Applied Statistical Regression AS 2013 - Week 05

Marcel Dettling

Institute for Data Analysis and Process Design
Zurich University of Applied Sciences
marcel.dettling@zhaw.ch
http://stat.ethz.ch/~dettling

ETH Zürich, October 14, 2013

Applied Statistical Regression

 AS 2013 - Week 05
Model Extensions

So far, simple linear regression was considered as fitting a straight line into a xy-scatterplot. While this is correct, it does not reflect the full potential of linear regression. With creative use of variable transformations, many more possibilites open.

Example: Automobile Braking Distance

We have data from 26 test drives with differing speed. The goal was to estimate the braking behavior of a certain type of tires. The data are displayed on the next slide...

Applied Statistical Regression AS 2013 - Week 05

Braking Distance: Data

obs	speed	brdist
1	19.96	1.60
2	24.97	2.54
3	26.97	2.81
4	32.14	3.58
5	35.24	4.59
6	39.87	6.11
7	44.62	7.91
8	48.32	8.76
9	52.18	10.12
10	55.72	11.62
11	59.44	13.57
12	63.56	15.45
\ldots	\ldots	\ldots
24	111.97	51.09
25	115.88	50.69
26	120.35	57.77

Applied Statistical Regression

 AS 2013 - Week 05
Braking Distance: Fitting a Straight Line

Applied Statistical Regression

AS 2013 - Week 05

Braking Distance: Facts

Conclusions from the residual plots:

- The straight line has a systematic error and does not reflect the true relation between speed and braking distance. From physics, we know that a parabola is more appropriate.

$$
\begin{aligned}
& \text { Distance }_{i}=\beta_{0}+\beta_{1} \cdot \text { Speed }_{i}^{2}+E_{i} \\
& \text { resp. } y_{i}=\beta_{0}+\beta_{1} \cdot x_{i}^{\prime}+E_{i}, \text { where } x_{i}^{\prime}=x_{i}^{2}=\text { Speed }_{i}^{2}
\end{aligned}
$$

- Please note that this is a simple linear regression problem. There is only one single predictor and the coefficients $\hat{\beta}_{0}, \hat{\beta}_{1}$ can and need to be estimated with the LS algorithm by taking partial derivatives and setting them to zero.

Applied Statistical Regression

 AS 2013 - Week 05
Braking Distance: Distance vs. Speed^2

> fit <- lm(weg ~ I (speed^2))

Applied Statistical Regression

AS 2013 - Week 05

Curvilinear Regression

Simple linear regression offers more than fitting straight lines! We can fit any curvilinear relation with the LS algorithm. Some examples include:

- $y_{i}=\beta_{0}+\beta_{1} \cdot \ln \left(x_{i}\right)+E_{i}$
- $y_{i}=\beta_{0}+\beta_{1} \cdot \sqrt{x}+E_{i}$
- $y_{i}=\beta_{0}+\beta_{1} \cdot x^{-1}+E_{i}$

We are using $x_{i}^{\prime}=\ln \left(x_{i}\right), x_{i}^{\prime}=\sqrt{x_{i}}$, bzw. $x_{i}^{\prime}=\left(x_{i}\right)^{-1}$. In this form, it is obvious that all these are simple linear regression problems that can be solved via LS.
\rightarrow BUT... see next slide

Applied Statistical Regression

 AS 2013 - Week 05
Braking Distance: Remarks

Curvilinear Models are often inadequate in practice:

- In our braking distance example, we should also consider the reaction time. This is a multiple regression model:

$$
\text { Distance }_{i}=\beta_{0}+\beta_{1} \cdot \text { Speed }_{i}+\beta_{2} \cdot \text { Speed }_{i}^{2}+E_{i}
$$

- Often, the variance/scatter of the errors is non-constant. In many examples, it increases with increasing.
- In many applications, the polynomial degree is not dictated by theorie, but needs to be estimated, too:

$$
y_{i}=\beta_{0}+\beta_{1} \cdot x^{\beta_{2}}+E_{i}
$$

Applied Statistical Regression

 AS 2013 - Week 05
Infant Mortality vs. Per-Capita Income

Applied Statistical Regression

 AS 2013 - Week 05
The Fitted Hyperbolic Regression Line

Applied Statistical Regression

 AS 2013 - Week 05
Residuals from Hyperbolic Fit

Applied Statistical Regression

 AS 2013 - Week 05
The Problem and the Solution

The hyperbolic fit shows some systematic error and is not the correct relation between mortality and income. We could try to estimate a power law such as:

$$
y_{i}=\beta_{0}+\beta_{1} \cdot x_{i}^{\beta_{2}}+E_{i}
$$

However, this problem is non-linear in the parameter β_{2} and cannot be solved with the LS algorithm. Moreover, the error variance is non-constant.

A simple yet very useful trick solves the problem:

$$
y_{i}^{\prime}=\log \left(y_{i}\right), x_{i}^{\prime}=\log \left(x_{i}\right)
$$

For details, see the next slide and the blackboard...

Applied Statistical Regression AS 2013 - Week 05

The Log-Transformation Helps!

Applied Statistical Regression

AS 2013 - Week 05

Model and Coefficients

If a straight line is fitted on the log-log-scale,

$$
y^{\prime}=\beta_{0}^{\prime}+\beta_{1} \cdot x^{\prime}+E^{\prime}, \text { where } y^{\prime}=\log (y), x^{\prime}=\log (x)
$$

this means fitting the following relation on the original scale:

$$
y=\beta_{0} \cdot x^{\beta_{1}} \cdot E
$$

The meaning of the parameter β_{1} is as follows:
If x, i.e. the income increases by 1%, then y, i.e. the mortality decreases by $\hat{\beta}_{1}=0.56 \%$. In other words: β_{1} characterizes the relative change in y per unit of relative change in x.

