse of the logit function. The value 0 always marks the midpoint: it corresponds 
to an odds of 1 and hence equal chances for survival vs. death. 

Another option for displaying the results (that is restricted to examples with two 
predictors as in premature birth) is to color code the probability of survival. By 
keeping the probability of survival fixed, we can express the age value as function 
of log10(weight). Some quick calculations show that the resulting function is linear, 
hence the contours of equal probability are given by parallel straight lines. The 
frame on the next page illustrates this for the age vs. weight plot: black 
background color would correspond to a survival probability of 0, and white to 1. 
The orange contours stand for probability 0.1, 0.2, …, 0.9. As we can observe, 
there are babies who survive with estimated probabilities below 0.9, whereas other 
die despite of estimated survival probabilities above 0.9. 
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Interpretation of the Regression Coefficients 

We now turn our attention to the interpretation of the regression coefficients j . As 
we had stated above, the log-odds for 1iy   are a linear function of the predictors. 
Thus, if predictor jx  is increased by 1 unit, then the log-odds in favor of 1y   
increase by j  if all other predictors remain unchanged. We illustrate this with the 
premature birth example, where we consider an individual with 10log ( ) 3weight   
and birth age of 30 weeks. We have: 

 33.9711 10.1685 3.0 0.1474 30 0.957        , 

which are the log-odds for survival. If we take exp(0.957) 2.604 , we obtain the 
odds for survival. It is thus 2.604 times more likely to survive than die when born at 
this particular combination of age and weight. On the other hand, the probability 
for survival is: 

 1 exp( ) exp(0.957)
( ) 0.723

1 exp( ) 1 exp(0.957)
g




   
 

 

Now, if we compare to an individual with birth age 31 weeks (and the rest 
remaining as above), we obtain the odds as exp(1.104) 3.017 . If we divide the two 
odds, we obtain the odds-ratio: 

 2

3.017 ˆ1.159 exp( )
2.604

   

600 800 1000 1200 1400

2
0

2
5

3
0

3
5

Survival after Premature Birth

weight

a
g

e



Applied Statistical Regression  4 Extending the Linear Model 
 

 Page 99 

The odds for surviving increase by 2
ˆexp( )  (i.e. about 15%) when a baby of the 

same weight is born one week later – this is a more illustrative way to see the 
parameter 2̂ . In other words, we can say that the coefficients from logistic 
regression models are log-odds ratios. 

Alternative Link Functions 

The role of the link function is to map between the conditional expectation [ | ]E y X  
and the linear predictor  . In logistic regression, we must ensure that this mapping 
is between the intervals [0,1]  and ( , )  . Above, we had argued that the logit 
function can play this part and is attractive due to its clear interpretation. However, 
we could use any function that maps between these intervals and in fact, the 
inverse of any cumulative distribution function (cdf) will do so. 

Hence, an intuitive alternative choice for the link function is 1( )p   , the inverse 
of the Gaussian cdf. The resulting procedure is known as Probit Regression. In 
most applied problems, the difference between probit and logistic regression are 
negligible. Unless you know exactly that you are in a setting where one needs to 
use with the probit link function, it is probably better to stick to logit link. Even more 
exotic is the complementary log-log link log( log(1 ))p    . There are some 
special cases where it is useful, but giving the details is far beyond the scope of 
this course. 

4.2.3 Inference for Logistic Regression 

We base our discussion about inferring a logistic regression model on the 
summary output in R. Most concepts are already known from our previous 
discussion about multiple linear regression, but reappear in slightly different form. 

> summary(fit) 
 
Call: glm(survival ~ log10(weight) + age, family = binomial) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.2983  -0.7451   0.4303   0.7557   1.8459   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -33.97108    4.98983  -6.808 9.89e-12 *** 
log10(weight)  10.16846    1.88160   5.404 6.51e-08 *** 
age             0.14742    0.07427   1.985   0.0472 *   
--- 
Dispersion parameter for binomial family taken to be 1 
 
    Null deviance: 319.28  on 246  degrees of freedom 
Residual deviance: 235.94  on 244  degrees of freedom 
AIC: 241.94 
Number of Fisher Scoring iterations: 4 
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Perhaps the most important difference is that the multiple R-squared and the 
global F-test are missing here, and only some information about the deviance is 
given. For deeper insight, we need to consider the goodness-of-fit measure that is 
used here, which is the so-called deviance: 

  
1

ˆ ˆ ˆ( , ) 2 log( ) (1 ) log(1 )
n

i i i i
i

D y p y p y p


       

We can see that ˆ2 ( )D l   , i.e. minus twice the log-likelihood of our model. The 
summary output lists the value under Residual deviance, together with the 
degrees of freedom of that model, which are ( 1)df n p   . The Null deviance 
conceptually is the same, but for the simplest possible model that only has no 
predictors but only the intercept, and which fits the a-priori probability (i.e. the 
relative frequency of observations with 1iy  ) to all observations. 

