Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, November, 2012

Residual Analysis – Model Diagnostics

Why do it? And what is it good for?

- a) To make sure that estimates and inference are valid
 - $E[E_i] = 0$
 - $Var(E_i) = \sigma_E^2$
 - $Cov(E_i, E_j) = 0$
 - $E_i \sim N(0, \sigma_E^2 I), i.i.d$

b) Identifying unusual observations

Often, there are just a few observations which "are not in accordance" with a model. However, these few can have strong impact on model choice, estimates and fit.

Residual Analysis – Model Diagnostics

Why do it? And what is it good for?

- c) Improving the model
 - Transformations of predictors and response
 - Identifying further predictors or interaction terms
 - Applying more general regression models
- There are both model diagnostic graphics, as well as numerical summaries. The latter require little intuition and can be easier to interpret.
- However, the graphical methods are far more powerful and flexible, and are thus to be preferred!

Residuals vs. Errors

All requirements that we made were for the errors E_i . However, they cannot be observed in practice. All that we are left with are the residuals r_i .

But:

- the residuals r_i are only estimates of the errors E_i , and while they share some properties, others are different.
- in particular, even if the errors E_i are uncorrelated with constant variance, the residuals r_i are not: they are correlated and have non-constant variance.
- does residual analysis make sense?

Standardized/Studentized Residuals

Does residual analysis make sense?

- the effect of correlation and non-constant variance in the residuals can usually be neglected. Thus, residual analysis using raw residuals r_i is both useful and sensible.
- The residuals can be corrected, such that they have constant variance. We then speak of standardized, resp. studentized residuals.

$$\tilde{r}_i = \frac{r_i}{\hat{\sigma}_E \cdot \sqrt{1 - h_{ii}}}$$
, where $Var(\tilde{r}_i) = 1$ and $Cor(\tilde{r}_i, \tilde{r}_j)$ is small.

• R uses these \tilde{r}_i for the Normal Plot, the Scale-Location-Plot and the Leverage-Plot.

Marcel Dettling, Zurich University of Applied Sciences

Toolbox for Model Diagnostics

There are 4 "standard plots" in R:

- Residuals vs. Fitted, i.e. Tukey-Anscombe-Plot
- Normal Plot
- Scale-Location-Plot
- Leverage-Plot

Some further tricks and ideas:

- Residuals vs. predictors
- Partial residual plots
- Residuals vs. other, arbitrary variables
- Important: Residuals vs. time/sequence

Example in Model Diagnostics

Under the life-cycle savings hypothesis, the savings ratio (aggregate personal saving divided by disposable income) is explained by the following variables:

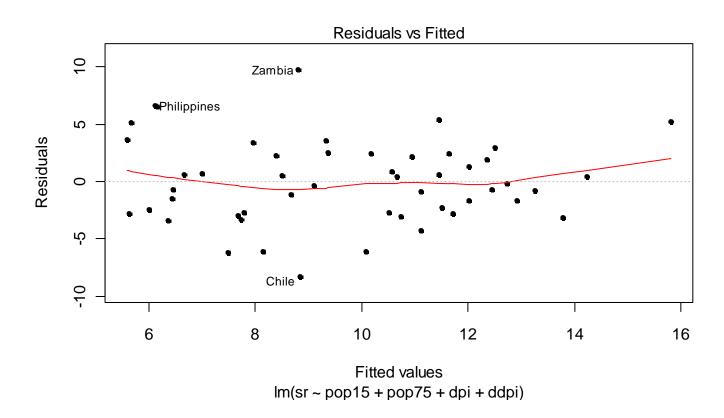
lm(sr ~ pop15 + pop75 + dpi + ddpi, data=LifeCycleSavings)

- **pop15**: percentage of population < 15 years of age
- pop75: percentage of population > 75 years of age
- api: per-capita disposable income
- adpi: percentage rate of change in disposable income

The data are averaged over the decade 1960–1970 to remove the business cycle or other short-term fluctuations.