Applied Statistical Regression

 AS 2013 - Week 05
The Fitted Relation

Infant Mortality vs. Per-Capita Income

Applied Statistical Regression

 AS 2013 - Week 05
Fitted Values and Intervals

- For predicting the y-value on the original scale, we can just re-exponentiate to invert the log-transformation and hence:

$$
\hat{y}=\exp \left(\hat{y}^{\prime}\right)
$$

- Beware: this is an estimate of the conditional median, but not the conditional mean $E[y \mid x]$. If we require unbiased estimation, we need to use a correction factor :

$$
\hat{y}=\exp \left(\hat{y}^{\prime}+\hat{\sigma}_{E}^{2} / 2\right)
$$

- The confidence and prediction intervals are easy:

$$
[l, u] \rightarrow[\exp (l), \exp (u)]
$$

Applied Statistical Regression

 AS 2013 - Week 05
Conditional Mean and Median

Infant Mortality vs. Per-Capita Income

Applied Statistical Regression

 AS 2013 - Week 05
Confidence and Prediction Interval

Infant Mortality vs. Per-Capita Income

Applied Statistical Regression

 AS 2013 - Week 05
What to do if $\boldsymbol{y}=0$ and/or $\boldsymbol{x}=\mathbf{0}$?

- We can only take logarithms if $x, y>0$. In cases where the response and/or predictor takes negative values, we should not log-transform. If zero's occur, they need treatment.
- What do we do with either $x=0$ or $y=0$?
- do never exclude such data points!
- adding a constant value is allowed!
- What about the choice of the constant?
- standard choice: $c=1$
- scale dependent, thus not recommended!
\rightarrow Set $c=$ smallest value >0 !

Applied Statistical Regression AS 2013 - Week 05

Another Example: Daily Cost in Rehab

Daily Cost in Rehab vs. ADL
Residuals vs. Fitted Values

Applied Statistical Regression

 AS 2013 - Week 05
Logged Response Model

We transform the response variable and try to explain it using a linear model with our previous predictors:

$$
y^{\prime}=\log (y)=\beta_{0}+\beta_{1} x+E
$$

In the original scale, we can write the logged response model using the same predictors:

$$
y=\exp \left(\beta_{0}\right) \cdot \exp \left(\beta_{1} x\right) \cdot \exp (E)
$$

\rightarrow Multiplicative model
$\rightarrow E \sim N\left(0, \sigma_{E}^{2}\right)$, and thus, $\exp (E)$ has a lognormal distribution

Applied Statistical Regression AS 2013 - Week 05

Fit and Residuals after the Transformation

Residuals vs. Fitted Values

Applied Statistical Regression

 AS 2013 - Week 05
Original Scale: Fit and Prediction Interval

Daily Cost vs. ADL-Score

Applied Statistical Regression

 AS 2013 - Week 05
Interpretation of the Coefficients

Important: There is no back transformation for the coefficients to the original scale, but still a good interpretation

$$
\begin{aligned}
\log (y) & =\beta_{0}+\beta_{1} x+E \\
y & =\exp \left(\beta_{0}\right) \exp \left(\beta_{1} x\right) \exp (E)
\end{aligned}
$$

An increase by one unit in x would multiply the fitted value in the original scale with $\exp \left(\beta_{1}\right)$.
\rightarrow Coefficients are interpreted multiplicatively!

Applied Statistical Regression

AS 2013 - Week 05

When to Transform?

We have seen a few examples where a log-transformation of the response and/or the predictor yields a better fit. Some general rules about when to apply it:

- If the values are on a scale, that is left-closed (with 0 as the smallest possible value), but is open on the right.
- If the marginal distribution of the variable (as we can observe in a histogram) is clearly right-skewed.
- If the scatter, i.e. the magnitude of the uncertainty, increases with increasing value - be this due to theoretical considerations, or due to evidence in the data.

Applied Statistical Regression

 AS 2013 - Week 05
Transformations: Lynx Data

Lynx Trappings

Applied Statistical Regression

 AS 2013 - Week 05
Transformations: Lynx Data

Applied Statistical Regression

AS 2013 - Week 05

Zurich Airport Data: Re-Evaluation

Both Pax and ATM are variables that only take values ≥ 0. In our example, we do not observe any right-skewness, but we still try to apply the log-transformation:

$$
A T M^{\prime}=\log (A T M), P a x^{\prime}=\log (P a x)
$$

It also has the advantage that the fit goes through (0/0).

```
> fit <- lm(Pax ~ ATM, data=unique2010)
> fit.log <- lm(log(Pax) ~ log(ATM), data=unique2010)
> fit.y.orig <- exp(fitted(fit.log)[order(unique2010$ATM)])
> plot(Pax ~ ATM, data=unique2010, pch=20)
> lines(sort(unique2010$ATM), fit.y.orig, col="blue")
> abline(fit, col="red")
```

The difference in the fitted line is only small, but important!

Applied Statistical Regression

 AS 2013 - Week 05
Zurich Airport Data: Re-Evaluation

Zurich Airport Data: Pax vs. ATM

We estimate $\hat{\beta}_{1}=1.655$. If ATM increases by 1% then Pax will increase by 1.655\%.

This reflects that during high season, bigger airplanes are used, and the seat load factor is better.

Applied Statistical Regression

 AS 2013 - Week 05
Comparing the Residual Plots

