Solution to Series 7

1. Logistic Regression for Binary Data

a) We fit a logitic regression for the binary variable purchase with predictors income and age:
> car <- read.table("http://stat.ethz.ch/Teaching/Datasets/car.dat",header=T)
> fit <- glm(purchase ~ income + age, data=car, family=binomial)
> summary(fit)
Call:
glm(formula $=$ purchase \sim income + age, family $=$ binomial, data $=$ car)

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-1.6189	-0.8949	-0.5880	0.9653	2.0846

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

(Intercept)	-4.73931	2.10195	-2.255	$0.0242 *$
income	0.06773	0.02806	2.414	$0.0158 *$
age	0.59863	0.39007	1.535	0.1249

Signif. codes: $0{ }^{\prime} * * * ’ 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 44.987 on 32 degrees of freedom
Residual deviance: 36.690 on 30 degrees of freedom
AIC: 42.69

Number of Fisher Scoring iterations: 4
We can read off the coefficients from the regression output, thus the regression equation is:
$\log \left(\frac{\hat{p}}{1-\hat{p}}\right)=-4.74+0.068 \cdot$ income $+0.599 \cdot$ age.
b) $\exp \hat{\beta}_{\text {income }}=e^{0.068}=1.07$ and $\exp \hat{\beta}_{\text {age }}=e^{0.599}=1.82$ are the relative changes of the odds of buying a new car for an increase of one unit in income and age respectively. l.e. the odds for buying a new car increase by 7% for each increase of income by 1000 USD, and increase by 82% for each additional year of age of the oldest car.
c) > predict(fit, data.frame(age=3,income=50), type="response")

$$
1
$$

0.6090245
d) We first look at the Tukey-Anscombe plot with Pearson residuals:

```
> xx <- predict(fit, type="response")
> yy <- residuals(fit, type="pearson")
> scatter.smooth(xx, yy, family="gaussian", pch=20, xlab="Fitted Probabilities",
    ylab="Pearson Residuals")
> abline(h=0, lty=3)
```


Fitted Probabilities

There is no evidence that assumptions aren't satisfied: the expectation does not seem to deviate much from zero. Also, most residuals have absolute value <2.
Finally, we check for influential observations:
> plot(fit, which=5)
Residuals vs Leverage

There seem to be no influential data points, just an outlier without influence.
e) We perform deviance-based significance tests using the function drop1:

```
> drop1(fit, test="Chisq")
Single term deletions
```

Model:
purchase ~ income + age
Df Deviance AIC LRT $\operatorname{Pr}(>$ Chi $)$
<none> $\quad 36.69042 .690$
income $144.98748 .9878 .2976 \quad 0.00397$ **
$\begin{array}{lllllll}\text { age } & 1 & 39.305 & 43.305 & 2.6149 & 0.10586\end{array}$
Signif. codes: $0{ }^{\prime} * * * ' 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' , 1
The p-value for age is quite high, so it might not be a significant predictor in this model. However, these tests are only approximate, so the results should not be overestimated.
f) We first fit a new model with an interaction term, and then perform an Anova:

```
> fit2 = glm(purchase ~ income + age + income:age, data=car, family=binomial)
> summary(fit2)
```

```
Call:
glm(formula = purchase ~ income + age + income:age, family = binomial,
    data = car)
Deviance Residuals:
    Min 1Q Median 3Q Max
-1.6096 -0.8222 -0.5334 0.8731 1.9924
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.372993 2.862477 -0.829 0.407
income 0.001326 0.064770 0.020}00.98
age }\quad0.303860 0.890512 -0.341 0.733 
income:age 0.028860 0.026493 1.089 0.276
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 44.987 on 32 degrees of freedom
Residual deviance: 35.404 on 29 degrees of freedom
AIC: 43.404
Number of Fisher Scoring iterations: 4
> anova(fit, fit2, test="Chisq")
Analysis of Deviance Table
Model 1: purchase ~ income + age
Model 2: purchase ~ income + age + income:age
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 30 36.690
2 29 35.404 1 1.2855 0.2569
```