Tukey-Anscombe-Plot

Plot the residuals r_i versus the fitted values \hat{y}_i



Tukey-Anscombe-Plot

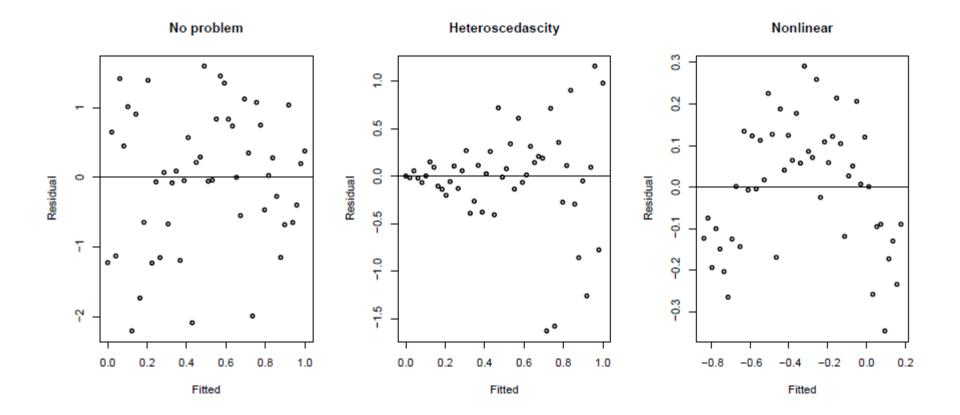
Is useful for:

- finding structural model deficiencies, i.e. $E[E_i] \neq 0$
- if that is the case, the response/predictor relation could be nonlinear, or some predictors could be missing
- it is also possible to detect non-constant variance
 (→ then, the smoother does not deviate from 0)

When is the plot OK?

- the residuals scatter around the x-axis without any structure
- the smoother line is horizontal, with no systematic deviation
- there are no outliers

Tukey-Anscombe-Plot



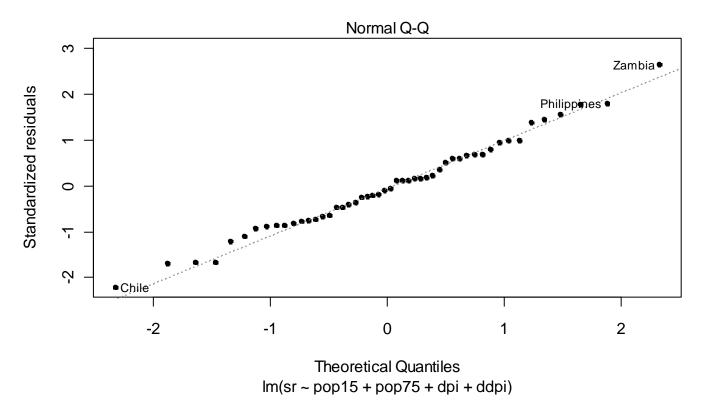
Tukey-Anscombe-Plot

When the Tukey-Anscombe-Plot is not OK:

- If structural deficencies are present (*E*[*E_i*] ≠ 0, often also called "non-linearities"), the following is recommended:
 - "fit a better model", by doing transformations on the response and/or the predictors
 - sometimes it also means that some important predictors are missing. These can be completely novel variables, or also terms of higher order
- Non-constant variance: transformations usually help!

Normal Plot

Plot the residuals \tilde{r}_i versus qnorm(i/(n+1),0,1)



Normal Plot

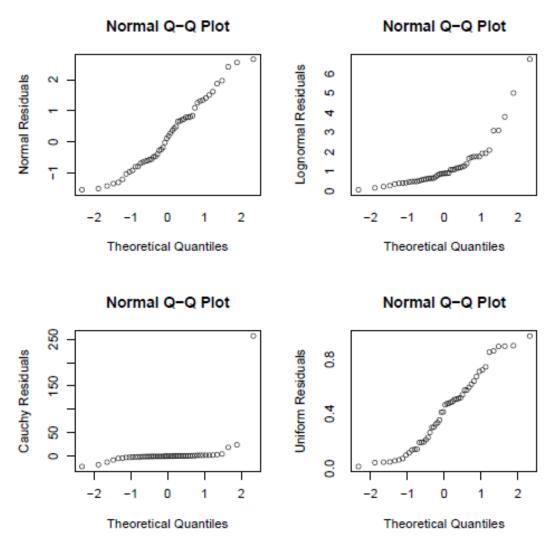
Is useful for:

- for identifying non-Gaussian errors: $E_i \sim N(0, \sigma_E^2 I)$

When is the plot OK?

