
Tutorial
S.f.Statistik, ETHZ September 28, 2012

Introduction
This tutorial will give you some basic knowledge about working with R. It will also help you to
familiarize with an environment to work with R as it is provided in the computing labs in the
ETH main building.

About R
R is free software (copyright: GNU public license) and is available from http://stat.ethz.

ch/CRAN/. At this URL you find a comprehensive Documentation, Manual, “An Introduction
to R” (about 100 pages pdf) and a shorter introduction Contributed, “R for Beginners / R pour
les débutants” (31 pages, English/French).

R-environments
A “professional” way of working with R is to edit R-script files in an editor and to transfer the
written code to a running R process. This can be set up on any platform. There are many
editors that support this. We recommend the use of R Studio, which is available for all common
platforms (http://rstudio.org).

Alternatives are the editor that comes bundled with R (syntax highlighting exists only on Mac
OS X), Emacs with the add-on package Emacs Speaks Statistics (http://stat.ethz.ch/ESS/),
TinnR (http://www.sciviews.org/Tinn-R/) and WinEdt on Windows (http://www.winedt.
com/). This tutorial will focus on working with R Studio.

Getting started with R Studio
We use R from within R Studio. To start R Studio, find it in the applications menu or type
rstudio in a terminal.

R Studio combines all ressources required for programming R in a single tidy window, see Fig. 1.
The pane console contains a instance of R. It is not necessary to start R separately.

Figure 1: The working environment provided by R Studio. The standard pane layout consists
of (clockwise, starting top left) the source editor, the workspace and history pane, the files, help
and graphics browser, and the R-console.

1

R-basics
Type in the R-console:
> x <- 2 (press <RETURN>)
> x (press <RETURN>)
Result: [1] 2

The assignment operator <- has created an object x. R is vector-oriented, so x is a vector with
one element of value 2.

Remark: You can write <- using the shortcut “<Alt>+-” (i.e., the keys <Alt>and “-” pressed
at the same time).

Next try (all commands are followed by <RETURN>; this is omitted from now on):
> y <- c(3,5) (c for combine)
> y

Result: [1] 3 5, a vector with two elements.

ls() shows all objects you have already generated. To remove x, use rm(x).

Note that many functions are already defined in R (for example c, t, max, . . .). We advise you
to use different names for your variables to avoid confusion.

R includes demonstrations for many functions. You can get a list of all demonstrations with
demo(). For example, take a look at the graphics demo of R: demo(graphics). This will display
a variety of plots generated by R. Hitting <RETURN> in the console will allow you to go from
one graphic to the next one.

Working with an .R (script-)file
Create a new script file via File → New → R Script. You should now see four panes just
as in Fig. 1. Save the file as tutorial.R via File → Save. From Now on, your R instructions
should be typed in this script-file. Make sure to comment your code (with the symbol #) as
you go on.

In the editor pane tutorial.R, type z <- c(8,13,21) as first line and 2*z as second line.

You have several options to send your R-code to the R-window:

1. Click on . All the code of your script is sent to the R-console.

2. Point the cursor on the first line. Then click on . Only the selected line (first) is be
sent to the R-console. The cursor now points on the next line (second). Redo to
send the second line to the R-console, and so on.

3. Select the code to be sent to the R-console. Then click on . This will send the whole
selection to the R-console.

4. Instead of clicking on with your mouse, you can press “<Ctrl>+<RETURN>” (i.e.,
the <Ctrl> key and <RETURN> at the same time). Both are equivalent.

Remark:
Sometimes the evaluation of an R-file takes too long (usually if you have errors in some loops).
At any time you can interrupt the evaluation by clicking (this will only show up when R is
calculating something) or clicking in the R-console and pressing <Esc>.

From now on you should write (almost) all R-instructions into the *.R-file to evaluate them
from there. At the end, you can save your script file by clicking on File → Save.

Computing with vectors
Type fib <- c(1,1,2,3,5,z) as next line of tutorial.R (gives the first eight Fibonacci-numbers).

2

Evaluate the line, and take a look at fib. Type 2*fib+1, fib*fib and log(fib) as next three
lines of tutorial.R. Mark all three lines with the left mouse button and send them to the R-
console. This evaluates all marked lines. Check the results. Do you understand them?

Now create the sequence 2, 4, 6 as object s: s<-2*(1:3), alternatively s<-seq(2,6,by=2). Take
a look at fib[3], fib[4:7], fib[s], fib[c(3,5)] and fib[-c(3,5)].

Create a vector x with 8 elements, some of which are positive, some negative. Check x > 0 and
fib[x > 0].

