Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, October 28, 2013

Versatility of Multiple Linear Regression

Despite that we are using linear models only, we have a versatile and powerful tool. While the response is always a continuous variable, different predictor types are allowed:

Continuous Predictors

Default case, e.g. *temperature*, *distance*, *pH-value*, ...

• Transformed Predictors

For example: log(x), sqrt(x), $arcsin(\sqrt{x})$,...

• Powers

We can also use: x^{-1} , x^2 , x^3 , ...

Categorical Predictors

Often used: sex, day of week, political party, ...

Categorical Predictors

The canonical case in linear regression are *continuous predictor variables* such as for example:

→ temperature, distance, pressure, velocity, ...

While in linear regression, we cannot have categorical response, it is perfectly valid to have *categorical predictors*:

 \rightarrow yes/no, sex (m/f), type (a/b/c), shift (day/evening/night), ...

Such categorical predictors are often also called **factor variables**. In a linear regression, each level of such a variable is encoded by a dummy variable, so that $(\ell - 1)$ degrees of freedom are spent.

Regression with a Factor Variable

The lathe (in German: Drehbank) dataset:

- y_i life time of cutting tool *i*
- x_i type of tool *i*, A or B

Dummy variable encoding:

$$x_i = \begin{cases} 0 & tool \ type \ A \\ 1 & tool \ type \ B \end{cases}$$

Typical Visualization of a Factor Model

Durability of Lathe Cutting Tools

Interpretation of the Factor Model

→ See blackboard...

```
> summary(fit)
```

```
Call: lm(formula = hours ~ tool, data = lathe)
```

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.110 1.628 10.508 4.14e-09 ***

