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Solution to Series 3

1. a) First we type in the data. The scatterplot of runoff versus rainfall suggests that a linear relation-
ship holds. Therefore, one would guess that the R2 should be large, i.e. close to 1.

> rainfall <- c(5, 12, 14, 17, 23, 30, 40, 47, 55, 67, 72, 81, 96, 112, 127)

> runoff <- c(4, 10, 13, 15, 15, 25, 27, 46, 38, 46, 53, 70, 82, 99, 100)

> data <- data.frame(rainfall=rainfall, runoff=runoff)

> plot(data$runoff ~ data$rainfall, pch=20, xlab="Rainfall", ylab="Runoff",

main="Runoff vs. Rainfall")
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b) We fit a linear model with runoff as response and rainfall as predictor. We are then able to use
this model for prediction.

> fit <- lm(runoff ~ rainfall, data=data)

> pred <- predict(fit, newdata=data.frame(rainfall=50), interval="prediction")

If the rainfall volume takes a value of 50 we find a runoff volume of 40.22 with a 95% prediction
interval of [28.53,51.92].

We can also draw the regression line and the 95% prediction interval to the data.

> plot(data$runoff ~ data$rainfall, pch=20, xlab="Rainfall", ylab="Runoff",

main="Prediction Interval")

> abline(fit, col="red")

> interval <- predict(fit, interval="prediction")

> lines(data$rainfall, interval[,2], lty=3, col="red")

> lines(data$rainfall, interval[,3], lty=3, col="red")
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c) An R2 of 0.98 is extremely high, i.e. a huge part of the variation in the data can be attributed to the
linear association between runoff and rainfall volume.

d) > summary(fit)

Call:

lm(formula = runoff ~ rainfall, data = data)

Residuals:

Min 1Q Median 3Q Max

-8.279 -4.424 1.205 3.145 8.261

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.12830 2.36778 -0.477 0.642

rainfall 0.82697 0.03652 22.642 7.9e-12 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.24 on 13 degrees of freedom

Multiple R-squared: 0.9753, Adjusted R-squared: 0.9734

F-statistic: 512.7 on 1 and 13 DF, p-value: 7.896e-12

> ## Confidence intervals for the coefficients

> confint(fit)

2.5 % 97.5 %

(Intercept) -6.2435879 3.9869783

rainfall 0.7480677 0.9058786

There is a significant linear association between runoff and rainfall volume, since the null hypothesis
β1 = 0 is clearly rejected. However, the confidence interval for β1 does not contain β1 = 1, i.e. a null
hypothesis of β1 = 1 would be rejected, too. Therefore, we conclude that no 1 : 1 relation between
rainfall and runoff holds. We suspect that part of the rain evaporates or trickles away.

e) > par(mfrow=c(1,2))

> plot(fitted(fit), residuals(fit), main="Residuals vs. Fitted Val.", cex.main=0.9)

> abline(h=0, col="grey", lty=3)

> qqnorm(residuals(fit), main="Normal Plot", cex.main=0.9)

> qqline(residuals(fit))
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From the Tukey-Anscombe plot (residuals vs. fitted values) we observe a non-constant variance of
the residuals. With increasing runoff the residuals increase.

f) Although the histograms of the original data do not strongly point to a log-transformation, we try it
and will see that it turns out to be useful.

> par(mfrow=c(2,2))

> hist(data$rainfall, 8, main="rainfall")

> hist(log(data$rainfall), 8, main="Histogram of log(rainfall)")

> hist(data$runoff, 8, main="Histogram of runoff")

> hist(log(data$runoff), 8, main="Histogram of log(runoff)")
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From the diagnostic plots we can see that the model on the transformed scale performs better, and
the constant variance assumption seems more justified.

> data$log.runoff <- log(data$runoff)

> data$log.rainfall <- log(data$rainfall)

> fit.log <- lm(log.runoff ~ log.rainfall, data=data)

> par(mfrow = c(1,2))

> plot(fitted(fit.log), residuals(fit.log),

main="Residuals vs. Fitted Values with Logged Variables",

cex.main=0.7)

> abline(h=0, col="grey", lty=3)

> qqnorm(residuals(fit.log), main="Normal Plot with Logged Variables", cex.main=0.7)

> qqline(residuals(fit.log))
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However, differences between the two models are small.

