Block Designs

1 Randomized Complete Block Designs

Incomplete Block Designs

1 Randomized Complete Block Designs

Randomized Complete Block Designs Incomplete Block Designs

Randomized Complete Block Design

- RCBD is the most widely used experimental design
- More efficient than the 1-factor design
- What is new?
 - Random or fixed effects
 - Correlated observations

Biochemical Experiment

Serum levels after four medical treatments. Only four people can be treated per day, one for each medication.

	Day										
	1	2	3	4	5	6	7	8			
Treat.											
I	4.4	5.3	5.3	1.8	3.7	6.5	5.4	5.2			
11	2.8	3.3	7.0	2.6	5.9	5.4	6.9	6.8			
111	4.8	1.9	4.3	3.1	6.2	5.7	6.2	7.9			
IV	6.8	8.7	7.2	4.8	5.1	6.7	9.3	7.9			

Group I

Х

Block Design

Х

Х

Block Randomisation

R: sample(rep(1:8,4)), sample(4) or sample(32)

Subjects

	Day									
Treatment	1	2	3	4	5	6	7	8		
1	13	3	26	23	4	28	20	21		
II	24	18	6	10	9	25	32	1		
III	19	7	8	22	27	30	16	14		
IV	2	11	15	12	31	17	29	5		

Randomized Complete Block Designs Incomplete Block Designs

Serum levels by Treatment

Treatment

Mean:

5.01

Randomized Complete Block Designs Incomplete Block Designs

Serum levels by Day

Mean: 4.7 4.8 5.95 3.08 5.23 6.07 6.95 6.95

Randomized Complete Block Design

- Each treatment in each block equally often.
- Model:

$$Y_{ij} = \mu + A_i + b_j + \epsilon_{ij}$$
 $i = 1, \dots, I; j = 1, \dots, J$

- b_j : Effect of block j
- Fixed-Effects Model:

$$\sum A_i = 0, \ \sum b_j = 0, \ \epsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$$

Mixed Model:

 $\sum_{i} A_{i} = 0, \ b_{j} \sim \mathcal{N}(0, \sigma_{b}^{2}), \ \epsilon_{ij} \sim \mathcal{N}(0, \sigma_{e}^{2})$ all b_{j} and ϵ_{ij} independent.

Anova table

$$SS_{tot} = SS_{treat} + SS_{blocks} + SS_{res}$$

Source	SS	df	MS	F
Blocks	47.3	J - 1 = 7	6.75	
Treatments	27.9	l - 1 = 3	9.29	
Residual	35.3	(I-1)(J-1) = 21	1.68	
Total	110.4	N - 1 = 31		

Expected mean squares

Fixed-effects model

$$\begin{array}{lll} E(MS_{res}) &= \sigma^2 \\ E(MS_{treat}) &= \sigma^2 + J \sum A_i^2 / (I-1) \\ E(MS_{block}) &= \sigma^2 + I \sum b_j^2 / (J-1) \end{array}$$

Mixed-effects model

$$\begin{array}{lll} E(MS_{res}) &=& \sigma_e^2 \\ E(MS_{treat}) &=& \sigma_e^2 + J \sum A_i^2 / (I-1) \\ E(MS_{block}) &=& \sigma_e^2 + I \sigma_b^2 \end{array}$$

F Tests

Fixed-effects Model

$$\begin{array}{ll} H_0: A_i = 0 \quad \forall i, \quad F = \frac{MS_{treat}}{MS_{res}} \sim F_{I-1,(I-1)(J-1)} \\ H_0: b_j = 0 \quad \forall j, \quad F = \frac{MS_{blocks}}{MS_{res}} \sim F_{J-1,(I-1)(J-1)} \end{array}$$

Mixed Model $H_0: A_i = 0 \quad \forall i, \quad F = \frac{MS_{treat}}{MS_{res}} \text{ as above}$ $H_0: \sigma_b^2 = 0 \qquad F = \frac{MS_{blocks}}{MS_{res}}$

Blocks are usually not tested $MS_{blocks} \gg MS_{res}$: Blocking good $MS_{blocks} \leq MS_{res}$: Blocking not necessary

Biochemical example

Source	SS	df	MS	F	P value
Blocks	47.3	7	6.75		
Treatments	27.9	3	9.29		
Residual	35.3	21	1.68		
Total	110.4	31			

Question: What happens without blocking?

Hint: Consider $SS_{tot} = SS_{treat} + SS_{blocks} + SS_{res}$

Randomized Complete Block Designs

2 Incomplete Block Designs

Test of 7 different Tyres

Cars									Placks Treatments			+-	
		1	2	3	4	5	6	7	DIOCKS	1	reat	men	ιs
	1	-	-		•	<u> </u>	•		1	1	2	3	7
	T	X	х	х	х				2	1	2	3	6
_	2	X	х			х	Х		2	-	~	-	ć
	2		v		v	v			3	1	4	5	6
		^	^		^	^			4	1	3	4	5
lyres	4			Х	Х		Х	Х	F	2	2	F	7
	5			х	х	х		х	5	2	3	5	'
	6				~	~			6	2	4	6	7
	0		х	х			х	х	7	4	5	6	7
	7	X				х	х	х	,	*	5	5	'

• Small block size, larger number of treatments

Non-orthogonal designs

Balanced incomplete block design

- *n* treatments, block size k, (k < n)
- Any two treatments occur together the same number of times (λ times)

First Solution: $\binom{n}{k}$ blocks, a different combination of treatments in each block.

$$n = 7, k = 4 : \binom{7}{4} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2} = 35$$
 cars

Search for smaller designs

Necessary conditions for a BIBD

b blocks, each treatment occurs r times

$$nr = bk$$
(1)
$$r(k-1) = \lambda(n-1)$$
(2)

(1) number of observations(2) number of treatment pairs for a fixed treatment

Design is called symmetric if n = b.

Construction of BIBD

- Problem: Given k and n, how large are r, b, and λ ?
- Conditions (1) and (2) are necessary but not sufficient.
- Several methods of construction exist.
- There are tables of BIBD with small sizes (Cochran & Cox 1992).
- Partially balanced block designs (PBIB) if some treatment comparisons are less important.

Analysis of BIBD

• Statistical model:

$$Y_{ij} = \mu + \beta_j + T_i + \epsilon_{ij}$$

where T_i is the treatment effect, β_j the block effect.

- Block and treatment factor are not orthogonal, because not all combinations appear.
- Calculate first block sum of squares, then adjusted treatment sum of squares.