- the residuals \tilde{r}_i must not show any systematic deviation from line which leads to the 1st and 3rd quartile.
- a few data points that are slightly "off the line" near the ends are always encountered and usually tolerable
- skewed residuals need correction: they usually tell that the model structure is not correct. Transformations may help.
- long-tailed, but symmetrical residuals are not optimal either, but often tolerable. Alternative: robust regression!

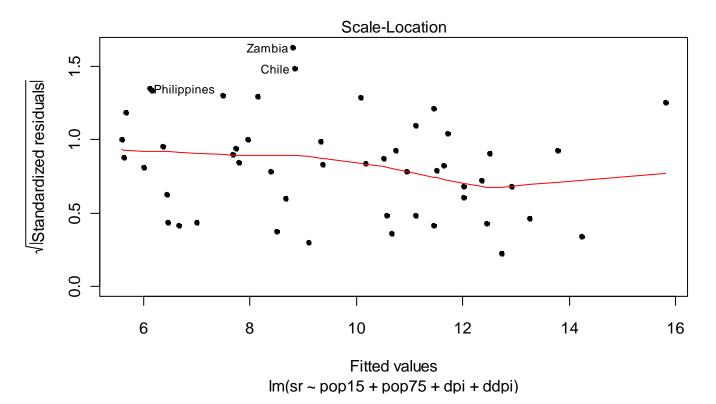
Normal Plot



Marcel Dettling, Zurich University of Applied Sciences

Scale-Location-Plot

Plot $\sqrt{|\tilde{r}_i|}$ versus \hat{y}_i



Scale-Location-Plot

Is useful for:

- identifying non-constant variance: $Var(E_i) \neq \sigma_E^2$
- if that is the case, the model has structural deficencies, i.e. the fitted relation is not correct. Use a transformation!
- there are cases where we expect non-constant variance and do not want to use a transformation. This can the be tackled by applying weighted regression.

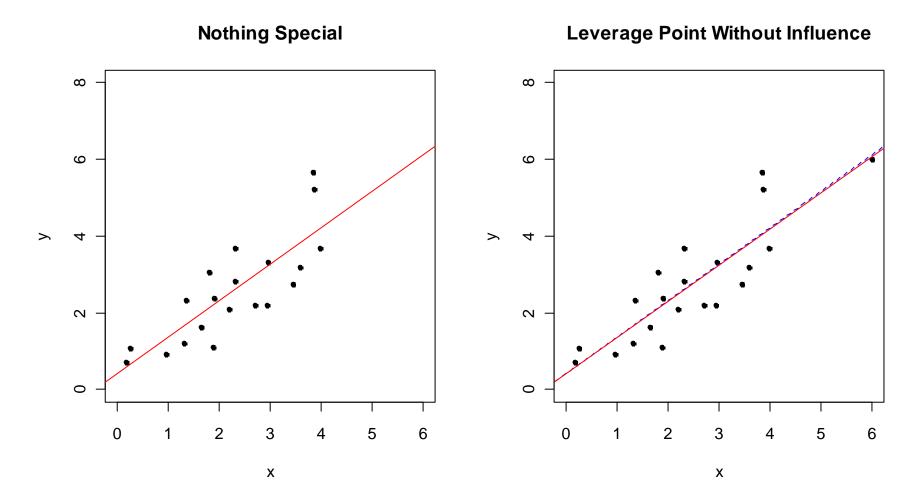
When is the plot OK?

- the smoother line runs horizontally along the x-axis, without any systematic deviations.