> par(mfrow=c(1,2))

> ## Scatterplot on the log scale

> plot(data$log.rainfall, data$log.runoff,

main="log(Runoff) vs. log(Rainfall)", cex.main=0.9,

pch=20)

> abline(fit.log, col="red")

> ## Scatterplot on original scale

> plot(data$rainfall, data$runoff, main = "Runoff vs. Rainfall", cex.main=0.9,

pch=20)

> abline(fit, col="red")

> lines(rainfall, exp(predict(fit.log)), col="blue")
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g) On the original scale the prediction interval of the log-transformed model is of the form of a trumpet
(blue dot lines). This is more realistic, especially since fitted values and the prediction interval of the
log-transformed model have positive values. Negative runoff values, as seen on the original scale, are
impossible that is why the log-transformed model is superior to the original one. Although differences
in the diagnostic plots seem small and problems appear to be more academic than fundamental, the
log-transformed model resulting from a thorough statistical analysis pays off.

> ## Prediction intervals of the transformed model on the original scale

> plot(data$rainfall, data$runoff, pch=20, xlab="Rainfall", ylab="Runoff",

main="Runoff vs. Rainfall")

> abline(fit, col="red")

> lines(data$rainfall, exp(predict(fit.log)), col="blue")
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> interval <- predict(fit, interval="prediction")

> lines(data$rainfall, interval[,2], lty=3, col="red")

> lines(data$rainfall, interval[,3], lty=3, col="red")

> interval.log <- predict(fit.log, interval="prediction")

> lines(data$rainfall, exp(interval.log[,2]), lty=3, col="blue")

> lines(data$rainfall, exp(interval.log[,3]), lty=3, col="blue")

●

●
●

● ●

●
●

●

●

●

●

●

●

● ●

20 40 60 80 100 120

20
40

60
80

Runoff vs. Rainfall

Rainfall

R
un

of
f

2. a) > # Transform data

> my.mtcars.log <- data.frame(hp.log=log(my.mtcars$hp),

l.100km.log=log(my.mtcars$l.100km))

> # Fit linear regression and plot

> fit2 <- lm(l.100km.log ~ hp.log, my.mtcars.log)

> plot(l.100km.log ~ hp.log, my.mtcars.log)

> lines(my.mtcars.log$hp.log, fit2$fitted.values)

> # Print fit summary

> summary(fit2)

Call:

lm(formula = l.100km.log ~ hp.log, data = my.mtcars.log)

Residuals:

Min 1Q Median 3Q Max

-0.37501 -0.10815 0.00691 0.05707 0.38189

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.08488 0.29913 -0.284 0.779

hp.log 0.53009 0.06099 8.691 1.08e-09 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1614 on 30 degrees of freedom

Multiple R-squared: 0.7157, Adjusted R-squared: 0.7062

F-statistic: 75.53 on 1 and 30 DF, p-value: 1.08e-09
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We see immediately from the plot that the model fits the data better. Looking at the residuals
confirms this first impression:

> par(mfrow=c(1,2))

> plot(fit2$fitted.values, fit2$residuals)

> abline(0, 0, lty=2)

> qqnorm(fit2$residuals)
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b) Exponentiating yields:

l.100km = exp(β0) · hpβ1 · exp(ε)

I.e. the relation is not linear any more, it is a power law in hp. Also, the error now is multiplicative
and follows a log-Normal distribution.

c) > # Scatter plot

> plot(l.100km ~ hp, my.mtcars)

> # Log-model curve

> newdata.log <- data.frame(hp.log=seq(3,6,length.out=200))

> y.pred <- predict(fit2, newdata=newdata.log)

> lines(exp(newdata.log$hp.log), exp(y.pred))
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3. a) The gas consumption is quite constant if the temperature difference is smaller than 14 C̊, only if
it gets larger the consumption increases. The spread is rather large, which is not surprising since
the measurements were performed on different houses.

b) > mod1 <- lm(verbrauch~temp,data=gas)

> mod1

Call:

lm(formula = verbrauch ~ temp, data = gas)

Coefficients:

(Intercept) temp

36.894 3.413

> summary(mod1)

Call:

lm(formula = verbrauch ~ temp, data = gas)

Residuals:

Min 1Q Median 3Q Max

-13.497 -7.391 -2.235 6.280 17.367

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.894 16.961 2.175 0.0487 *

temp 3.413 1.177 2.900 0.0124 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.601 on 13 degrees of freedom

Multiple R-squared: 0.3929, Adjusted R-squared: 0.3462

F-statistic: 8.413 on 1 and 13 DF, p-value: 0.0124

c) The residual plots do not look satisfying, but transformation (log,
√

) or a quadratic term seem
not to be helpful either.

d) ŷ = 36.8937 + 3.4127 · 14 = 84.67

> new.x <- data.frame(temp=14)

> predict(mod1,new.x)

1

84.67202

> predict(mod1,new.x,interval="confidence")

fit lwr upr

1 84.67202 79.27618 90.06787