The p-value is large, so we cannot reject the null hypothesis that the two models are equal. Hence, there does not seem to be a significant interaction between income and age.
2. a) > hyper.tbl <- cbind(n.hyper=n.hyper, n.nohyper=n.total-n.hyper)
> hyper.tbl
n.hyper n.nohyper

$[1]$,	5	55
$[2]$,	2	15
$[3]$,	1	7
$[4]$,	35	152
$[5]$,	13	72
$[6]$,	15	36
$[7]$,	8	15

Note that the first column denotes the number of "successes", while the second column the number of "failures".
b) > glm.hyp <- glm(hyper.tbl ~ smoking+obesity+snoring,family="binomial")
> summary(glm.hyp)
Call:
glm(formula = hyper.tbl ~ smoking + obesity + snoring, family = "binomial")
Deviance Residuals:

1	2	3	4	5
0.50780	0.10458	0.02847	-0.21903	-0.63361
7				0.32485
0.51753				

Coefficients:

Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$					
(Intercept)	-2.6433	0.4090	-6.462	$1.03 \mathrm{e}-10$	
smokingYes	0.5488	0.3132	1.752	0.0797	
obesityYes	0.6668	0.3455	1.930	0.0536	
snoringYes	1.1184	0.3656	3.059	0.0022	
Signif. code	s: 0 '*	0.001	*' 0.01	'*' 0.0	
(Dispersion parameter for binomial family taken to be 1)					
Null deviance: 13.3181 on 6 degrees of freedom					
Residual deviance: 1.0924 on 3 degrees of freedom					
AIC: 34.011					
Number of Fisher Scoring iterations: 4					

Here, we model the expected value of the proportion of people with hypertension (using the logit function) as a function of the predictors smoking, obesity, and snoring.
Now, we use the residual deviance to assess the goodness-of-fit. Note that the number of observations in every batch is bigger than 5, therefore, the Chi-square test is valid in this case.
> pchisq(deviance(glm.hyp), df.residual(glm.hyp), lower=FALSE)
[1] 0.7789051
The Chi-square test for the Residual deviance gives a p-value larger than 0.05 , so we can conclude that the model fits well.
c) First we perform a Chi-squared test for the Null deviance to check whether any of the predictors have an influence on the response variable:
> pchisq(glm.hyp\$null.deviance,glm.hyp\$df.null,lower=FALSE)
[1] 0.03825404
The p-value is smaller than 0.05 , which tells us that there is at least one significant predictor in our model.
Now we do deviance based individual tests for each of the predictors:

```
> D<- drop1(glm.hyp,test="Chisq")
> D
Single term deletions
Model:
hyper.tbl ~ smoking + obesity + snoring
    Df Deviance AIC LRT Pr(>Chi)
<none> 1.0924 34.011
smoking 1 4.2010 35.120 3.1086 0.07788.
obesity 1 4.8781 35.797 3.7857 0.05169 .
snoring 1 11.4062 42.325 10.3138 0.00132 **
---
Signif. codes: 0 '***' 0.001 '**'0.01 '*'0.05 '.' 0.1 ' ' 1
```

The predictor smoking does not have a significant influence on the response, the p-value for obesity is smaller but still not significant at 5%, and snoring is definitely important to explain the response variable.
d) First we exclude smoking from the model.
> glm.hyp2 <- glm(hyper.tbl ~ obesity+snoring,family="binomial")
> summary(glm.hyp2)
Call:
glm(formula = hyper.tbl ~ obesity + snoring, family = "binomial")
Deviance Residuals:

1	2	3	4	5	6

```
-0.28404 0.32506 -0.44798 0.13068 -1.21440 1.52066
    7
-0.09844
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.2676 0.3121 -7.267 3.69e-13 ***
obesityYes 
snoringYes 0.9075 0.3240 2.801 0.0051 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 13.318 on 6 degrees of freedom
Residual deviance: 4.201 on 4 degrees of freedom
AIC: 35.12
Number of Fisher Scoring iterations: 4
> drop1(glm.hyp2,test="Chisq")
Single term deletions
Model:
hyper.tbl ~ obesity + snoring
    Df Deviance AIC LRT Pr(>Chi)
<none> 4.201 35.120
obesity 1 10.251 39.170 6.0503 0.013904 *
snoring 1 12.303 41.222 8.1021 0.004421 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

We note that smoking was covering some of the explanatory power of obesity, which is now significant. Now we check again the goodness of fit of the model without the predictor smoking.
> pchisq(deviance (glm.hyp2), df.residual(glm.hyp2), lower=FALSE)
[1] 0.3794888

```
> pchisq(glm.hyp2$null.deviance,glm.hyp2$df.null,lower=FALSE)
```

[1] 0.03825404
The model without the predictor smoking fits sufficiently well. Moreover, the result of the Chi-squared test for the Null deviance and both deviance based individual tests are significant. Therefore, we only include the variables obesity and snoring in our model.
e) > fitted(glm.hyp2)-n.hyper/n.total

1	2	3	4
$0.010508367-0.023805358$		$0.058457380-0.003708396$	
5	6	7	
$0.051280802-0.089895669$ 0.009817867			
> data.frame(fit=fitted(glm.hyp2) * n.total, n.hyper, n.total)			
fit n.hyper n.total			
15.630502	56		
21.595309	217		
31.467659	1	8	
434.306530	3518		
517.358868	13 85		
610.415321	15 5		
78.225811	$8 \quad 23$		

3. Poisson Regression

a) Since we have discrete count data (and an unknown maximum), we fit a Poisson regression model. l.e. we model the logarithm of the rate λ as a linear function of the predictors. We start with the categorical variable sample as the only predictor, i.e. we estimate the rate in each of the three samples batches.

```
> # Read in the data
> count <- c(31,28,33,38,28,32,39,27,28,39,21,39,45,37,
    41, 14, 16, 18, 9, 21, 21, 14, 12, 13, 13, 14, 20, 24,
    15,24, 18, 13, 19, 14, 15, 16, 14, 19, 25,16,16, 18, 9, 10, 9)
> probe <- factor(rep(1:3, each = 15))
> vol <- c(rep (40,15), rep (20,30))
> nema <- data.frame(probe,count,vol)
> # Fit Poisson Regression Model
> mod1 <- glm(count~probe, family=poisson, data=nema)
> summary(mod1)
Call:
glm(formula = count ~ probe, family = poisson, data = nema)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-2.3580 & -0.9031 & -0.1267 & 0.8846 & 2.2417
\end{tabular}
Coefficients:
    Estimate Std. Error z value Pr (>|z|)
(Intercept) 3.51849 0.04446 79.146 <2e-16 ***
probe2 -0.71311 0.07751 -9.200 <2e-16 ***
probe3 -0.78412 0.07941 -9.875 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 188.602 on 44 degrees of freedom
Residual deviance: 52.528 on 42 degrees of freedom
AIC: 276.14
```

Number of Fisher Scoring iterations: 4

The residual deviance is on the order of the degrees of freedom, suggesting that the model fits well. Indeed, we cannot reject the null hypothesis, that the model fits:
> pchisq(deviance(mod1), df.residual(mod1), lower=FALSE)
[1] 0.127964
Also, looking at the Tukey-Anscombe plot, it seems plausible that the Pearson residuals follow a standard Normal distribution:

```
> xx <- predict(mod1, type="link")
> yy <- resid(mod1, type="pearson")
> plot(xx, yy, main="Tukey-Anscombe Plot...")
> lines(loess.smooth(xx, yy), col="red")
```

Tukey-Anscombe Plot...

XX

b) There is a large difference between probe 1 and the other two. However, probe 1 has a different volume which could account for the observed difference.
c) We now model the log-rate as a linear function of the log-volume, i.e.

$$
\begin{equation*}
\lambda_{i}=\exp \left(\beta_{0}+\beta_{1} \log \operatorname{vol}_{i}\right) \tag{1}
\end{equation*}
$$

$>\bmod 2<-g l m\left(c^{\prime}{ }^{\sim} \log (v o l), f a m i l y=p o i s s o n\right.$, data=nema)
> summary(mod2)
Call:
glm(formula $=$ count $\sim \log (v o l), f a m i l y=p o i s s o n, ~ d a t a=n e m a) ~$
Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-2.3580	-0.7674	-0.1267	0.7368	2.0861

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -0.46223 $0.30991-1.491 \quad 0.136$
$\log (\mathrm{vol}) \quad 1.07911 \quad 0.09197 \quad 11.733 \quad<2 \mathrm{e}-16$ ***
Signif. codes: $0{ }^{(* * * '} 0.001$ '**’ 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 188.602 on 44 degrees of freedom
Residual deviance: 53.131 on 43 degrees of freedom
AIC: 274.74
Number of Fisher Scoring iterations: 4
Again, judging from the residual deviance, the model fits well.
d) If we re-write the model equation (1) from the last part, we get:

$$
\lambda_{i}=e^{\beta_{0}} \cdot \operatorname{vol}_{i}^{\beta_{1}}
$$

Hence, for $\beta_{1}=1, \lambda$ is proportional to vol. We check whether $\beta_{1}=1$ is reasonable by computing its confidence interval:

```
> confint(mod2)
    2.5% 97.5 %
(Intercept) -1.0721154 0.1430996
log(vol) 0.8988966 1.2595331
```

The confidence interval for β_{1} does include 1 , so $\lambda=c \cdot$ vol seems to be a reasonable approximation (where $c=e^{\beta_{0}}$).
e) We now fit the model $\lambda=c \cdot$ vol by constraining β_{1} to 1 :

```
> mod3 <- glm(count~offset(log(vol)), family=poisson, data=nema)
> summary(mod3)
Call:
glm(formula = count ~ offset(log(vol)), family = poisson, data = nema)
Deviance Residuals:
    Min 1Q Median 3Q Max
-2.2127 -0.8656 -0.1033 0.8548 2.0091
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.19744 0.03186 -6.196 5.78e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 53.871 on 44 degrees of freedom
Residual deviance: 53.871 on 44 degrees of freedom
AIC: 273.48
Number of Fisher Scoring iterations: 4
We get a very similar residual deviance as before, so also this model fits well.
```

4. a) > library(foreign)
> pension <- read.dta("http://fmwww.bc.edu/ec-p/data/wooldridge2k/pension.dta")
> pension\$pctstck <- factor(pension\$pctstck)
> pension\$choice <- factor(pension\$choice)
> pension\$female <- factor(pension\$female)
> pension\$married <- factor(pension\$married)
> pension\$black <- factor(pension\$black)
> pension\$prftshr <- factor(pension\$prftshr)
```
> table(pension$choice,pension$pctstck)
        0 50 100
    0 35 28 24
    14357 39
> prop.table(table(pension$choice,pension$pctstck),1)
    0 50 100
    0 0.4022989 0.3218391 0.2758621
    1 0.3093525 0.4100719 0.2805755
> mosaicplot(table(pension$choice,pension$pctstck), color=TRUE,
        main="choice vs. pctstck",xlab="choice",ylab="pctstck")
```


People with freedom to choose their investment strategy avoid portfolios mainly consisting on obligations.
b) > pension\$inc <- rep $(N A, 226)$
> pension\$inc[pension\$finc25==1] <- 1
> pension\$inc[pension\$finc35==1 | pension\$finc50==1] <- 2
> pension\$inc[pension\$finc75==1 | pension\$finc100==1 | pension\$finc101==1] <- 3
> pension\$inc <- factor(pension\$inc,labels=
c("below 25'000","25'000 to 50'000", "above 50'000"))
> table(pension\$inc,pension\$pctstck)
050100
below 25'000 $22 \quad 9 \quad 14$
25'000 to 50'000 283728
above 50'000 193315
> prop.table(table(pension\$inc,pension\$pctstck),1)
$0 \quad 50 \quad 100$
below 25'000 0.48888890 .20000000 .3111111
25'000 to 50'000 0.30107530 .39784950 .3010753
above 50'000 0.28358210 .49253730 .2238806
> mosaicplot(table(pension\$inc, pension\$pctstck), color=TRUE, main="income vs. pctstck",xlab="income", ylab="pctstck")
income vs. pctstck

From the mosaic plots we can clearly see that people with a higher income are more likely to have mixed investment strategies.

