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Practical Example
With this example taken from the lecturer’s research, we
illustrate the pro’s and con’s of working with logistic vs. binomial
regression, i.e. grouped vs. non-grouped data

CHURN REGION GENDER AGE TENURE PRODUCT
1 D-CH male 65 84 PH + INET + TV
1 F-CH female 45 34 INET + TV
1 F-CH female 68 52 INET + TV
1 D-CH female 102 INET
1 D-CH male 45 21 TV
1 D-CH male 43 63 PH + INET + TV
1 I-CH male 28 47 TV
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Practical Example
Goal: understanding churn, i.e. end of contract

Model: churn ~ region + gender + age + tenure + product

The data per se are non-grouped, with millions of observations. 
But in this problem, it pays off to work with grouped data. 
The main advantages when doing so are:

• Dealing with missing values in age and tenure: we do not 
lose any observations when factorizing these two variables. 

• Instead of millions of rows, the design matrix is reduced to
just 885 rows. This speeds up the computing tremendously.

• Much better inference and residual analysis is possible!
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Aggregating the Data in R
## Aggregating the data
> gdat <- aggregate(dat$churn,by=list(dat$region, dat$sex,

dat$age.group, dat$dauer.group, 
dat$produkt),table)

## Excerpt of the data
> gdat[c(34, 92, 122, 588),]

region sex age dauer produkt churn.no churn.yes
34    F-CH   male Missing [0,24]   PHON       53         8
92    F-CH   male (45,60] (72,180]      PHON       50         6
122   F-CH female (30,45]    [0,24]   TV      826       194
588   F-CH female (45,60] (72,180]   INET+TV      103   14

Now, there are groups, of which only 885 are
populated. We will now fit a binomial regression model using
only the main effects (i.e. without any interaction terms).  

3 3 6 3 7 1134    
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Summary Output
> drop1(fit, test="Chisq")

Model: churn ~ region + sex + age + dauer + produkt

Df Deviance     AIC    LRT  Pr(>Chi)    
<none>       2866.6  6254.7                     
region   2   3212.0  6596.1  345.4 < 2.2e-16 ***
sex      2   3344.4  6728.5  477.8 < 2.2e-16 ***
age      5   6745.2 10123.3 3878.6 < 2.2e-16 ***
dauer 2   4172.9  7557.0 1306.3 < 2.2e-16 ***
produkt 6  10718.3 14094.4 7851.7 < 2.2e-16 ***
---
Null deviance: 19369.7  on 884  degrees of freedom
Residual deviance:  2866.6  on 867  degrees of freedom

 Very strong overdispersion, the model does not fit well!
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Model Diagnostics
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Detail: Residuals vs. Predicted
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Discussion of the Practical Example
The analysis of grouped data shows that we have a very
incomplete understanding of the churn mechanics. There
are groups for which the churn probability is very strongly
over- or underestimated. All-in-all, the goodness-of-fit test
for our binomial model is rejected.

What to do?

• Use more and/or better predictors for churn. 
• If not available, try to work with interaction terms.
• Using a dispersion parameter doesn’t help for prediction!
• Models can/should also be evaluated using cross validation.


