- Persons as blocks
- More than one block factor
- Carry-over effect

Crossover designs

Each person gets several treatments.

block = person, experimental unit = $person \times time$

Example: Wine-tasting

				Juo	dge			
Tasting	1	2	3	4	5	6	7	8
1	2	4	4	2	1	2	4	4
2	1	3	1	4	4	4	2	3
3	3	2	2	3	3	1	1	1
4	4	1	3	1	2	3	3	2

Randomisation: Tasting order of wines

Question: Is this a good design?

- Each judge tastes each wine equally often (1×), person=block
- Each wine gets equally often tasted first, second, third, fourth (2×).
 position in tasting order=block
- \implies 2 systems of blocks persons (columns), position (rows)

A Latin square of order n is an arrangement of n symbols in a $n \times n$ square array in such a way that each symbol occurs once in each row and once in each column.

Α	В	С	D
В	D	А	C
С	А	D	В
D	С	В	A

Cyclic method:

- Write the letters in the top row in any order.
- In the second row, shift the letters one place to the right.
- Continue like this ...

Interpretation:

 n^2 plots

- 2 system of blocks, 1 factor
- 1 system of blocks, 2 factors
- 3 factors

Take a Latin square of order n and superimpose upon it a second square with treatments denoted by greek letters. The two squares are orthogonal if each Latin letter occurs with each greek letter exactly once. The resulting design is a Graeco-Latin Square.

$$\begin{array}{ccccccc} \mathsf{A}\alpha & \mathsf{B}\beta & \mathsf{C}\gamma & \mathsf{D}\delta & \mathsf{E}\epsilon \\ \mathsf{B}\gamma & \mathsf{C}\delta & \mathsf{D}\epsilon & \mathsf{E}\alpha & \mathsf{A}\beta \\ \mathsf{C}\epsilon & \mathsf{D}\alpha & \mathsf{E}\beta & \mathsf{A}\gamma & \mathsf{B}\delta \\ \mathsf{D}\beta & \mathsf{E}\gamma & \mathsf{A}\delta & \mathsf{B}\epsilon & \mathsf{C}\alpha \\ \mathsf{E}\delta & \mathsf{A}\epsilon & \mathsf{B}\alpha & \mathsf{C}\beta & \mathsf{D}\gamma \end{array}$$

Take two Latin squares of size 4.

			Judge						
		1	2	3	4	5	6	7	8
	1	Α	В	С	D	А	В	С	D
Tasting	2	В	С	D	А	С	D	А	В
	3	C	D	А	В	В	А	D	С
	4	D	А	В	С	D	С	В	А

Randomly permute the rows and columns

Permutation 3241										
			Judge							
			1	2	3	4	5	6	7	8
	3	1	С	D	А	В	В	А	D	С
Tasting	2	2	В	С	D	Α	С	D	Α	В
	4	3	D	А	В	С	D	С	В	А
	1	4	А	В	С	D	А	В	С	D

Permutation 52134687

0041

			Judge						
		5	2	1	3	4	6	8	7
		1	2	3	4	5	6	7	8
	1	В	D	С	А	В	А	С	D
Tasting	2	C	С	В	D	Α	D	В	А
	3	D	А	D	В	С	С	А	В
	4	A	В	А	С	D	В	D	С

$$Y_{ij} = \mu + p_i + z_j + T_{k(ij)} + \epsilon_{ij}$$

 p_i and z_j are person and position effect (both random). A unit (i, j) gets exactly one treatment (wine) k(ij). $T_{k(ij)}$ is the effect of wine k(ij). Sum of squares partition:

$$SS_{tot} = SS_{persons} + SS_{position} + SS_{treat} + SS_{res}$$

Source	df	MS	F
Persons	7		
Tasting	3		
Wine	3	MS_{Wine}	MS_{Wine}/MS_{res}
Residual	18	MS_{res}	
Total	31		

- + more efficient than parallel designs, lower costs
- no treatment should leave a subject in a very different state at the end of the period (cure, death)
- drop-out more likely