toolB 14.818 2.303 6.435 4.68e-06 ***

---

Residual standard error: 5.149 on 18 degrees of freedom

Multiple R-squared: 0.697, Adjusted R-squared: 0.6802

F-statistic: 41.41 on 1 and 18 DF, p-value: 4.681e-06
```

Another View: t-Test

→ The 1-factor-model is a t-test for non-paired data!

> t.test(hours ~ tool, data=lathe, var.equal=TRUE)

Two Sample t-test

data: hours by tool t = -6.435, df = 18, p-value = 4.681e-06 alternative hypothesis: true diff in means is not 0 95 percent confidence interval: -19.655814 -9.980186 sample estimates: mean in group A mean in group B 17.110 31.928

Example: Binary Categorical Variable

The lathe (in German: Drehbank) dataset:

- y lifetime of a cutting tool in a turning machine
- x_1 speed of the machine in rpm
- x_2 tool type A or B

Dummy variable encoding:

$$x_2 = \begin{cases} 0 & tool \ type \ A \\ 1 & tool \ type \ B \end{cases}$$

Interpretation of the Model

→ see blackboard...

> summary(lm(hours ~ rpm + tool, data = lathe))
Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	36.98560	3.51038	10.536	7.16e-09	* * *
rpm	-0.02661	0.00452	-5.887	1.79e-05	* * *
toolB	15.00425	1.35967	11.035	3.59e-09	* * *

Residual standard error: 3.039 on 17 degrees of freedom Multiple R-squared: 0.9003, Adjusted R-squared: 0.8886 F-statistic: 76.75 on 2 and 17 DF, p-value: 3.086e-09

The Dummy Variable Fit

Durability of Lathe Cutting Tools

A Model with Interactions

Question: do the slopes need to be identical?

 \rightarrow with the appropriate model, the answer is no!

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + E$$

→ see blackboard for model interpretation...

Different Slopes for the Regression Lines

Durability of Lathe Cutting Tools: with Interaction

rpm

Summary Output

> summary(lm(hours ~ rpm * tool, data = lathe))

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	32.774760	4.633472	7.073	2.63e-06	* * *
rpm	-0.020970	0.006074	-3.452	0.00328	* *
toolB	23.970593	6.768973	3.541	0.00272	* *
rpm:toolB	-0.011944	0.008842	-1.351	0.19553	

Residual standard error: 2.968 on 16 degrees of freedom Multiple R-squared: 0.9105, Adjusted R-squared: 0.8937 F-statistic: 54.25 on 3 and 16 DF, p-value: 1.319e-08

How Complex the Model Needs to Be?

Question 1: do we need different slopes for the two lines?

 $H_0: \beta_3 = 0$ against $H_A: \beta_3 \neq 0$

 \rightarrow no, see individual test for the interaction term on previous slide!

Question 2: is there any difference altogether?

 $H_0: \beta_2 = \beta_3 = 0$ against $H_A: \beta_2 \neq 0$ and / or $\beta_3 \neq 0$

 \rightarrow this is a hierarchical model comparison

 \rightarrow we try to exclude interaction and dummy variable together

R offers convenient functionality for this test, see next slide!

Testing the Tool Type Variable

Hierarchical model comparison with anova():

> fit.small <- lm(hours ~ rpm, data=lathe)</pre>

- > fit.big <- lm(hours ~ rpm * tool, data=lathe)</pre>
- > anova(fit.small, fit.big)

Model 1: hours ~ rpm

Model 2: hours ~ rpm * tool

- Res.Df RSS Df Sum of Sq F Pr(>F)
- 1 18 1282.08
- 2 16 140.98 2 1141.1 64.755 2.137e-08 ***
- → The bigger model, i.e. making a distinction between the tools, is significantly better. The main effect is enough, though.

Categorical Input with More Than 2 Levels

There are now 3 tool types A, B, C:

 x_2 x_3 00for observations of type A10for observations of type B01for observations of type C

Main effect model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + E$

With interactions: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1 x_2 + \beta_5 x_1 x_3 + E$

Three Types of Cutting Tools

Durability of Lathe Cutting Tools: 3 Types

rpm

Applied Statistical Regression AS 2013 – Week 07 Summary Output

> summary(lm(hours ~ rpm * tool, data = abc.lathe)

Coefficients	s:Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	32.774760	4.496024	7.290	1.57e-07	* * *
rpm	-0.020970	0.005894	-3.558	0.00160	* *
toolB	23.970593	6.568177	3.650	0.00127	* *
toolC	3.803941	7.334477	0.519	0.60876	
rpm:toolB	-0.011944	0.008579	-1.392	0.17664	
rpm:toolC	0.012751	0.008984	1.419	0.16869	

Residual standard error: 2.88 on 24 degrees of freedom Multiple R-squared: 0.8906, Adjusted R-squared: 0.8678 F-statistic: 39.08 on 5 and 24 DF, p-value: 9.064e-11

This summary is of limited use for deciding about model complexity. We require hierarchical model comparisons!

Inference with Categorical Predictors

Do not perform individual hypothesis tests on factors that have more than 2 levels, they are meaningless!

Question 1: do we have different slopes?

 $H_0: \beta_4 = 0 \text{ and } \beta_5 = 0 \text{ against } H_A: \beta_4 \neq 0 \text{ and } / \text{ or } \beta_5 \neq 0$

Question 2: is there any difference altogether?

 $H_0: \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$ against $H_A: any of \beta_2, \beta_3, \beta_4, \beta_5 \neq 0$

→ Again, R provides convenient functionality: anova()

Anova Output

```
> anova(fit.abc)
```

Analysis of Variance Table Df Sum Sq Mean Sq F value Pr(>F) rpm 1 139.08 139.08 16.7641 0.000415 *** tool 2 1422.47 711.23 85.7321 1.174e-11 *** rpm:tool 2 59.69 29.84 3.5974 0.043009 * Residuals 24 199.10 8.30

- → The interaction term is weakly significant. Thus, there is some weak evidence for the necessity of different slopes.
- → The p-value for the tool variable includes omitting interaction and main effect. Being strongly significant, we have strong evidence that tool type distinction is needed.