
Dr. Marcel Dettling Applied Statistical Regression AS 2014

Solution to Series 7

1. > senic.00 <-scan("http://stat.ethz.ch/Teaching/Datasets/senic.dat",

what=list(id=0,length=0,age=0,inf=0,cult=0,xray=0,

beds=0,school=0,region=0,pat=0,nurs=0,serv=0))

> senic.00 <- data.frame(senic.00)

> senic.00 <- senic.00[ ,-1]

> senic.00$school <- factor(senic.00$school,levels=c(1,2),labels=c("yes","no"))

> senic.00$region <- factor(senic.00$region,levels=c(1,2,3,4),labels=c("NE","N","S","W"))

a) We check the correlations between the continuous predictors:

> senic.01 <- senic.00[,c("length", "age", "inf", "region", "beds", "pat", "nurs")]

> cor(senic.01[,-c(1,4)])

age inf beds pat

age 1.000000000 -0.006266807 -0.05882316 -0.05477467

inf -0.006266807 1.000000000 0.36917855 0.39070521

beds -0.058823160 0.369178549 1.00000000 0.98099774

pat -0.054774667 0.390705214 0.98099774 1.00000000

nurs -0.082944616 0.402911390 0.91550415 0.90789698

nurs

age -0.08294462

inf 0.40291139

beds 0.91550415

pat 0.90789698

nurs 1.00000000

Graphical illustration of the correlations:

> library(ellipse)

> plotcorr(cor(senic.01[,-c(1,4)]))
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We see that beds, pat and nurs are strongly correlated. We expected this because they all can be
seen as measures of the size of a hospital. We will leave the variable pat unmodified because it is
definitely a key factor to take into account when length is the response variable and change the
others to solve the high-correlation problem without having to take them out of the model. For this,
we will substitute beds by pat/beds and nurs by pat/nurs.

Before combining the variables, we check if beds and nurs contain zeroes:

> any(senic.01$beds == 0)

[1] FALSE

> any(senic.01$nurs == 0)

[1] FALSE

Now we combine the variables and check the correlations again.

> senic.02 <- data.frame(length=senic.01$length, age=senic.01$age, inf=senic.01$inf,

region=senic.01$region, pat=senic.01$pat, pat.bed=senic.01$pat/senic.01$beds,

pat.nurs=senic.01$pat/senic.00$nurs)

> cor(senic.02[,-c(1,4)])

age inf pat pat.bed

age 1.000000000 -0.006266807 -0.05477467 -0.1096058

inf -0.006266807 1.000000000 0.39070521 0.2897338

pat -0.054774667 0.390705214 1.00000000 0.4151079

pat.bed -0.109605797 0.289733778 0.41510791 1.0000000

pat.nurs 0.026954588 -0.285984796 0.05659985 0.2289331

pat.nurs

age 0.02695459

inf -0.28598480

pat 0.05659985

pat.bed 0.22893307

pat.nurs 1.00000000
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Graphical illustration of the correlations after modifying some variables:

> plotcorr(cor(senic.02[,-c(1,4)]))
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The correlations were strongly reduced and we still have some information about the variables beds

and nurs.

b) First, we take a look at the histogram of the predictors before doing transformations:

> par(mfrow=c(3,2))

> hist(senic.02$length)

> hist(senic.02$age)

> hist(senic.02$inf)

> hist(senic.02$pat)

> hist(senic.02$pat.bed)

> hist(senic.02$pat.nurs)
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The variables length, pat, inf (percentage) and pat.nurs need to be transformed. Moreover, we
see that pat.bed is slightly left skewed. In this case, one would try to square or cube the variable to
improve the situation, however, for the purpose of this question, we will not do it here and leave this
as an exercise.

We check for zeroes in pat and length:

> any(senic.02$length == 0)

[1] FALSE

> any(senic.02$pat == 0)

[1] FALSE

Given that there are no zeroes in these variables, we are free to transform the predictors:

> senic.03 <- senic.02

> senic.03$length <- log(senic.02$length)

> senic.03$inf <- asin(sqrt(senic.02$inf/100))

> senic.03$pat <- log(senic.02$pat)

> senic.03$pat.nurs <- log(senic.02$pat.nurs)

We look at the histograms again after applying the necessary transformations.