```
c) > library(nnet)
> pension$pct <- factor(pension$pctstck, levels = c("50","0","100"),
                    ordered = FALSE)
> str(pension)
'data.frame': 226 obs. of 21 variables:
    $ id : int 38 152 152 182 222 226 233 233 253 314 ...
    $ pyears : int 1 6 25 20 35 13 2 10 26 5 ...
    $ prftshr : Factor w/ 2 levels "0","1": 1 2 2 2 1 2 1 2 1 1 ...
    $ choice : Factor w/ 2 levels "0","1": 2 2 2 1 2 1 2 1 1 2 ...
    $ female : Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 2 2 1...
    $ married : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
    $ age : int 64 56 56 63 67 64 64 64 69 60 ...
    $ educ : int 12 13 12 12 12 11 12 12 12 14 ...
    $ finc25 : int 0 0 0 1 0 0 1 1 0 0 ...
    $ finc35 : int 0 0 0 0 1 0 0 0 1 0 ...
    $ finc50 : int 10000000000...
    $ finc75 : int 0 1 1 0 0 1 0 0 0 0 ...
    $ finc100 : int 0 0 0 0 0 0 0 0 0 0 ...
    $ finc101 : int 0 0 0 0 0 0 0 0 0 1 ...
    $ wealth89: num 77.9 154.9 154.9 232.5 179 ...
    $ black : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
    $ stckin89: int 1 1 1 1 0 1 0 0 0 1 ...
    $ irain89 : int 1 1 1 1 1 0 1 1 0 1 ...
    $ pctstck : Factor w/ 3 levels "0","50","100": 1 2 2 3 3 1 3 3 2 2 ...
    $ inc : Factor w/ 3 levels "below 25'000",..: 2 3 3 1 2 3 1 1 2 3...
    $ pct : Factor w/ 3 levels "50","0","100": 2 1 1 3 3 2 3 3 1 1 ...
    - attr(*, "datalabel")= chr ""
    - attr(*, "time.stamp")= chr " 3 Dec 2001 14:45"
    - attr(*, "formats")= chr "%9.0g" "%9.0g" "%9.0g" "%9.0g" ...
    - attr(*, "types")= int 105 98 98 98 98 98 98 98 98 98 ...
    - attr(*, "val.labels")= chr "" "" "" "" ...
    - attr(*, "var.labels")= chr "family identifier" "years in pension plan" "=1 if profit shari
    - attr(*, "version")= int 6
```

Here, we re-arrange the levels because R automatically takes the first one as the baseline. The predictors age and educ are counts, therefore we transform them:

```
> pension$age <- sqrt(pension$age)
> pension$educ <- sqrt(pension$educ)
```

Now we fit a multinomial logit model:

