Designs with Large and Small Units

Repeated Measures Anova

3 Repeated Measures Anova

Study in Dental Medicine

- Can measurement of electric resistance help in detecting tooth decay?
- 40 measurements on teeth with and without inflamed gums, with and without special treatment.
- 2² factorial with factor A (inflammation) and factor B (special treatment).

Correct anova table?

Source	df	MS	F
А	1		MS_A/MS_{res}
В	1		MS_B/MS_{res}
AB	1		MS_{AB}/MS_{res}
Residual	36		
Total	39		

Depends on design structure. How many subjects, how many teeth?

8 subjects, one tooth each

One treatment per person, 5 repeated measurements

Stratum	Source	df	F
Person	А	1	$MS_A/MS_{res-person}$
	В	1	$MS_B/MS_{res-person}$
	AB	1	$MS_{AB}/MS_{res-person}$
	Residual	4	
	Total	7	
Measurement	Residual	32	
	Total	39	

5 subjects, 4 teeth each

Each person has 2 inflamed and 2 not inflamed teeth. Each tooth was measured once with special treatment and once without special treatment.

Stratum	Source	c	lf	F
Person	Person		4	
Tooth	А	1		$MS_A/MS_{res-tooth}$
	Residual	14		
	Total		15	
Measurement	В	1		$MS_B/MS_{res-meas}$
	AB	1		$MS_{AB}/MS_{res-meas}$
	Residual	18		
	Total		20	
	Total		39	

Special properties of this design

- Replication on three stages: persons, teeth and measurements.
- One factor varies between teeth, the other between measurements.
- main plot= tooth, sub-plot = measurement

Split-plot design

- A first factor needs to be applied to large plots, called main plots.
- Main plots are split into smaller plots, called subplots. These are assigned to different levels of a second factor.
- Two different levels for comparing factor levels: effects of the first factor must be examined relative to main plot variation, effects of the second factor must be examined relative to subplot variation.

Rice experiment

4 irrigation methods l1-l4 on main plots, 3 fertilizer mixtures x, y, z on sub-plots, 2 complete replicates.

Layo	out:						
	Blo	ck I			Blo	ck II	
z	х	у	z	х	у	z	х
Х	Z	z	у	z	х	х	у
у	у	х	х	у	z	у	z
14	12	13	11	12	11	14	13

Irrigation is confounded with main plots.

Skeleton Anova

Stratum	Source		df	F
Blocks	Blocks		1	
Main plots	Irr	3		$MS_{Irr}/MS_{res-main}$
	Residual	3		
	Total		6	
Sub-plots	Fert	2		$MS_{Fert}/MS_{res-sub}$
	Irr:Fert	6		MS _{Irr:Fert} /MS _{res-sub}
	Residual	8		
	Total		16	
	Total		23	

Model

$$Y_{ijk} = \mu + b_i + Irr_j + \epsilon_{ij} + Fert_k + (Irr : Fert)_{jk} + \delta_{ijk}$$
$$i = 1, \dots, l; j = 1, \dots, J; k = 1, \dots, n.$$

 $\begin{array}{ll} b_i \ : \ i \text{th block effect} & b_i \sim \mathcal{N}(0, \sigma_b^2) \\ Irr_j \ : \ j \text{th effect of irrigation} \\ \epsilon_{ij} \ : \ \text{main plot error} & \epsilon_{ij} \sim \mathcal{N}(0, \sigma_e^2) \\ Fert_k \ : \ k \text{th effect of fertilizer} \\ (Irr : \ Fert)_{ij} \ : \ j k \text{th interaction} \\ \delta_{ijk} \ : \ \text{sub-plot error} & \delta_{ijk} \sim \mathcal{N}(0, \sigma_d^2) \end{array}$

Data on crop yield (tonnes/hectare)

	Irrigation			
Block I	11	12	13	14
Fertilizer x	2.16	2.03	1.77	2.44
у	2.38	2.41	1.95	2.63
z	2.77	2.68	2.01	3.12
		Irriga	ation	
Block I	11	Irriga I2	ation 13	14
Block I Fertilizer x	l1 2.52	Irriga I2 2.31	ation 13 2.01	l4 2.23
Block I Fertilizer x y	l1 2.52 2.64	Irriga 12 2.31 2.50	ation 13 2.01 2.06	l4 2.23 2.04

Graphical display

Anova Table

```
>mod2=aov(yield~irrigation*fertilizer+Error(block/irr..))
>summary(mod2)
Error: block
               Sum Sq Mean Sq F value Pr(>F)
          Df
Residuals 1 0.0003375 0.0003375
Error: block:irrigation
              Sum Sq Mean Sq F value Pr(>F)
           Df
irrigation 3 1.32971 0.44324 2.0424 0.2862
Residuals 3 0.65105 0.21702
Error: Within
                                                  Pr(>F)
                      Df
                         Sum Sq Mean Sq F value
fertilizer
                       2 0.67530 0.33765 16.6262 0.001414
irrigation:fertilizer 6 0.20110 0.03352 1.6504 0.250110
Residuals
                      8 0.16247 0.02031
                                                      14/23
```


3 Repeated Measures Anova

Longitudinal data

- Subjects are measured more than once
 - Compare values of an outcome variable before and after a treatment
 - Look at changes over time in an outcome variable
- Measurements at the same unit are correlated with each other

Rheumatoid arthritis

Patients with rheumatoid arthritis and normal controls obtained an anti-inflammatory analgesic. Serum clonixin levels (in mg/ml) were measured 1/2, 1, 2, 4, 6 and 8 hours after administration of a single dose of three 250 mg tablets of clonixin.

	Time (in hours)					
Subject	1/2	1	2	4	6	8
1	12.70	32.20	42.00	19.80	7.09	2.10
2	18.48	40.24	45.87	15.61	5.58	3.25
3	6.70	20.60	27.70	11.49	2.48	0.56
4	24.20	16.20	7.84	5.30	0.38	0.00
÷	÷					

Patients with arthritis

Time

Controls

Time

How to analyze the data?

- Separate analysis at each time point
- Summary measure: mean, maximal value, time until maximal value, steepest slope, area under curve (AUC)
- Repeated measures anova, split-plot approach: subjects=main plots, subject× time=subplot.
 - Critical assumption is sphericity: same variance of measurements at each time point and the same correlation between measurements taken at different times.
 - Correction for deviation from sphericity: Greenhouse-Geisser, Huynh-Feldt
- Mixed-effects model

Anova table

Stratum	Source	d	f	F
Person	Treatment	1		MS _{treat} /MS _{res-Person}
	Residual	22		
	Total		23	
$Person \times Time$	Time	5		$MS_{time}/MS_{res-Person imes time}$
	$Treatment\timesTime$	5		
	Residual	110		
	Total		120	
	Total		143	

R Output

>mod1=aov(clonixin~time*group+Error(id),data=rheuma.long)
>summary(mod1)

Error: id Df Sum Sq Mean Sq F value Pr(>F) group 1 658.4 658.44 3.0483 0.09477 . Residuals 22 4752.0 216.00

Error: Within Df Sum Sq Mean Sq F value Pr(>F) time 5 22152.8 4430.6 42.0703 <2e-16 *** time:group 5 138.2 27.6 0.2624 0.9326 Residuals 110 11584.5 105.3

Other types of split-plot designs

- Repeated splitting: a third factor may be applied to sub-subplots
- Confounding interactions of sub-plot factors in split-plot designs
- Other designs for main plots, e.g. Latin squares
- Strip-plot design