А

- experimental situation \neq real situation sequence one treatment
- carry-over effect: treatment effect lasts into subsequent time-period

$$B \\ \uparrow \\ effect of B + lasting effect of A$$

36 subjects with chronic pain take three different drugs on demand response: hours without pain

T_1	T_2	<i>T</i> ₃	T_1	<i>T</i> ₃	T_2	T_2	T_1	<i>T</i> ₃
6	8	7	6	6	5	2	8	7
4	4	3	7	3	3	0	8	11
13	0	8	6	0	2	3	14	13
5	5	4	8	11	10	3	11	12
8	12	5	12	13	11	0	6	6
4	4	3	4	13	5	2	11	8
T_2	T_3	T_1	T_3	T_1	T_2	T_3	T_2	T_1
$\frac{T_2}{q}$	T_3	T_1	T_3	T_1	T_2	T_3	T_2	$\frac{T_1}{7}$
$\frac{T_2}{8}$	$\frac{T_3}{7}$	T_1 12	<i>T</i> ₃	<i>T</i> ₁ 14	<i>T</i> ₂	<i>T</i> ₃ 12	T_2 11	$\frac{T_1}{7}$
$\frac{T_2}{8}$	T ₃ 7 3	<i>T</i> ₁ 12 6	<i>T</i> ₃ 6 4		<i>T</i> ₂ 4 6	T ₃ 12 1		$\frac{T_1}{7}$ 9
$\frac{T_2}{8}$ 4 2	$ \begin{array}{r} T_{3} \\ 7 \\ 3 \\ 12 \end{array} $	$ \begin{array}{r} T_1 \\ 12 \\ 6 \\ 10 \end{array} $				$ \begin{array}{c} T_3 \\ 12 \\ 1 \\ 5 \end{array} $	$ \begin{array}{c} T_2 \\ 11 \\ 7 \\ 12 \end{array} $	
	$ \begin{array}{r} T_3 \\ 7 \\ 3 \\ 12 \\ 0 \end{array} $	$ \begin{array}{r} T_1 \\ 12 \\ 6 \\ 10 \\ 9 \end{array} $	T3 6 4 4 0	$ \begin{array}{c} T_1 \\ 14 \\ 4 \\ 13 \\ 9 \end{array} $	T ₂ 4 6 0 3	<i>T</i> ₃ 12 1 5 2	$ \begin{array}{c} T_2 \\ 11 \\ 7 \\ 12 \\ 3 \end{array} $	
	T_3 7 3 12 0 5	$ \begin{array}{c} T_1 \\ 12 \\ 6 \\ 10 \\ 9 \\ 11 \end{array} $	$ \begin{bmatrix} T_3 \\ 6 \\ 4 \\ 4 \\ 0 \\ 1 $	$ \begin{array}{r} T_1 \\ 14 \\ 4 \\ 13 \\ 9 \\ 6 \end{array} $	<i>T</i> ₂ 4 6 0 3 8	T ₃ 12 1 5 2 4	$ \begin{array}{c} T_2 \\ 11 \\ 7 \\ 12 \\ 3 \\ 5 \end{array} $	

Source	SS	df	MS	F	P-Wert
Persons	503.6	35	14.4		
Time-period	192.1	2	96.0		
Medication	268.7	2	134.3	14.4	$6.1 \cdot 10^{-6}$
Residual	632.6	68	9.3		
Total	1596.9	107			

Treatment comparison:

se =
$$\sqrt{2MS_{res}/36} = 0.72$$

qtukey(0.95,3,68)/ $\sqrt{2} = 2.396 \implies$ HSD=1.725

$$T_1 - T_2 = 3.84$$
 $T_1 - T_3 = 2.34$ $T_2 - T_3 = -1.50$

$\mathsf{Carry-over}\ \mathsf{effect} = \mathsf{Interaction}\ \mathsf{treatment}\ \times\ \mathsf{time-period}$

	time-period 1	time-period 2
group 1	T_1	T_2
group 2	T_2	T_1

Approaches:

- wash-out period
- include interaction term in the model
- design for carry-over effects: