Solution to Series 7

1. Logistic Regression for Binary Data

```
a) We fit a logitic regression for the binary variable purchase with predictors income and age:
   > car <- read.table("http://stat.ethz.ch/Teaching/Datasets/car.dat",header=T)</pre>
   > fit <- glm(purchase ~ income + age, data=car, family=binomial)
   > summary(fit)
   Call:
   glm(formula = purchase ~ income + age, family = binomial, data = car)
   Deviance Residuals:
       Min
              1Q Median
                                     30
                                             Max
   -1.6189 -0.8949 -0.5880 0.9653
                                          2.0846
   Coefficients:
               Estimate Std. Error z value Pr(>|z|)
   (Intercept) -4.73931 2.10195 -2.255 0.0242 *
   income 0.06773 0.02806 2.414
                                               0.0158 *
                age
   Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
   (Dispersion parameter for binomial family taken to be 1)
       Null deviance: 44.987 on 32 degrees of freedom
   Residual deviance: 36.690 on 30 degrees of freedom
   AIC: 42.69
   Number of Fisher Scoring iterations: 4
   We can read off the coefficients from the regression output, thus the regression equation is:
   \log(\frac{\hat{p}}{1-\hat{n}}) = -4.74 + 0.068 \cdot income + 0.599 \cdot age.
b) \exp \hat{\beta}_{income} = e^{0.068} = 1.07 and \exp \hat{\beta}_{age} = e^{0.599} = 1.82 are the relative changes of the odds of
   additional year of age of the oldest car.
```

- buying a new car for an increase of one unit in income and age respectively. I.e. the odds for buying a new car increase by 7% for each increase of income by 1000 USD, and increase by 82% for each
- c) > predict(fit, data.frame(age=3,income=50),type="response") 0.6090245
- d) We first look at the Tukey-Anscombe plot with Pearson residuals:

```
> xx <- predict(fit, type="response")
> yy <- residuals(fit, type="pearson")</pre>
> scatter.smooth(xx, yy, family="gaussian", pch=20, xlab="Fitted Probabilities",
                ylab="Pearson Residuals")
> abline(h=0, lty=3)
```


There is no evidence that assumptions aren't satisfied: the expectation does not seem to deviate much from zero. Also, most residuals have absolute value <2.

Finally, we check for influential observations:

> plot(fit, which=5)

There seem to be no influential data points, just an outlier without influence.

e) We perform deviance-based significance tests using the function drop1:

```
> drop1(fit, test="Chisq")
Single term deletions
```

Model:

The p-value for age is quite high, so it might not be a significant predictor in this model. However, these tests are only approximate, so the results should not be overestimated.

f) We first fit a new model with an interaction term, and then perform an Anova:

```
> fit2 = glm(purchase ~ income + age + income:age, data=car, family=binomial)
> summary(fit2)
```

```
glm(formula = purchase ~ income + age + income:age, family = binomial,
          data = car)
      Deviance Residuals:
          Min 1Q Median
                                       3Q
                                               Max
                                            1.9924
      -1.6096 -0.8222 -0.5334
                                   0.8731
      Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
      (Intercept) -2.372993 2.862477 -0.829
                                                   0.407
                   0.001326
                             0.064770 0.020
                                                   0.984
      income
                  -0.303860
                             0.890512 -0.341
                                                   0.733
      age
      income:age 0.028860 0.026493 1.089
                                                   0.276
      (Dispersion parameter for binomial family taken to be 1)
          Null deviance: 44.987 on 32
                                         degrees of freedom
      Residual deviance: 35.404 on 29 degrees of freedom
      AIC: 43.404
      Number of Fisher Scoring iterations: 4
      > anova(fit, fit2, test="Chisq")
      Analysis of Deviance Table
      Model 1: purchase ~ income + age
      Model 2: purchase ~ income + age + income:age
        Resid. Df Resid. Dev Df Deviance Pr(>Chi)
                       36.690
               30
      1
               29
                       35.404 1
                                   1.2855
                                            0.2569
      The p-value is large, so we cannot reject the null hypothesis that the two models are equal. Hence,
      there does not seem to be a significant interaction between income and age.
2. a) > hyper.tbl <- cbind(n.hyper=n.hyper, n.nohyper=n.total-n.hyper)
      > hyper.tbl
           n.hyper n.nohyper
      [1,]
                 5
                           55
      [2,]
                 2
                           15
      [3,]
                 1
                           7
      [4,]
                35
                          152
      [5,]
                13
                           72
      [6,]
                15
                           36
      [7,]
                 8
                           15
      Note that the first column denotes the number of "successes", while the second column the number
      of "failures".
   b) > glm.hyp <- glm(hyper.tbl ~ smoking+obesity+snoring,family="binomial")
      > summary(glm.hyp)
      Call:
      glm(formula = hyper.tbl ~ smoking + obesity + snoring, family = "binomial")
      Deviance Residuals:
                                  3
             1
                          0.02847 -0.21903 -0.63361 0.32485
       0.50780
                 0.10458
```

Call:

0.51753

```
Coefficients:
```

```
Estimate Std. Error z value Pr(>|z|)
                       0.4090 -6.462 1.03e-10 ***
(Intercept) -2.6433
smokingYes
             0.5488
                        0.3132
                                1.752 0.07976 .
obesityYes
             0.6668
                        0.3455
                                1.930 0.05360 .
                        0.3656
snoringYes
             1.1184
                                3.059 0.00222 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 13.3181 on 6 degrees of freedom
Residual deviance: 1.0924 on 3 degrees of freedom
AIC: 34.011
```

Number of Fisher Scoring iterations: 4

Here, we model the expected value of the proportion of people with hypertension (using the logit function) as a function of the predictors smoking, obesity, and snoring.

Now, we use the residual deviance to assess the goodness-of-fit. Note that the number of observations in every batch is bigger than 5, therefore, the Chi-square test is valid in this case.

```
> pchisq(deviance(glm.hyp), df.residual(glm.hyp), lower=FALSE)
```

[1] 0.7789051

The Chi-square test for the Residual deviance gives a p-value larger than 0.05, so we can conclude that the model fits well.

c) First we perform a Chi-squared test for the Null deviance to check whether any of the predictors have an influence on the response variable:

```
> pchisq(glm.hyp$null.deviance,glm.hyp$df.null,lower=FALSE)
```

```
[1] 0.03825404
```

The p-value is smaller than 0.05, which tells us that there is at least one significant predictor in our model.

Now we do deviance based individual tests for each of the predictors:

The predictor smoking does not have a significant influence on the response, the p-value for obesity is smaller but still not significant at 5%, and snoring is definitely important to explain the response variable.

d) First we exclude smoking from the model.

> D<- drop1(glm.hyp,test="Chisq")</pre>

```
-0.28404
              0.32506 -0.44798 0.13068 -1.21440
                                                       1.52066
   -0.09844
  Coefficients:
               Estimate Std. Error z value Pr(>|z|)
               -2.2676
                            0.3121 -7.267 3.69e-13 ***
   (Intercept)
  obesityYes
                 0.7745
                            0.3225
                                      2.401
                                              0.0163 *
  snoringYes
                 0.9075
                            0.3240
                                      2.801
                                             0.0051 **
  Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
   (Dispersion parameter for binomial family taken to be 1)
      Null deviance: 13.318 on 6 degrees of freedom
  Residual deviance: 4.201 on 4 degrees of freedom
  AIC: 35.12
  Number of Fisher Scoring iterations: 4
  > drop1(glm.hyp2,test="Chisq")
  Single term deletions
  Model:
  hyper.tbl ~ obesity + snoring
                                 LRT Pr(>Chi)
          Df Deviance
                          AIC
                4.201 35.120
  <none>
                10.251 39.170 6.0503 0.013904 *
  obesity 1
               12.303 41.222 8.1021 0.004421 **
  snoring 1
  Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
  We note that smoking was covering some of the explanatory power of obesity, which is now
  significant. Now we check again the goodness of fit of the model without the predictor smoking.
  > pchisq(deviance(glm.hyp2), df.residual(glm.hyp2), lower=FALSE)
   [1] 0.3794888
  > pchisq(glm.hyp2$null.deviance,glm.hyp2$df.null,lower=FALSE)
  The model without the predictor smoking fits sufficiently well. Moreover, the result of the Chi-squared
  test for the Null deviance and both deviance based individual tests are significant. Therefore, we only
  include the variables obesity and snoring in our model.
e) > fitted(glm.hyp2)-n.hyper/n.total
              1
                           2
                                         3
   0.010508367 -0.023805358
                              0.058457380 -0.003708396
              5
                           6
   0.051280802 -0.089895669 0.009817867
  > data.frame(fit=fitted(glm.hyp2) * n.total, n.hyper, n.total)
           fit n.hyper n.total
  1 5.630502
                     5
                     2
                            17
  2 1.595309
  3 1.467659
                     1
                             8
```

