
Marianne Müller Applied Analysis of Variance and Experimental Design AS 2014

Solution to Series 1

1. An experiment was conducted to study the effect of 3 types of diets on the coagulation time of blood.
In the first part we will load and plot the data. In the second part we carry out an analysis of variance
step by step and in the last part we will check the model assumptions.

a) Loading the data and exploratory plots

1. The results of the experiments are saved in the file blood.csv, which you can find on the
course webpage. Open it with a spreadsheet reader (like Excel) and look at the data. Then
import them in R using the function read.csv or with the importing tool of RStudio (see
upper right panel).

blood <- read.csv(file='blood.csv')

2. How many patients are there? how many patients were assigned to each diet type?

## number of patients:

nrow(blood)

[1] 24

## for each group:

table(blood$diet)

A B C

8 8 8

3. Boxplot

boxplot(coagulation~diet, data=blood)
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require(ggplot2)

g <- ggplot(data=blood, aes(x=diet, y=coagulation))

g <- g + geom_boxplot(aes(fill=diet))

g



2

●

●

55

60

65

70

A B C
diet

co
ag

ul
at

io
n diet

A

B

C

4. Density plot

interval <- range(blood$coagulation) ## calculate min and max

par(mfrow=c(3,1)) # split the window in 3 rows and 1 column

## set xlim the same for all plots for better comparison:

hist(blood$coagulation[blood$diet=='A'], xlim=interval)

hist(blood$coagulation[blood$diet=='B'], xlim=interval)

hist(blood$coagulation[blood$diet=='C'], xlim=interval)

par(mfrow=c(1,1)) # reset default value

Histogram of blood$coagulation[blood$diet == "A"]

blood$coagulation[blood$diet == "A"]
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Histogram of blood$coagulation[blood$diet == "B"]

blood$coagulation[blood$diet == "B"]

F
re

qu
en

cy

55 60 65 70

0
3

Histogram of blood$coagulation[blood$diet == "C"]

blood$coagulation[blood$diet == "C"]
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g <- ggplot(data=blood, aes(x=coagulation, fill=diet))

g <- g + geom_density(alpha=.2) ## alpha sets the transparency

g
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5. From these plots, do you think that the type of diet followed has a significant effect on the
coagulation of blood?
Yes it seems that the diet B results in clearly bigger coagulation. Furthermore the variance within
group is smaller than the variance between group, thus the effect is expected to be significant.

b) We will now compute individually all the elements needed and perform a one-way ANOVA.

1. Compute the overall mean.

mtot <- mean(blood$coagulation)

mtot

[1] 63.5

2. Compute the mean for each group separately.

ma <- mean(blood$coagulation[blood$diet=='A'])
mb <- mean(blood$coagulation[blood$diet=='B'])
mc <- mean(blood$coagulation[blood$diet=='C'])
cat(ma,mb,mc)

63.625 67.25 59.625

3. Write down the linear model we are interested in and the estimate of the effects Âi if we take
the convention that

∑
i Âi = 0.

Yij = µ+Ai + εij where εij ∼ N (0, σ2) Â1 = 0.125, Â2 = 3.75 and Â3 = −3.875

4. Compute the variance within group (MSres).
Hint: Compute first the variance of each group separately and then combine them appropri-
ately (is it a balanced design?).

va <- var(blood$coagulation[blood$diet=='A'])
vb <- var(blood$coagulation[blood$diet=='B'])
vc <- var(blood$coagulation[blood$diet=='C'])
MS_res <- mean(c(va,vb,vc))

MS_res

[1] 10.15476

5. Compute the variance between groups.
Hint: Compute first the SStreat, using the appropriate formula and then the MStreat with
the correct df.