Coefficient of Determination 

In multiple linear regression, the multiple R-squared was an intuitive concept for 
the explanatory content in the predictors. We might consider applying the same 
idea for logistic regression models by measuring the proportion of deviance 
explained. In particular, this would yield 1 235.94 / 319.28 0.26  , or in R: 

> 1-fit$dev/fit$null 
[1] 0.2610193 

This simple measure is often reasonable for practical application, though the 
proportion of deviance explained is an often debated topic. A better statistic to 
measure the explanatory content is: 

 2 1 exp(( ) / )

1 exp( / )
res null

null

D D n
R

D n

 


 
, 

where resD  and nullD  are the residual resp. null deviance and n  is the number of 
observations. When this alternative measure is implemented in R, we obtain: 

> (1-exp((fit$dev-fit$null)/247))/(1-exp(-fit$null/247)) 
[1] 0.3947567 

Individual Hypothesis Tests and Confidence Intervals 

In multiple linear regression, when assuming Gaussian errors, it is quite easy to 
show that the estimated regression coefficients ˆ

j  are normally distributed. That 
property can be used for constructing the individual hypothesis test and the 
confidence interval. Both require the use of the standard error ˆˆ

j
  for 

standardization, hence the t -distribution comes into play. All this is no longer true 
for logistic regression. Maximum likelihood theory tells us that under some mild 
conditions, the ˆ

j  are asymptotically Gaussian. In practice, we are of course 
lacking infinitely many observations, but the asymptotic result is used for 
concluding that the regression coefficients are approximately Gaussian. 
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This property can be used to assess the individual hypothesis tests and to 
determine the confidence intervals for the coefficients. We simply assume that 
under the null hypothesis 0 : jH b   

 
ˆ

ˆ
~ (0,1)

ˆ
j

j b
Z N







  

The p-values of the individual hypothesis tests for 0 : 0jH    are given in the 
summary output. Due to the normal assumption, the respective columns are 
entitled “z-value” rather than the “t-value” we had in multiple linear regression. 
A 95%-confidence interval for 1  can be hand-constructed via: 

> 10.16846+qnorm(c(0.025,0.975))*1.88160 
[1] 6.480592 13.856328 

A convenient way for obtaining the confidence interval is with the R command 
confint(). However, it uses a more sophisticated method for deriving the result, 
hence it is not numerically identical to the hand-constructed one. 

> confint(fit, "log10(weight)") 
Waiting for profiling to be done... 
    2.5 %    97.5 %  
 6.618496 14.032741 

Comparing Hierachical Models 

This section discusses the analogue to the partial F-test of multiple linear 
regression. The idea behind is still the same, namely comparing two hierarchical 
models by their goodness-of-fit measure and their difference in degrees of 
freedom. However, some adjustments are necessary here, because we are now 
using the deviance rather than the residual sum of squares which leads to a 
different distribution in the test statistic. Let us assume that we have Big  and 
Small  models where ( 1)p   resp ( 1)q   parameters are estimated. Our interest 
lies in the null hypothesis 0 1 2: ... 0q q pH        . This means that the 
additional predictors in the big model have zero coefficients and thus are useless. 
The MLE theory suggest to use the likelihood ratio (or log-likelihood difference) as 
the test statistic: 

 2ˆ ˆ2 ( ) ( , ) ( , ) ~Big Small
Small Big p qll ll D y p D y p       

The log-likelihood difference can be computed from the difference in deviance 
between the two models. Under the null hypothesis, it asymptotically follows a 
Chisquare distribution with p q  degrees of freedom. We illustrate the procedure 
by performing the global test against the null model. This is the easiest model that 
is possible and contains the intercept term only. In our example about baby 
survival, the null model fits the overall survival proportion ˆ /Null ip y n  to all 
observations, no matter what the birth weight or age were. Our goal is now to 
compare against the full model with age- and weight-specific survival probabilities. 
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The two deviances are reported in the summary output. We observe a value of 
319.28 for the null model (the Null deviance) and 235.94 for the model with 
two predictors (the Residual deviance). The full model has two parameters 
more, and hence the difference of the deviances follows a 2

2  distribution. We can 
thus compute the p-value for the null hypothesis 0 1 2: 0H    : 

> 1-pchisq(fit$null-fit$dev, df=(fit$df.null-fit$df.res)) 
[1] 0 

We obtain a p-value that is (numerically) zero; hence there is a strongly significant 
contribution of the two predictors on the odds for survival. While typing the above 
command into R is not a big effort, there is a quick check that can be done by 
looking at the summary output. The Chisquare distribution with p q  degrees of 
freedom has an expectation of p q  and standard deviation 2( )p q . The 
consequence is that if the difference between null and residual deviance is large 
with respect to the difference in degrees of freedom, then the predictors do yield a 
significant contribution. 

For factor variables with multiple levels, where a hierarchical model comparison is 
required to test their contribution to the model, the R command drop1() is very 
useful. The difference of deviance test is implemented there. We type: 

> drop1(fit, test="Chisq") 
Single term deletions 
 
Model: 
survival ~ log10(weight) + age 
              Df Deviance    AIC    LRT  Pr(>Chi)     
<none>             235.94 241.94                      
log10(weight)  1   270.19 274.19 34.247 4.855e-09 *** 
age            1   239.89 243.89  3.948   0.04694 *   

The function tests the exclusion of all model terms, using the difference of 
deviance as a test statistic. Please note that for all variables with one degree of 
freedom only, this is a special case of hierarchical model comparison, namely an 
individual hypothesis test. However, in case of GLMs the results will be slightly 
different to the ones that are reported in the summary. The latter are based on the 
approximation of the estimated coefficients’ distribution to the Gaussian, whereas 
here the comparison is against the Chisquare. Hence, the p-values are not equal, 
though the difference is relatively small. Asymptotically, it will even vanish – the 
two tests will be one and the same when infinitely many datapoints are available. 

 

 