```
> mod1 <- multinom(pct~choice+age+educ+female+married+black+inc
    +wealth89+prftshr, data=pension)
# weights: 36 (22 variable)
initial value 202.144661
iter 10 value 184.319612
iter 20 value 182.233592
iter 30 value 182.021332
final value 182.021109
converged
> summary(mod1)
Call:
multinom(formula = pct ~ choice + age + educ + female + married +
    black + inc + wealth89 + prftshr, data = pension)
Coefficients:
\begin{tabular}{lrrrrr} 
& (Intercept) & choice1 & age & educ & female1 \\
0 & -6.506605 & -0.4755586 & 1.5645957 & -1.1083136 & -0.2291351 \\
100 & 5.305235 & 0.1169744 & -0.3346569 & -0.6171987 & -0.2234747
\end{tabular}
```

```
    0 -0.7207851 -0.45888909 -1.274006
    100-0.5213525 0.02713282 -0.557277
        incabove 50'000 wealth89 prftshr1
    0 -1.0767704 0.0008916188 0.2189576
    100 -0.9811298 0.0005537250 1.2438281
```

 Std. Errors:
 (Intercept) choice1 age educ female1
 \(0 \quad 0.022983260 .41977000 .27800890 .56818110 .4238711\)
 1000.025992400 .43099030 .28667150 .57749540 .4299014
 married1 black1 inc25'000 to 50'000 incabove 50'000
 \(\begin{array}{lllll}0 & 0.5605508 & 0.6947724 & 0.5548439 & 0.6468224\end{array}\)
 \(1000.55075280 .6439294 \quad 0.5767501 \quad 0.6878132\)
 wealth89 prftshr1
 00.00080737500 .5448665
 1000.00089846340 .5120854
 Residual Deviance: 364.0422
 AIC: 408.0422
 d) > mod2 <- multinom(pct~age+educ+female+married+black+inc+wealth89+prftshr, data=pension)
\# weights: 33 (20 variable)
initial value 202.144661
iter 10 value 185.178630
iter 20 value 183.167364
iter 30 value 183.084823
final value 183.084802
converged
> pchisq(deviance(mod2) - deviance(mod1), mod1\$edf - mod2\$edf, lower=FALSE)
[1] 0.3451787

From the deviance differences based Chi-squared test we can see that the predictor choice is not significant.
Looking at the summary output of mod1, we can see that, on the one hand, the odds of an investment strategy consisting mainly in obligations versus a mixed one decrease by 42% ($e^{-0.53}=$ $0.58)$ when the people have the freedom to choose their investment strategy. On the other hand, the odds of investment strategies consisting mainly in stocks versus mixed one increase about $14 \%\left(e^{0.13}=1.14\right)$ when the people can choose their strategy.
e) > predict(mod1,type="probs", newdata=data.frame(choice="0",age=
sqrt(60), educ=sqrt(13.5), female="0", married="0", black="0", inc="above 50'000", wealth89=200,prftshr="1"))
$50 \quad 0 \quad 100$
0.17752200 .41993620 .4025418
> predict(mod1,type="probs", newdata=data.frame(choice="1", age=
sqrt(60), educ= sqrt(13.5), female="0", married="0", black="0", inc="above 50'000", wealth89=200,prftshr="1"))
$\begin{array}{lll}50 & 0 & 100\end{array}$
0.19923420 .29292920 .5078366

Or we can also obtain from R the level of the response in which the probability is maximized:
> predict(mod1,type="class", newdata=data.frame(choice="0", age=
sqrt(60), educ=sqrt(13.5),
female="0", married="0",
black="0",inc="above 50'000",
wealth89=200,prftshr="1"))
[1] 0
Levels: 500100
> predict(mod1,type="class", newdata=data.frame(choice="1", age=
sqrt(60), educ= sqrt(13.5),
female="0", married="0", black="0", inc="above 50'000", wealth89=200,prftshr="1"))
[1] 100
Levels: 500100
Note that for this person, the probability of having a mixed investment strategy increases and of having a strategy mainly consisting on obligations decreases when we specify that he had the freedom to choose his strategy.

