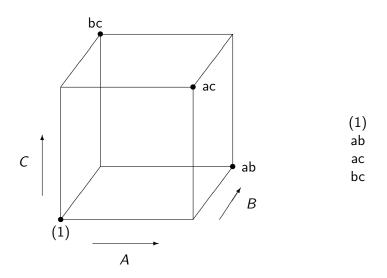

Fractional Factorials

- Too many runs for many factors
- Ignore some high-order interactions and run only a fraction of all possible runs
- How to choose the runs?

Full 2³ factorial



Half-replicate

(1) a b c

Optimal coverage

2^{3-1} design

$$\hat{C} = -\hat{AB}, \hat{B} = -\hat{AC}, \hat{A} = -\hat{BC}, \hat{I} = -\hat{ABC}$$

Leaf spring experiment

- An experiment to improve a heat treatment process on truck leaf springs.
- The heat treatment consists of heating in a high temperature oven, processing by a forming machine, and cooling in an oil bath.
- The response, the height of an unloaded spring, should be 8.0.
- half fraction of a 2⁵ design is used to study 5 factors.

Factors and levels

		Level			
Factor		_	+		
Α	heat temperature (°F)	1840	1880		
В	heating time (seconds)	23	25		
C	transfer time (seconds)	10	12		
D	hold down time (seconds)	2	3		
Ε	oil temperature (°F)	130-150	150-170		

Why using fractional factorials?

• 2⁵ design has 32 runs to estimate the overall mean and

Main	Interactions						
Effects	2-Factor	4-Factor	5-Factor				
5	10	10	5	1			

- 4-factor, 5-factor and even 3-factor interactions are not likely to be important. There are 10+5+1=16 such effects, half of the total runs!
- use a half-replicate. What price is to pay?

Design matrix

Treatment	Α	В	С	D	Е
(1)	_	-	_	-	_
ab	+	+	_	_	_
ac	+	_	+	_	_
bc	_	+	+	_	_
ad	+	_	_	+	_
bd	_	+	_	+	_
cd	_	_	+	+	_
abcd	+	+	+	+	_
е	_	_	_	_	+
abe	+	+	_	_	+
ace	+	_	+	_	+
bce	_	+	+	_	+
ade	+	_	_	+	+
bde	_	+	_	+	+
cde	_	_	+	+	+
abcde	+	+	+	+	+_

I = ABCD is the defining relation

D = ABC: D is aliased with the interaction ABC.

Aliasing structure

The complete aliasing structure is:

1	=	ABCD	AD	=	ВС
Α	=	BCD	ΑE	=	BCDE
В	=	ACD	BE	=	ACDE
С	=	ABD	CE	=	ABDE
D	=	ABC	DE	=	ABCE
Ε	=	ABCDE	ABE	=	CDE
AB	=	CD	ACE	=	BDE
AC	=	BD	ADE	=	BCE

Construction method I

To construct a 2^{k-1} design choose one block of a 2^k design divided into two blocks.

Ex: k=4, confound the ABCD interaction with blocks and take the principal block as half replicate.

(1)
ab
ac
bc
ad
bd
cd
abcd

2⁴⁻² Design

Choose two confounding interactions: AB und CD. ABCD is also confounded with blocks.

(1) ...ab ...cd ...abcd Aliasing structure: I = AB, CD, ABCD A = B, ACD, BCD C = ABC, D, ABDAC = BC, AD, BD

Construction method II

To construct a 2^{4-1} design start with a 2^3 design and identify the fourth factor with the ABC interaction.

Treatment	I	Α	В	AB	C	AC	BC	ABC=D	
(1)	+	_	_	+	-	+	+	_	(1)
a	+	+	_	_	_	_	+	+	ad
b	+	_	+	_	_	+	_	+	bd
ab	+	+	+	+	_	_	_	_	ab
С	+	_	_	+	+	_	_	+	cd
ac	+	+	_	_	+	+	_	_	ac
bc	+	_	+	_	+	_	+	_	bc
abc	+	+	+	+	+	+	+	+	abcd

Resolution of a design

- Resolution = length of shortest word among the $2^{l} 1$ words used in the defining relations.
- In any resolution III design, main effects are not confounded with other main effects.
- In any resolution IV design, main effects are not aliased with any other main effect or 2-factor interactions.
- In any resolution V design, the main effects are not aliased with any other main effect, 2-factor or 3-factor interactions.
 The two-factor interactions are not aliased with any other 2-factor interaction.