> par(mfrow=c(3,2))

> hist(senic.03$length)

> hist(senic.03$age)

> hist(senic.03$inf)

> hist(senic.03$pat)

> hist(senic.03$pat.bed)

> hist(senic.03$pat.nurs)
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We see that the transformations improved the histograms.

c) We fit a linear regression:

> fit.03 <- lm(length ~ age + inf + region + pat + pat.bed +

pat.nurs, data=senic.03)

> summary(fit.03)

Call:

lm(formula = length ~ age + inf + region + pat + pat.bed + pat.nurs,

data = senic.03)

Residuals:

Min 1Q Median 3Q Max

-0.23050 -0.07370 -0.01151 0.06079 0.40012

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.174393 0.181654 6.465 3.35e-09 ***

age 0.008011 0.002573 3.114 0.00238 **

inf 2.053905 0.413453 4.968 2.67e-06 ***

regionN -0.073815 0.031465 -2.346 0.02088 *

regionS -0.122286 0.030768 -3.975 0.00013 ***

regionW -0.202395 0.040295 -5.023 2.12e-06 ***

pat 0.046294 0.018177 2.547 0.01233 *

pat.bed 0.102920 0.125846 0.818 0.41533

pat.nurs 0.082523 0.038341 2.152 0.03368 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Residual standard error: 0.1168 on 104 degrees of freedom

Multiple R-squared: 0.6, Adjusted R-squared: 0.5692

F-statistic: 19.5 on 8 and 104 DF, p-value: < 2.2e-16

> par(mfrow=c(2,2))

> plot(fit.03)
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From the summary we see that pat.beds is not statistically significant and a variable selection is
necessary (see next question).

From the model diagnostics plots we note that there are four outliers ,i.e., observations 43, 47, 101,
and 112. However, since their Cook’s distance is below 0.5, they don’t significantly influence our fit
and we proceed with our analysis. The assumptions of linearity, normality, non-constant variance and
uncorrelated errors seem to be satisfied.

Now we visualise our model with partial residual plots.

> library(car)

> crPlots(fit.03)

>
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As it can be seen in the plots, the predictor pat.bed don’t have much explanatory power, and indeed,
its p-value is also large.

Now, we perform backwards elimination using fit.03 as our starting model. We remove the variable
pat.bed:

> fit.P1 <- lm(length ~ age + inf + region + pat +

pat.nurs, data=senic.03)

> summary(fit.P1)

Call:

lm(formula = length ~ age + inf + region + pat + pat.nurs, data = senic.03)

Residuals:

Min 1Q Median 3Q Max

-0.22091 -0.07352 -0.01293 0.06529 0.40542
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.225928 0.170106 7.207 9.10e-11 ***

age 0.007785 0.002554 3.049 0.00291 **

inf 2.113288 0.406384 5.200 9.89e-07 ***

regionN -0.077614 0.031071 -2.498 0.01404 *

regionS -0.124277 0.030623 -4.058 9.53e-05 ***

regionW -0.211367 0.038711 -5.460 3.21e-07 ***

pat 0.051527 0.016987 3.033 0.00305 **

pat.nurs 0.090813 0.036918 2.460 0.01553 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1166 on 105 degrees of freedom

Multiple R-squared: 0.5974, Adjusted R-squared: 0.5706

F-statistic: 22.26 on 7 and 105 DF, p-value: < 2.2e-16

Note that the F-statistic increased. Since the rest of the variables are statistically significant, pat.bed
is the only predictor that is left out of the model.

Now we look at the residuals of model fit.P1:

> par(mfrow=c(2,2))

> plot(fit.P1)
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Model diagnostics plots look similar to the ones of the fit containing all predictors. The assumptions
of linearity, constant variance, uncorrelated errors, and normality of the errors seem to be fine.

d) Backward elimination:

> fit.B <- step(fit.03, direction="backward")
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Start: AIC=-476.65

length ~ age + inf + region + pat + pat.bed + pat.nurs

Df Sum of Sq RSS AIC

- pat.bed 1 0.00913 1.4281 -477.93

<none> 1.4190 -476.65

- pat.nurs 1 0.06321 1.4822 -473.73

- pat 1 0.08850 1.5075 -471.81

- age 1 0.13231 1.5513 -468.58

- inf 1 0.33671 1.7557 -454.59

- region 3 0.41948 1.8385 -453.39

Step: AIC=-477.93

length ~ age + inf + region + pat + pat.nurs

Df Sum of Sq RSS AIC

<none> 1.4281 -477.93

- pat.nurs 1 0.08230 1.5104 -473.60

- pat 1 0.12514 1.5533 -470.44

- age 1 0.12641 1.5545 -470.34

- inf 1 0.36780 1.7959 -454.03

- region 3 0.47346 1.9016 -451.57

> summary(fit.B)

Call:

lm(formula = length ~ age + inf + region + pat + pat.nurs, data = senic.03)

Residuals:

Min 1Q Median 3Q Max

-0.22091 -0.07352 -0.01293 0.06529 0.40542

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.225928 0.170106 7.207 9.10e-11 ***

age 0.007785 0.002554 3.049 0.00291 **

inf 2.113288 0.406384 5.200 9.89e-07 ***

regionN -0.077614 0.031071 -2.498 0.01404 *

regionS -0.124277 0.030623 -4.058 9.53e-05 ***

regionW -0.211367 0.038711 -5.460 3.21e-07 ***

pat 0.051527 0.016987 3.033 0.00305 **

pat.nurs 0.090813 0.036918 2.460 0.01553 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1166 on 105 degrees of freedom

Multiple R-squared: 0.5974, Adjusted R-squared: 0.5706

F-statistic: 22.26 on 7 and 105 DF, p-value: < 2.2e-16

> par(mfrow=c(2,2))

> plot(fit.B)
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The backward elimination using AIC only removes the variable pat.bed from the model, just as the
backward elimination using the p-values did.

e) Forward selection:

> fit.empty <- lm(length ~ 1, data=senic.03)

> scp <- list(lower=~1, upper=~age + inf + region + pat + pat.bed + pat.nurs)

> fit.F <- step(fit.empty, scope=scp, direction="forward")

Start: AIC=-389.11

length ~ 1

Df Sum of Sq RSS AIC

+ inf 1 0.99451 2.5529 -424.29

+ pat 1 0.94180 2.6057 -421.98

+ region 3 0.98268 2.5648 -419.76

+ pat.bed 1 0.69376 2.8537 -411.70

+ age 1 0.10368 3.4438 -390.46

+ pat.nurs 1 0.07906 3.4684 -389.66

<none> 3.5475 -389.11

Step: AIC=-424.29

length ~ inf

Df Sum of Sq RSS AIC

+ region 3 0.74920 1.8037 -457.54

+ pat.nurs 1 0.33606 2.2169 -438.24

+ pat.bed 1 0.32383 2.2291 -437.61

+ pat 1 0.31243 2.2405 -437.04

+ age 1 0.12482 2.4281 -427.95

<none> 2.5530 -424.29



11

Step: AIC=-457.54

length ~ inf + region

Df Sum of Sq RSS AIC

+ pat 1 0.15630 1.6474 -465.78

+ pat.nurs 1 0.15435 1.6494 -465.65

+ age 1 0.10000 1.7037 -461.99

+ pat.bed 1 0.08173 1.7220 -460.78

<none> 1.8037 -457.54

Step: AIC=-465.78

length ~ inf + region + pat

Df Sum of Sq RSS AIC

+ age 1 0.137033 1.5104 -473.60

+ pat.nurs 1 0.092917 1.5545 -470.34

<none> 1.6474 -465.78

+ pat.bed 1 0.017882 1.6296 -465.02

Step: AIC=-473.6

length ~ inf + region + pat + age

Df Sum of Sq RSS AIC

+ pat.nurs 1 0.082298 1.4281 -477.93

+ pat.bed 1 0.028215 1.4822 -473.73

<none> 1.5104 -473.60

Step: AIC=-477.93

length ~ inf + region + pat + age + pat.nurs

Df Sum of Sq RSS AIC

<none> 1.4281 -477.93

+ pat.bed 1 0.0091256 1.4190 -476.65

> summary(fit.F)

Call:

lm(formula = length ~ inf + region + pat + age + pat.nurs, data = senic.03)

Residuals:

Min 1Q Median 3Q Max

-0.22091 -0.07352 -0.01293 0.06529 0.40542

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.225928 0.170106 7.207 9.10e-11 ***

inf 2.113288 0.406384 5.200 9.89e-07 ***

regionN -0.077614 0.031071 -2.498 0.01404 *

regionS -0.124277 0.030623 -4.058 9.53e-05 ***

regionW -0.211367 0.038711 -5.460 3.21e-07 ***

pat 0.051527 0.016987 3.033 0.00305 **

age 0.007785 0.002554 3.049 0.00291 **

pat.nurs 0.090813 0.036918 2.460 0.01553 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1166 on 105 degrees of freedom