3. Poisson Regression

4 34.306530

5 17.358868

6 10.415321 7 8.225811 35

13

15

8

187

85

51

23

a) Since we have discrete count data (and an unknown maximum), we fit a Poisson regression model. I.e. we model the logarithm of the rate λ as a linear function of the predictors. We start with the categorical variable sample as the only predictor, i.e. we estimate the rate in each of the three samples batches.

```
> # Read in the data
> count <- c(31,28,33,38,28,32,39,27,28,39,21,39,45,37,
           41, 14, 16, 18, 9, 21, 21, 14, 12, 13, 13, 14, 20, 24,
           15,24,18,13,19,14,15,16,14,19,25,16,16,18,9,10,9)
> probe <- factor(rep(1:3, each = 15))</pre>
> vol \leftarrow c(rep(40,15), rep(20,30))
> nema <- data.frame(probe,count,vol)</pre>
> # Fit Poisson Regression Model
> mod1 <- glm(count~probe, family=poisson, data=nema)
> summary(mod1)
Call:
glm(formula = count ~ probe, family = poisson, data = nema)
Deviance Residuals:
              1Q
                   Median
                                  3Q
                                          Max
    Min
-2.3580 -0.9031 -0.1267
                             0.8846
                                       2.2417
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.51849
                        0.04446 79.146
                                            <2e-16 ***
                         0.07751 -9.200
probe2
            -0.71311
                                            <2e-16 ***
probe3
            -0.78412
                         0.07941 -9.875
                                            <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 188.602 on 44 degrees of freedom
Residual deviance: 52.528 on 42 degrees of freedom
AIC: 276.14
Number of Fisher Scoring iterations: 4
The residual deviance is on the order of the degrees of freedom, suggesting that the model fits well.
Indeed, we cannot reject the null hypothesis, that the model fits:
> pchisq(deviance(mod1), df.residual(mod1), lower=FALSE)
[1] 0.127964
Also, looking at the Tukey-Anscombe plot, it seems plausible that the Pearson residuals follow a
standard Normal distribution:
> xx <- predict(mod1, type="link")</pre>
> yy <- resid(mod1, type="pearson")</pre>
> plot(xx, yy, main="Tukey-Anscombe Plot...")
> lines(loess.smooth(xx, yy), col="red")
```

Tukey-Anscombe Plot...

- b) There is a large difference between probe 1 and the other two. However, probe 1 has a different volume which could account for the observed difference.
- c) We now model the log-rate as a linear function of the log-volume, i.e.

$$\lambda_i = \exp(\beta_0 + \beta_1 \log \text{vol}_i) \tag{1}$$

> mod2 <- glm(count~log(vol), family=poisson, data=nema)</pre>

> summary(mod2)

Call:

glm(formula = count ~ log(vol), family = poisson, data = nema)

Deviance Residuals:

Min 1Q Median 3Q Max -2.3580 -0.7674 -0.1267 0.7368 2.0861

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 188.602 on 44 degrees of freedom Residual deviance: 53.131 on 43 degrees of freedom

AIC: 274.74

Number of Fisher Scoring iterations: 4

Again, judging from the residual deviance, the model fits well.

d) If we re-write the model equation (1) from the last part, we get:

$$\lambda_i = e^{\beta_0} \cdot \text{vol}_i^{\beta_1}$$

Hence, for $\beta_1 = 1$, λ is proportional to vol. We check whether $\beta_1 = 1$ is reasonable by computing its confidence interval:

> confint(mod2)

2.5 % 97.5 % (Intercept) -1.0721154 0.1430996 log(vol) 0.8988966 1.2595331

The confidence interval for β_1 does include 1, so $\lambda = c \cdot \text{vol}$ seems to be a reasonable approximation (where $c = e^{\beta_0}$). e) We now fit the model $\lambda = c \cdot \text{vol}$ by constraining β_1 to 1: > mod3 <- glm(count~offset(log(vol)), family=poisson, data=nema)</pre> > summary(mod3) Call: glm(formula = count ~ offset(log(vol)), family = poisson, data = nema) Deviance Residuals: Min 1Q Median ЗQ Max -2.2127 -0.8656 -0.1033 0.8548 2.0091 Coefficients: Estimate Std. Error z value Pr(>|z|)Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1 (Dispersion parameter for poisson family taken to be 1) Null deviance: 53.871 on 44 degrees of freedom Residual deviance: 53.871 on 44 degrees of freedom AIC: 273.48 Number of Fisher Scoring iterations: 4 We get a very similar residual deviance as before, so also this model fits well. 4. a) > library(foreign) > pension <- read.dta("http://fmwww.bc.edu/ec-p/data/wooldridge2k/pension.dta") > pension\$pctstck <- factor(pension\$pctstck)</pre> > pension\$choice <- factor(pension\$choice)</pre> > pension\$female <- factor(pension\$female)</pre> > pension\$married <- factor(pension\$married)</pre> > pension\$black <- factor(pension\$black)</pre> > pension\$prftshr <- factor(pension\$prftshr)</pre> > table(pension\$choice,pension\$pctstck) 0 50 100 0 35 28 24 1 43 57 39

People with freedom to choose their investment strategy avoid portfolios mainly consisting on obligations.

```
b) > pension$inc <- rep(NA,226)
   > pension$inc[pension$finc25==1] <- 1</pre>
   > pension$inc[pension$finc35==1 | pension$finc50==1] <- 2</pre>
   > pension$inc[pension$finc75==1 | pension$finc100==1 | pension$finc101==1] <- 3
   > pension$inc <- factor(pension$inc,labels=
                          c("below 25'000","25'000 to 50'000", "above 50'000"))
   > table(pension$inc,pension$pctstck)
                       0 50 100
     below 25'000
                      22 9 14
     25'000 to 50'000 28 37
                             28
     above 50'000
                      19 33 15
   > prop.table(table(pension$inc,pension$pctstck),1)
                                        50
                                                 100
                      0.4888889 0.2000000 0.3111111
     below 25'000
     25'000 to 50'000 0.3010753 0.3978495 0.3010753
                      0.2835821 0.4925373 0.2238806
     above 50'000
   > mosaicplot(table(pension$inc,pension$pctstck), color=TRUE,
               main="income vs. pctstck",xlab="income",ylab="pctstck")
```


From the mosaic plots we can clearly see that people with a higher income are more likely to have mixed investment strategies.

```
c) > library(nnet)
  > pension$pct <- factor(pension$pctstck, levels = c("50", "0", "100"),
                         ordered = FALSE)
  > str(pension)
  'data.frame':
                       226 obs. of 21 variables:
          : int 38 152 152 182 222 226 233 233 253 314 ...
   $ pyears : int 1 6 25 20 35 13 2 10 26 5 ...
   $ prftshr : Factor w/ 2 levels "0","1": 1 2 2 2 1 2 1 2 1 1 ...
   \ choice \ : Factor w/ 2 levels "0","1": 2 2 2 1 2 1 2 1 1 2 ...
   $ female : Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 2 2 1 ...
   $ married : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
             : int 64 56 56 63 67 64 64 64 69 60 ...
   $ age
             : int 12 13 12 12 12 11 12 12 12 14 ...
   $ educ
   $ finc25 : int 0 0 0 1 0 0 1 1 0 0 ...
   $ finc35 : int 0 0 0 0 1 0 0 0 1 0 ...
   $ finc50 : int 1 0 0 0 0 0 0 0 0 ...
   $ finc75 : int 0 1 1 0 0 1 0 0 0 0 ...
   $ finc100 : int 0 0 0 0 0 0 0 0 0 ...
   $ finc101 : int 0 0 0 0 0 0 0 0 1 ...
   $ wealth89: num 77.9 154.9 154.9 232.5 179 ...
   $ black : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
   $ stckin89: int 1 1 1 1 0 1 0 0 0 1 ...
   $ irain89 : int  1 1 1 1 1 0 1 1 0 1 ...
   $ pctstck : Factor w/ 3 levels "0","50","100": 1 2 2 3 3 1 3 3 2 2 ...
            : Factor w/ 3 levels "below 25'000",..: 2 3 3 1 2 3 1 1 2 3 ...
   $ pct
             : Factor w/ 3 levels "50", "0", "100": 2 1 1 3 3 2 3 3 1 1 ...
   - attr(*, "datalabel")= chr ""
   - attr(*, "time.stamp")= chr " 3 Dec 2001 14:45"
   - attr(*, "formats")= chr "%9.0g" "%9.0g" "%9.0g" "%9.0g" ...
   - attr(*, "types")= int 105 98 98 98 98 98 98 98 98 ...
   - attr(*, "val.labels")= chr "" "" "" ...
   - attr(*, "var.labels")= chr "family identifier" "years in pension plan" "=1 if profit shari
   - attr(*, "version")= int 6
  Here, we re-arrange the levels because R automatically takes the first one as the baseline.
  The predictors age and educ are counts, therefore we transform them:
  > pension$age <- sqrt(pension$age)
  > pension$educ <- sqrt(pension$educ)</pre>
  Now we fit a multinomial logit model:
  > mod1 <- multinom(pct~choice+age+educ+female+married+black+inc
                    +wealth89+prftshr, data=pension)
  # weights: 36 (22 variable)
  initial value 202.144661
  iter 10 value 184.319612
  iter 20 value 182.233592
  iter 30 value 182.021332
  final value 182.021109
  converged
  > summary(mod1)
  Call:
  multinom(formula = pct ~ choice + age + educ + female + married +
      black + inc + wealth89 + prftshr, data = pension)
  Coefficients:
      (Intercept)
                     choice1
                                              educ
                                                      female1
                                    age
        -6.506605 -0.4755586 1.5645957 -1.1083136 -0.2291351
  100
         black1 inc25'000 to 50'000
        married1
```

```
-0.7207851 -0.45888909
                                          -1.274006
   100 -0.5213525 0.02713282
                                          -0.557277
       incabove 50'000
                            wealth89 prftshr1
   0
            -1.0767704 0.0008916188 0.2189576
            -0.9811298 0.0005537250 1.2438281
   100
   Std. Errors:
       (Intercept)
                                                      female1
                      choice1
                                     age
                                              educ
        0.02298326 0.4197700 0.2780089 0.5681811 0.4238711
   100 0.02599240 0.4309903 0.2866715 0.5774954 0.4299014
        married1
                     black1 inc25'000 to 50'000 incabove 50'000
       0.5605508 0.6947724
                                       0.5548439
                                                        0.6468224
   100 0.5507528 0.6439294
                                       0.5767501
                                                        0.6878132
           wealth89 prftshr1
       0.0008073750 0.5448665
   100 0.0008984634 0.5120854
   Residual Deviance: 364.0422
   AIC: 408.0422
d) > mod2 <- multinom(pct~age+educ+female+married+black+inc+wealth89+prftshr, data=pension)
   # weights: 33 (20 variable)
   initial value 202.144661
   iter 10 value 185.178630
   iter 20 value 183.167364
   iter 30 value 183.084823
   final value 183.084802
   converged
   > pchisq(deviance(mod2) - deviance(mod1), mod1$edf - mod2$edf, lower=FALSE)
   [1] 0.3451787
   From the deviance differences based Chi-squared test we can see that the predictor choice is not
   significant.
   Looking at the summary output of mod1, we can see that, on the one hand, the odds of an
   investment strategy consisting mainly in obligations versus a mixed one decrease by 42\% (e^{-0.53})
   0.58) when the people have the freedom to choose their investment strategy. On the other hand,
   the odds of investment strategies consisting mainly in stocks versus mixed one increase about
   14\% (e^{0.13} = 1.14) when the people can choose their strategy.
e) > predict(mod1, type="probs", newdata=data.frame(choice="0", age=
                                  sqrt(60), educ=sqrt(13.5),
                                  female="0", married="0",
                                  black="0", inc="above 50'000",
                                  wealth89=200,prftshr="1"))
          50
   0.1775220 0.4199362 0.4025418
   > predict(mod1, type="probs", newdata=data.frame(choice="1", age=
                                  sqrt(60), educ= sqrt(13.5),
                                  female="0", married="0",
                                  black="0",inc="above 50'000",
                                  wealth89=200,prftshr="1"))
          50
                      Ω
                               100
   0.1992342 0.2929292 0.5078366
   Or we can also obtain from R the level of the response in which the probability is maximized:
   > predict(mod1, type="class", newdata=data.frame(choice="0", age=
                                  sqrt(60), educ=sqrt(13.5),
                                  female="0", married="0",
                                  black="0",inc="above 50'000",
                                  wealth89=200,prftshr="1"))
```

Levels: 50 0 100

Note that for this person, the probability of having a mixed investment strategy increases and of having a strategy mainly consisting on obligations decreases when we specify that he had the freedom to choose his strategy.