Don’t forget to put comments in your script file. Up to now, it could for example look like this:

Computational Statistics -- R tutorial

Author: Hans Muster

Date: 26 Feb 2010

getting started

z <- c(8,13,21)

2*z

computing with vectors

fib <- c(1,1,2,3,5,z) # vector with first 8 Fibonacci numbers

fib

2*fib + 1 # element-wise operations

fib*fib # element-wise multiplication

log(fib) # takes the log of each element

s <- 2*(1:3) # vector holding 2, 4, 6

s1 <- seq(2,6,by=2) # same vector as s

fib[3] # 3rd element of vector fib

fib[4:7] # 4th, 5th, 6th and 7th element of fib

fib[s] # 2nd, 4th and 6th element of fib

fib[c(3,5)] # elements 3 and 5 of fib

fib[-c(3,5)] # vector fib without elements 3 and 5

x <- c(1,-3,5,-1,8,9,-2,1) # new vector x

x > 0 # elements 1, 3, 5, 6 and 8 of x are > 0

fib[x > 0] # elements 1, 3, 5, 6 and 8 of fib

Matrices: creation and computation
Create two vectors x <- 1:4 and y <- 5:8 and the matrices mat1 <- cbind(x,y) and
mat2 <- rbind(x,y,x+y) (cbind means column-bind, rbind means row-bind). Take a look at
the whole matrices mat1 and mat2 and try mat2[3,2], mat2[2,] and mat2[,1].

Computation with matrices using +, * etc. follows the same rules as computation with vectors,
namely element-wise. For the matrix product, use %*%, e.g. mat2 %*% mat1.

Data Frames
A data frame is a generalized matrix. The main difference between data frames and matrices
is that matrices need all elements to be of the same type (e.g. numeric, character), while data
frames allow every column to have another type.

Reading and looking at datasets
ASCII-data is most easily read by the function read.table, which generates a data frame.
read.table works also for datasets from the web. Try:

no2 <- read.table("http://stat.ethz.ch/Teaching/Datasets/no2Basel.dat", header=TRUE)}

You may examine the created object directly by typing no2 in the R-console. Single columns
are accessible by no2[,"NO2"] (or no2$NO2, but not for matrices). You may take a look at the
original file, in particular its first line, to understand why R knows the name of the columns.
This can be done by calling the above URL from a web browser, e.g. Firefox. The parameter
header=TRUE of read.table tells R that the column names are in the first line. no2 is still small
enough, but in general it is useful to use the function str first, which displays the structure and
type of an object, but not every single element: str(no2). summary(no2) displays information

3

about the columns of no2. summary extracts the most important information from lots of R-
objects, e.g., the results of statistical tests or regression fits.

Graphics
Draw a histogram of the NO2-values of the no2-data.

par(mfrow = c(1,2)) # Number of pictures one below the

other [1] or side by side [2]

Important to save paper!

hist(no2[,"NO2"]) # draw histogram.

Now compute the regression line of the NO2-content against temperature and show it graphically
next to the histogram:

lm.T <- lm(NO2 ~ Temp, data = no2) # fits regression.

plot(NO2 ~ Temp, data = no2)

abline(lm.T, col = 4, lty = 2) # col: colour; lty=2: dashed line

summary(lm.T) # regression summary (details later)

title("Title xy") adds a title to your graphic and the button can be used to save
the plot as an image or pdf.

Note that there is a distinction between “high-level”- (such as plot, hist) and “low-level”-
graphics functions (such as abline). The former make up a new graphic, while the latter add
something to existing graphics.

Getting help
If you want to know the details about functions, you can use the R-help-system. For example,
help(plot) explains the plot-function (also try ?plot). You can execute the example at the
end of the help page by example(plot).

If you look for help about some topic without knowing the function names, e.g., about his-
tograms, help.search("histogram") delivers a list of functions which correspond to the key-
word. In parentheses you find the name of the package to which the function belongs. Most
functions used by us in the beginning are contained in the package “base”, which is automati-
cally loaded. Other packages must be loaded by require(package), before their functions and
help pages are accessible.

Ending R
You can save your work by saving the file of instructions tutorial.R (see above; of course it is
useful to use new files for new projects, e.g., exercise1.R, exercise2.R, . . .). The instructions
have to be evaluated again to restore your work. R-objects may be saved also by the functions
save and write.table.

The function q() terminates the R-session (this is the same as File → Quit R). Answer n to
the question Save workspace image?.

More to come
R can be used to create complex programs and functions. You may take a look at help(for)

for control-flow constructs or at help(function) for creating functions.

4