Multiple R-squared: 0.5974, Adjusted R-squared: 0.5706

F-statistic: 22.26 on 7 and 105 DF, p-value: < 2.2e-16
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> par(mfrow=c(2,2))

> plot(fit.F)
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We get the same result as when we performed a backward elimination using AIC and when using
p-values (only predictor pat.bed has been taken out of the model). Note that this happened in our
particular example and is not always the case.

f) > step(fit.03, direction="both")

Start: AIC=-476.65

length ~ age + inf + region + pat + pat.bed + pat.nurs

Df Sum of Sq RSS AIC

- pat.bed 1 0.00913 1.4281 -477.93

<none> 1.4190 -476.65

- pat.nurs 1 0.06321 1.4822 -473.73

- pat 1 0.08850 1.5075 -471.81

- age 1 0.13231 1.5513 -468.58

- inf 1 0.33671 1.7557 -454.59

- region 3 0.41948 1.8385 -453.39

Step: AIC=-477.93

length ~ age + inf + region + pat + pat.nurs

Df Sum of Sq RSS AIC

<none> 1.4281 -477.93

+ pat.bed 1 0.00913 1.4190 -476.65

- pat.nurs 1 0.08230 1.5104 -473.60

- pat 1 0.12514 1.5533 -470.44

- age 1 0.12641 1.5545 -470.34

- inf 1 0.36780 1.7959 -454.03
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- region 3 0.47346 1.9016 -451.57

Call:

lm(formula = length ~ age + inf + region + pat + pat.nurs, data = senic.03)

Coefficients:

(Intercept) age inf regionN

1.225928 0.007785 2.113288 -0.077614

regionS regionW pat pat.nurs

-0.124277 -0.211367 0.051527 0.090813

Starting with the full model leaves pat.nurs out the model. Therefore, this method yields to the
same result as models fit.P1, fit.B, and fit.F.

> step(fit.empty, scope=scp, direction="both")

Start: AIC=-389.11

length ~ 1

Df Sum of Sq RSS AIC

+ inf 1 0.99451 2.5529 -424.29

+ pat 1 0.94180 2.6057 -421.98

+ region 3 0.98268 2.5648 -419.76

+ pat.bed 1 0.69376 2.8537 -411.70

+ age 1 0.10368 3.4438 -390.46

+ pat.nurs 1 0.07906 3.4684 -389.66

<none> 3.5475 -389.11

Step: AIC=-424.29

length ~ inf

Df Sum of Sq RSS AIC

+ region 3 0.74920 1.8037 -457.54

+ pat.nurs 1 0.33606 2.2169 -438.24

+ pat.bed 1 0.32383 2.2291 -437.61

+ pat 1 0.31243 2.2405 -437.04

+ age 1 0.12482 2.4281 -427.95

<none> 2.5529 -424.29

- inf 1 0.99451 3.5475 -389.11

Step: AIC=-457.54

length ~ inf + region

Df Sum of Sq RSS AIC

+ pat 1 0.15630 1.6474 -465.78

+ pat.nurs 1 0.15435 1.6494 -465.65

+ age 1 0.10000 1.7037 -461.99

+ pat.bed 1 0.08173 1.7220 -460.78

<none> 1.8037 -457.54

- region 3 0.74920 2.5530 -424.29

- inf 1 0.76104 2.5648 -419.76

Step: AIC=-465.78

length ~ inf + region + pat

Df Sum of Sq RSS AIC

+ age 1 0.13703 1.5104 -473.60

+ pat.nurs 1 0.09292 1.5545 -470.34

<none> 1.6474 -465.78

+ pat.bed 1 0.01788 1.6296 -465.02

- pat 1 0.15630 1.8037 -457.54
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- inf 1 0.30551 1.9529 -448.56

- region 3 0.59308 2.2405 -437.04

Step: AIC=-473.6

length ~ inf + region + pat + age

Df Sum of Sq RSS AIC

+ pat.nurs 1 0.08230 1.4281 -477.93

+ pat.bed 1 0.02822 1.4822 -473.73

<none> 1.5104 -473.60

- age 1 0.13703 1.6474 -465.78

- pat 1 0.19334 1.7037 -461.99

- inf 1 0.29348 1.8039 -455.53

- region 3 0.54539 2.0558 -444.76

Step: AIC=-477.93

length ~ inf + region + pat + age + pat.nurs

Df Sum of Sq RSS AIC

<none> 1.4281 -477.93

+ pat.bed 1 0.00913 1.4190 -476.65

- pat.nurs 1 0.08230 1.5104 -473.60

- pat 1 0.12514 1.5533 -470.44

- age 1 0.12641 1.5545 -470.34

- inf 1 0.36780 1.7959 -454.03

- region 3 0.47346 1.9016 -451.57

Call:

lm(formula = length ~ inf + region + pat + age + pat.nurs, data = senic.03)

Coefficients:

(Intercept) inf regionN regionS

1.225928 2.113288 -0.077614 -0.124277

regionW pat age pat.nurs

-0.211367 0.051527 0.007785 0.090813

Doing stepwise starting with the empty model yields the same result than doing stepwise starting with
the full model, backward elimination and forward elimination. Note that this is not always the case:
applying these methods with different data could give us different results.
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2. a) We first fit the main-effects model:

> library(DAAG)

> fit00 <- lm(sale.price ~ area + bedrooms, data=houseprices)

> summary(fit00)

Call:

lm(formula = sale.price ~ area + bedrooms, data = houseprices)

Residuals:

Min 1Q Median 3Q Max

-80.897 -4.247 1.539 13.249 42.027

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -141.76132 67.87204 -2.089 0.05872 .

area 0.14255 0.04697 3.035 0.01038 *

bedrooms 58.32375 14.75962 3.952 0.00192 **

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 33.06 on 12 degrees of freedom

Multiple R-squared: 0.731, Adjusted R-squared: 0.6861

F-statistic: 16.3 on 2 and 12 DF, p-value: 0.0003792

> par(mfrow=c(2,2))

> plot(fit00)
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From the diagnostic plots, we see that constant variance and normality assumptions are violated. We
use the function CVlm to do a leave-one-out cross-validation.
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> res <- CVlm(houseprices, sale.price ~ area + bedrooms, m=15, printit=FALSE,

plotit="Residual")

> RSS <- mean((res$sale.price-res$cvpred)^2)

> RSS

[1] 1187.989
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Small symbols show cross−validation predicted values
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Just using these variable, there are three more models: the interaction model and two models with
just one predictor. We compare the cross-validation MSE for each:

> res <- CVlm(houseprices, sale.price ~ area * bedrooms, m=15, printit=FALSE,

plotit="Residual")

> RSS <- mean((res$sale.price-res$cvpred)^2)

> RSS

[1] 1335.892

●

●

●

200 250 300 350

−
80

−
60

−
40

−
20

0
20

40

sa
le

.p
ric

e 
 (

of
fs

et
 fr

om
 p

re
di

ct
ed

 u
si

ng
 a

ll 
da

ta
)

Small symbols show cross−validation predicted values
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> res <- CVlm(houseprices, sale.price ~ bedrooms, m=15, printit=FALSE,

plotit="Residual")

> RSS <- mean((res$sale.price-res$cvpred)^2)

> RSS

[1] 2022.884
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Small symbols show cross−validation predicted values
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> res <- CVlm(houseprices, sale.price ~ area, m=15, printit=FALSE,

plotit="Residual")

> RSS <- mean((res$sale.price-res$cvpred)^2)

> RSS

[1] 3247.338
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Small symbols show cross−validation predicted values
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All the other models are considerably worse: The cross-validation MSE rises from 1188 to 1336, 2023,
and 3247 respectively.

b) “By hand” cross validation:

> crossvalidation <- function(form) {

pred <- c()

dat <- houseprices

for (i in 1:nrow(dat))

{

## Reduce the data-set: exclude the i-th observation

dat.red <- dat[-i,]

## Fit a regession on the smaller data-set

fit.red <- lm(form, data=dat.red)

## Predict the i-th observation

pred[i] <- predict(fit.red, newdata=dat[i,])

}
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## compute the mean square prediction error

return(mean((houseprices$sale.price-pred)^2))

}

> crossvalidation(sale.price ~ area + bedrooms)

[1] 1187.989

> crossvalidation(sale.price ~ area * bedrooms)

[1] 1335.892

> crossvalidation(sale.price ~ bedrooms)

