Solution to Series 6

a) An experimenter wishes to compare four treatments in blocks of two runs. Find a BIBD with six blocks. We have:

.

$$n = 4$$

$$b = 6$$

$$k = 2$$

$$r = \frac{kb}{n} = \frac{12}{4} = 3.$$

$$\lambda = \frac{r(k-1)}{n-1} = 1$$

We find the BIBD: (Note that $\lambda = 1$ implies that any combination of 2 factors can appear just once).

b) An experimenter wishes to compare seven treatments in blocks of three runs. Find a BIBD with seven blocks. We have:

$$n = 7 b = 7 k = 3 r = \frac{kb}{n} = \frac{21}{7} = 3. \lambda = \frac{r(k-1)}{n-1} = 1$$

We find the BIBD. (Note that $\lambda = 1$ implies that any combination of 2 factors can appear just once).

			3	4	5	6	7
1	х	х	х				
2	x			х	х		
3	× × ×					х	х
4		х		х		х	
5		х			х		х
6			х	х			х
7			х		х	х	

2. Analyze these data in a split plot anova. First, draw the corresponding ANOVA skeleton by hand. Then, fit the data using R and interpret your results. Finally, Plot the data and answer: Is the new treatment significantly worst or better than the old one?

We have the following model:

Stratum	Source	d	f	F
Main plots	Treatment	1		$MS_{TR}/MSres-main$
	Residual	19		
	Total		20	
Sub-plots	Time	1		$MS_{Time}/MSres-sub$
	TR:Time	1		$MS_{TR:Time}/MSres-sub$
	Residual	19		$MS_{TR:Time}/MSres-sub$
	Total		21	
	Total		41	

With the R -function we obtain:

```
> Sh.fit <- aov(Y<sup>~</sup>Time*Treatment+Error(Subject/Time),data=Sh)
> summary(Sh.fit)
Error: Subject
          Df Sum Sq Mean Sq F value Pr(>F)
Treatment 1
               847
                      847.5
                               3.627 0.0721 .
Residuals 19
               4440
                      233.7
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Error: Subject:Time
               Df Sum Sq Mean Sq F value
                                           Pr(>F)
Time
                1 542.9
                          542.9
                                    15.14 0.000982 ***
Time:Treatment 1 407.4
                           407.4
                                    11.36 0.003209 **
Residuals
               19 681.2
                            35.9
___
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Time and interaction Time:Treatment are significant. A plot also shows that the new treatment improves response values after surgery, whereas the rates are unchanged with a standard operation. The new operation is therefore superior to the standard treatment.

3. A market investigation explores the potential of three new types of pizzas in six different packings. 90 consumers assess the products on a 0–10 scale. What type of design is used and how does the skeleton anova look like if

Let

$$\begin{array}{rcl} A & = & packing \\ B & = & pizza \end{array}$$

- a) each person rates the six packings of just one type of pizza,
 - This is a split plot design with persons as main plots and the ratings of different packings as subplots.

Strata	Source	df	MS	F
Person	В	2	MS_B	$MS_B/MS_{res-main}$
	Residual	87	$MS_{res-main}$	
Subplots	А	5	MS_A	$MS_A/MS_{res-sub}$
	AB	10	MS_{AB}	$MS_{AB}/MS_{res-sub}$
	Residual	435	$MS_{res-sub}$	
	Total	539		

b) each person rates exactly one pizza in one packing, This is a factorial design.

Source	df	MS	F
A	5	MS_A	MS_A/MS_{res}
В	2	MS_B	MS_B/MS_{res}
AB	10	MS_{AB}	MS_{AB}/MS_{res}
Residual	72	MS_{res}	
Total	89		

c) each person rates every pizza in every packing? This is a complete block design with persons as blocks.

Source	df	MS	F
Blocks	89	MS_{blocks}	
А	5	MS_A	MS_A/MS_{res}
В	2	MS_B	MS_B/MS_{res}
AB	10	MS_{AB}	MS_{AB}/MS_{res}
Residual	1513	MS_{res}	
Total	1619		

4. Using R and the function $\verb"lm"$ we obtain:

> d.st <- lm(formula=Pu~T1+Pr1,data=d)
> d.st\$coefficients
(Intercept) T1 Pr1

(Intercept)	T1	Pr1
84.10	-0.85	0.25

This can be interpreted as follows:

$$\hat{y} = 84.10 - 0.85 \cdot T + 0.25 \cdot P$$
,

By letting \hat{y} constant we obtain an equation for the contour lines, i.e. contour lines satisfy the equation

$$P = \frac{0.85}{0.25} \cdot T + constant = m_0 T + c .$$

The direction of steepest ascent is then:

$$-\frac{1}{m_0} = -\frac{5}{17} \ .$$