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1. Model diagnostics: simulation study Assessing model diagnostic plots requires experience. Often
it is difficult to decide whether a deviation from the theoretical centre is a systematic one (i.e. needing
correction) or a random one (i.e. just variability in the data). Experience can be gained by performing
model diagnostics on problems where it is known whether the model assumptions hold or do not hold.
This allows us to identify the naturally occurring variability in the results.

Simulate the following 4 models: one of them fulfils all model assumptions, other includes a systematic
deviation from the linearity assumption,e.g., E[εi] 6= 0, and the two left include minor and major
deviations from the constant variance assumption.

> n <- 100

> xx <- 1:n

> yy.a <- 2+1*xx+rnorm(n)

> yy.b <- 2+1*xx+rnorm(n)*(xx)

> yy.c <- 2+1*xx+rnorm(n)*(1+xx/n)

> yy.d <- cos(xx*pi/(n/2)) + rnorm(n)

a) Decide which model has no violation of the model assumptions, minor deviation to non-constant
variance, major deviation to non-constant variance and which model is non-linear.

b) Plot each response yy.[a,b,c,d] versus xx. Fit a simple linear regression and plot the regression
line into the corresponding scatter plot.

c) Perform model diagnostics and have a look at the diagnostic plots. Where can we see the devia-
tions? How large is the random variation within these plots?

d) Repeat generating the random numbers a few times and study the variation in the resulting plots.
You can also change the number of observations and track the changes in the plots.

Assessing normal plots is equally difficult1. Even drawing samples from a normal distribution does
not result in observations lying directly on the straight line. Now, we will use to following code to
simulate new data and see how a skewed, a long-tailed and a short-tailed distribution look like in a
Q-Q plot:

> qqnorm(rnorm(n), main=c("Normal distribution"))

> qqnorm(exp(rnorm(n)), main=c("Lognormal distribution"))

> qqnorm(rcauchy(n), main=c("Cauchy distribution"))

> qqnorm(runif(n), main=c("Uniform distribution"))

e) Decide which random numbers are normal, skewed, short-tailed and long-tailed.

f) Repeat generating the random numbers a few more times and study the variation in the resulting
Q-Q plots. You can also change the number of observations and track the changes in the plots.

2. Regression with a factor
Sometimes, there are continuous and categorical independent variables. The categorical variable
is sometimes called factor. We consider two predictors: a continuous variable and a categorical
variable that has K factors/levels. We denote the continuous variable by z and introduce the following
variables:

x(j) =

{
1 if category = j
0 else

1In the StatsNotes of the Department of Mathematics and Statistics at Murdoch University it reads: A sufficiently
trained statistician can read the vagaries of a Q-Q plot like a shaman can read a chicken’s entrails, with a similar recourse
to scientific principles. Interpreting Q-Q plots is more a visceral than an intellectual exercise. The uninitiated are often
mystified by the process. Experience is the key here.
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for j = 2, . . . ,K. The linear model for the observations i = 1, . . . , n is then

yi = α+ βzi +

K∑
j=2

γjx
(j)
i +

K∑
j=2

δjzix
(j)
i + εi.

The errors εi are assumed to be i.i.d. ∼ N
(
0, σ2

)
.

a) Give an interpretation of the model and the coefficients. What are the differences to a simple
linear model for every single category?

b) Give a mathematical formulation for the null hypothesis ”the effect of an increase of z by one
unit is the same for all categories”.

(i) Write down the test statistic that can be used to test the above hypothesis.

(ii) What is the distribution of the test statistic if the null hypothesis is true?

c) Perform a test of the above hypothesis for an example: The data set salary.dat contains a
dependent variable y describing the annual income of an employee. The continuous independent
variable is experience (work experience in years). The factor is education (the categories are
”Berufslehre”, ”Maturität” ad ”Hochschulabschluss” describing different levels of education).

d) Verify that the bigger model satisfies the model assumption better than the smaller model by
comparing their Tukey-Anscombe plots and QQ-plots.

R-hints: Data import:
salary <- read.table("http://stat.ethz.ch/Teaching/Datasets/salary.dat", header=TRUE)

R interprets the values in salary$education as integers. We have to make it a factor with the
command
salary$education <- as.factor(salary$education)

and the general linear model is then fitted with
fit1 <- lm(y ~ experience + education + experience:education, data=salary).

The reduced model, where the effect of an increase of experience is the same for all levels of education,
is fitted with
fit2 <- lm(y ~ experience + education, data=salary).

The p value of the test is obtained with
anova(fit2, fit1).

3. Consider a multiple linear regression model, where the parameters are estimated using the least square
method. Choose the correct answer(s).

a) The sum of the residuals can be non-zero

(i) if the model contains at least one categorical variable.

(ii) if the “zero-mean” assumption is not correct.

(iii) if no predictor is significant.

(iv) if the model does not contain an intercept term.

(v) under no circumstances.

b) The global F-test produces a very small p-value but none of the predictors are significant. This
situation can occur

(i) if the predictors are correlated.

(ii) if the response variable is independent of all the predictors.

(iii) under no circumstances.

Preliminary discussion: Monday, November 10.

Deadline: Monday, November 17.