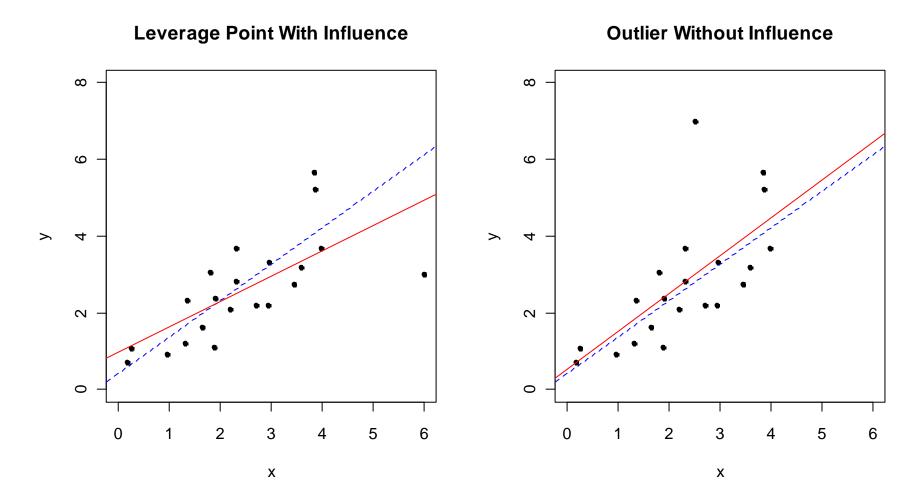
Unusual Observations

- There can be observations which do not fit well with a particular model. These are called *outliers*.
- There can be data points which have strong impact on the fitting of the model. These are called *influential observations*.
- A data point can fall under **none**, **one or both** the above definitions there is no other option.
- A *leverage point* is an observation that lies at a "different spot" in predictor space. This is potentially dangerous, because it can have strong influence on the fit.

Unusual Observations



Unusual Observations



How to Find Unusual Observations?

1) Poor man's approach

Repeat the analysis n-times, where the i-th observation is left out. Then, the change is recorded.

2) Leverage

If y_i changes by Δy_i , then $h_{ii}\Delta y_i$ is the change in \hat{y}_i . High leverage for a data point $(h_{ii} > 2(p+1)/n)$ means that it forces the regression fit to adapt to it.

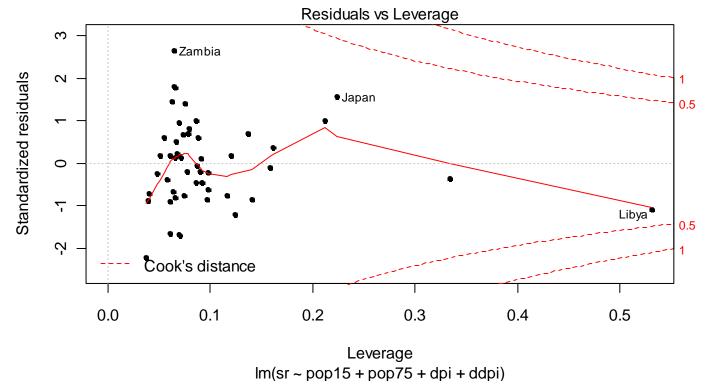
3) Cook's Distance

$$D_{i} = \frac{\sum (\hat{y}_{j} - y_{j(i)})^{2}}{(p+1)\sigma_{E}^{2}} = \frac{h_{ii}}{1 - h_{ii}} \cdot \frac{r_{i}^{*2}}{(p+1)}$$

Be careful if Cook's Distance > 1

Leverage-Plot

Plot the residuals \tilde{r}_i versus the leverage h_{ii}



Leverage-Plot

Is useful for:

- identifying outliers, leverage points and influential observation at the same time.

When is the plot OK?

- no extreme outliers in y-direction, no matter where
- high leverage, here $h_{ii} > 2(p+1)/n = 2(4+1)/50 = 0.2$ is always potentially dangerous, especially if it is in conjunction with large residuals!
- This is visualized by the Cook's Distance lines in the plot:
 >0.5 requires attention, >1 requires much attention!

Leverage-Plot

What to do with unusual observations:

- First check the data for gross errors, misprints, typos, etc.
- Unusual observations are also often a problem if the input is not suitable, i.e. if predictors are extremely skewed, because first-aid-transformations were not done. Variable transformations often help in this situation.
- Simply omitting these data points is not a very good idea. Unusual observations are often very informative and tell much about the benefits and limits of a model.