[1] 2022.884

> crossvalidation(sale.price ~ area)

[1] 3247.338

3. Logistic Regression for Binary Data

a) We fit a logitic regression for the binary variable purchase with predictors income and age:

> car <- read.table("http://stat.ethz.ch/Teaching/Datasets/car.dat",header=T)

> fit <- glm(purchase ~ income + age, data=car, family=binomial)

> summary(fit)

Call:

glm(formula = purchase ~ income + age, family = binomial, data = car)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6189 -0.8949 -0.5880 0.9653 2.0846

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.73931 2.10195 -2.255 0.0242 *

income 0.06773 0.02806 2.414 0.0158 *

age 0.59863 0.39007 1.535 0.1249

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 44.987 on 32 degrees of freedom

Residual deviance: 36.690 on 30 degrees of freedom

AIC: 42.69

Number of Fisher Scoring iterations: 4

We can read off the coefficients from the regression output, thus the regression equation is:
log( p̂

1−p̂ ) = −4.74 + 0.068 · income+ 0.599 · age.

b) exp β̂income = e0.068 = 1.07 and exp β̂age = e0.599 = 1.82 are the relative changes of the odds of
buying a new car for an increase of one unit in income and age respectively. I.e. the odds for buying
a new car increase by 7% for each increase of income by 1000 USD, and increase by 82% for each
additional year of age of the oldest car.

c) > predict(fit, data.frame(age=3,income=50),type="response")

1

0.6090245

d) We first look at the Tukey-Anscombe plot with Pearson residuals:

> xx <- predict(fit, type="response")

> yy <- residuals(fit, type="pearson")

> scatter.smooth(xx, yy, family="gaussian", pch=20, xlab="Fitted Probabilities",

ylab="Pearson Residuals")

> abline(h=0, lty=3)



19

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

−
1

0
1

2

Fitted Probabilities

P
ea

rs
on

 R
es

id
ua

ls

There is no evidence that assumptions aren’t satisfied: the expectation does not seem to deviate much
from zero. Also, most residuals have absolute value <2.
Finally, we check for influential observations:

> plot(fit, which=5)
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There seem to be no influential data points, just an outlier without influence.

e) We perform deviance-based significance tests using the function drop1:

> drop1(fit, test="Chisq")

Single term deletions

Model:

purchase ~ income + age

Df Deviance AIC LRT Pr(>Chi)

<none> 36.690 42.690

income 1 44.987 48.987 8.2976 0.00397 **

age 1 39.305 43.305 2.6149 0.10586

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The p-value for age is quite high, so it might not be a significant predictor in this model. However,
these tests are only approximate, so the results should not be overestimated.

f) We first fit a new model with an interaction term, and then perform an Anova:

> fit2 = glm(purchase ~ income + age + income:age, data=car, family=binomial)

> summary(fit2)
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Call:

glm(formula = purchase ~ income + age + income:age, family = binomial,

data = car)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6096 -0.8222 -0.5334 0.8731 1.9924

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.372993 2.862477 -0.829 0.407

income 0.001326 0.064770 0.020 0.984

age -0.303860 0.890512 -0.341 0.733

income:age 0.028860 0.026493 1.089 0.276

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 44.987 on 32 degrees of freedom

Residual deviance: 35.404 on 29 degrees of freedom

AIC: 43.404

Number of Fisher Scoring iterations: 4

> anova(fit, fit2, test="Chisq")

Analysis of Deviance Table

Model 1: purchase ~ income + age

Model 2: purchase ~ income + age + income:age

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 30 36.690

2 29 35.404 1 1.2855 0.2569

The p-value is large, so we cannot reject the null hypothesis that the two models are equal. Hence,
there does not seem to be a significant interaction between income and age.