## the factor 8 is because there are 8 persons by group

SS_treat <- 8*sum( (c(ma, mb, mc)- mtot)^2 )

MS_treat <- SS_treat / 2 # 2 is the df

MS_treat

[1] 116.375

6. Compute the F-statistics. Can you make any conclusion from its value?
Optional: Plot the probability distribution function of the F distribution with the correct
degrees of freedom and look where the computed F-statistics falls (use the function df to
compute the pdf of the F distribution).
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F_stat <- MS_treat/MS_res

F_stat

[1] 11.46014

x <- seq(0,14,length.out = 100)

y <- df(x, df1=2, df2=21)

plot(x,y, type='l')
abline(v=F_stat, col='red')
## we see that the F-statistics is far, far in the tail...
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7. What is the probability to obtain such a F-statistics if the null hypothesis was true? Hint:
the function pf allows you compute the distribution function of the F distribution for any
quantile. Use the correct degrees of freedom!

pvalue <- 1 - pf(F_stat, df1 = 2, df2= 21)

pvalue

[1] 0.0004318361

8. Is the effect of diet significant?
Yes it is significant at a 5% level (also at 1%)

9. In practice you don’t have to calculate everything by hand like that! Repeat the analysis using
the function lm to fit the model and Anova from the package car to calculate the ANOVA
table. You could also use anova (without capital A) from R base, but it gives inconsistent
results when dealing with unbalanced designs and so it is not advised to use it.
The results should be the same as you obtained before, of course!

require(car)

mod <- lm(coagulation~diet, data=blood)

Anova(mod)

Anova Table (Type II tests)

Response: coagulation

Sum Sq Df F value Pr(>F)

diet 232.75 2 11.46 0.0004318 ***

Residuals 213.25 21

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

c) We will now check the model assumptions.

1. What are the model assumptions to test?
The linear model holds: expectaction of residuals should be 0.
The errors are normally distributed with mean 0.
The variance is the same within each group.
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2. Perform diagnostic plots. Hint: par(mfrow=c(2,2)) splits your screen in 4 parts.

par(mfrow=c(2,2))

plot(mod)
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3. Interpret the plots. There is no apparent problem with the data, no outliers or particular
skewness. The observation 7 could be seen as an outlier, but it’s probably not (remember we deal
here with a small sample size and variations are expected to occur naturally).

2. Read in the data:

N2 <- c(19.4,32.6,27,32.1,33,18.2,24.6,25.5,19.4,21.7,20.8,20.7,

21,20.5,18.8,18.6,20.1,21.3)

strain <- c(1,1,1,1,1,5,5,5,5,5,5,7,7,7,7,7,7,7)

r.data <- data.frame(cbind(N2,strain))

r.data$strain <- as.factor(r.data$strain)

a) Plot the data.

plot(r.data$strain,r.data$N2)
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The variance between strains looks larger then the variance within strains. This could be an indicator
for a significant difference of nitrogen contents for different Rhizobium strains.

b) Carry out an analysis of variance.

fit.n2 <- aov(r.data$N2 ~ r.data$strain)

summary(fit.n2)

Df Sum Sq Mean Sq F value Pr(>F)

r.data$strain 2 236.6 118.28 9.723 0.00196 **

Residuals 15 182.5 12.16

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The F-value equals 9.72. By looking at the P-value we see that there are significant differences in
nitrogen contents for different strains of Rhizobium.

c) Check the model assumptions.

par(mfrow=c(2,2))

plot(fit.n2)
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From the diagnostic plots we see that there exists an outlier. On the basis of the plots, observation
number 1 can be clearly identified as an outlier. After removing the outlier we repeat the analysis.

rr.data <- r.data[-1,]

fit.n2mod <- aov(rr.data$N2~rr.data$strain)

summary(fit.n2mod)

Df Sum Sq Mean Sq F value Pr(>F)

rr.data$strain 2 333.2 166.60 32.6 5.39e-06 ***

Residuals 14 71.5 5.11

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

par(mfrow=c(2,2))

plot(fit.n2mod)
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We see that now the model assumptions are fulfilled.