4. a) > hyper.tbl <- cbind(n.hyper=n.hyper, n.nohyper=n.total-n.hyper)

> hyper.tbl

n.hyper n.nohyper

[1,] 5 55

[2,] 2 15

[3,] 1 7

[4,] 35 152

[5,] 13 72

[6,] 15 36

[7,] 8 15

Note that the first column denotes the number of “successes”, while the second column the number
of “failures”.

b) > glm.hyp <- glm(hyper.tbl ~ smoking+obesity+snoring,family="binomial")

> summary(glm.hyp)

Call:

glm(formula = hyper.tbl ~ smoking + obesity + snoring, family = "binomial")

Deviance Residuals:

1 2 3 4 5 6

0.50780 0.10458 0.02847 -0.21903 -0.63361 0.32485

7

0.51753
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.6433 0.4090 -6.462 1.03e-10 ***

smokingYes 0.5488 0.3132 1.752 0.07976 .

obesityYes 0.6668 0.3455 1.930 0.05360 .

snoringYes 1.1184 0.3656 3.059 0.00222 **

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 13.3181 on 6 degrees of freedom

Residual deviance: 1.0924 on 3 degrees of freedom

AIC: 34.011

Number of Fisher Scoring iterations: 4

Here, we model the expected value of the proportion of people with hypertension (using the logit
function) as a function of the predictors smoking, obesity, and snoring.

Now, we use the residual deviance to assess the goodness-of-fit. Note that the number of observations
in every batch is bigger than 5, therefore, the Chi-square test is valid in this case.

> pchisq(deviance(glm.hyp), df.residual(glm.hyp), lower=FALSE)

[1] 0.7789051

The Chi-square test for the Residual deviance gives a p-value larger than 0.05, so we can conclude
that the model fits well.

c) First we perform a Chi-squared test for the Null deviance to check whether any of the predictors have
an influence on the response variable:

> pchisq(glm.hyp$null.deviance,glm.hyp$df.null,lower=FALSE)

[1] 0.03825404

The p-value is smaller than 0.05, which tells us that there is at least one significant predictor in our
model.

Now we do deviance based individual tests for each of the predictors:

> D<- drop1(glm.hyp,test="Chisq")

> D

Single term deletions

Model:

hyper.tbl ~ smoking + obesity + snoring

Df Deviance AIC LRT Pr(>Chi)

<none> 1.0924 34.011

smoking 1 4.2010 35.120 3.1086 0.07788 .

obesity 1 4.8781 35.797 3.7857 0.05169 .

snoring 1 11.4062 42.325 10.3138 0.00132 **

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The predictor smoking does not have a significant influence on the response, the p-value for obesity
is smaller but still not significant at 5%, and snoring is definitely important to explain the response
variable.

d) First we exclude smoking from the model.

> glm.hyp2 <- glm(hyper.tbl ~ obesity+snoring,family="binomial")

> summary(glm.hyp2)

Call:

glm(formula = hyper.tbl ~ obesity + snoring, family = "binomial")
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Deviance Residuals:

1 2 3 4 5 6

-0.28404 0.32506 -0.44798 0.13068 -1.21440 1.52066

7

-0.09844

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.2676 0.3121 -7.267 3.69e-13 ***

obesityYes 0.7745 0.3225 2.401 0.0163 *

snoringYes 0.9075 0.3240 2.801 0.0051 **

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 13.318 on 6 degrees of freedom

Residual deviance: 4.201 on 4 degrees of freedom

AIC: 35.12

Number of Fisher Scoring iterations: 4

> drop1(glm.hyp2,test="Chisq")

Single term deletions

Model:

hyper.tbl ~ obesity + snoring

Df Deviance AIC LRT Pr(>Chi)

<none> 4.201 35.120

obesity 1 10.251 39.170 6.0503 0.013904 *

snoring 1 12.303 41.222 8.1021 0.004421 **

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We note that smoking was covering some of the explanatory power of obesity, which is now
significant. Now we check again the goodness of fit of the model without the predictor smoking.

> pchisq(deviance(glm.hyp2), df.residual(glm.hyp2), lower=FALSE)

[1] 0.3794888

> pchisq(glm.hyp2$null.deviance,glm.hyp2$df.null,lower=FALSE)

[1] 0.03825404

The model without the predictor smoking fits sufficiently well. Moreover, the result of the Chi-squared
test for the Null deviance and both deviance based individual tests are significant. Therefore, we only
include the variables obesity and snoring in our model.

e) > fitted(glm.hyp2)-n.hyper/n.total

1 2 3 4

0.010508367 -0.023805358 0.058457380 -0.003708396

5 6 7

0.051280802 -0.089895669 0.009817867

> data.frame(fit=fitted(glm.hyp2) * n.total, n.hyper, n.total)

fit n.hyper n.total

1 5.630502 5 60

2 1.595309 2 17

3 1.467659 1 8

4 34.306530 35 187

5 17.358868 13 85

6 10.415321 15 51

7 8.225811 8 23


