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Model Extensions
So far, simple linear regression was considered as fitting a 
straight line into a      -scatterplot. While this is correct, it does
not reflect the full potential of linear regression. With creative
use of variable transformations, many more possibilites open.

Example: Automobile Braking Distance

We have data from 26 test drives with differing speed. The goal
was to estimate the braking behavior of a certain type of tires. 
The data are displayed on the next slide…

xy
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Braking Distance: Data
obs speed brdist

1 19.96 1.60
2 24.97 2.54
3 26.97 2.81
4 32.14 3.58
5 35.24 4.59
6 39.87 6.11
7 44.62 7.91
8 48.32 8.76
9 52.18 10.12

10 55.72 11.62
11 59.44 13.57
12 63.56 15.45
... ... ...

24 111.97 51.09
25 115.88 50.69
26 120.35 57.77
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Braking Distance: Fitting a Straight Line
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Braking Distance: Facts
Conclusions from the residual plots:

• The straight line has a systematic error and does not reflect
the true relation between speed and braking distance. From
physics, we know that a parabola is more appropriate. 

resp.                               , where

• Please note that this is a simple linear regression problem. 
There is only one single predictor and the coefficients
can and need to be estimated with the LS algorithm by
taking partial derivatives and setting them to zero.
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0 1i i iDistance Speed E    

0 1
ˆ ˆ, 

0 1i i iy x E      2 2
i i ix x Speed  
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Braking Distance: Distance vs. Speed^2
> fit <- lm(weg ~ I(speed^2))
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Curvilinear Regression
Simple linear regression offers more than fitting straight lines!
We can fit any curvilinear relation with the LS algorithm. Some
examples include: 

•  

•

•

We are using ,             , bzw.                . In this form, it is
obvious that all these are simple linear regression problems that
can be solved via LS. 
 BUT... see next slide

0 1 ln( )i i iy x E    

0 1i iy x E    
1

0 1i iy x E     

ln( )i ix x  i ix x  1( )i ix x  



Braking Distance: Remarks
Curvilinear Models are often inadequate in practice:

• In our braking distance example, we should also consider
the reaction time. This is a multiple regression model: 

• Often, the variance/scatter of the errors is non-constant.
In many examples, it increases with increasing.

• In many applications, the polynomial degree is not 
dictated by theorie, but needs to be estimated, too: 
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Infant Mortality vs. Per-Capita Income

Does a curvilinear regression

solve the regression problem ???

1
0 1i iy x E     
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The Fitted Hyperbolic Regression Line
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Residuals from Hyperbolic Fit
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The Problem and the Solution
The hyperbolic fit shows some systematic error and is not the
correct relation between mortality and income. We could try to
estimate a power law such as:   

However, this problem is non-linear in the parameter and
cannot be solved with the LS algorithm. Moreover, the error
variance is non-constant. 

A simple yet very useful trick solves the problem:

For details, see the next slide and the blackboard...

2
0 1i i iy x E    

2

log( ), log( )i i i iy y x x  
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The Log-Transformation Helps!
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Model and Coefficients
If a straight line is fitted on the log-log-scale,

, where , 

this means fitting the following relation on the original scale:

The meaning of the parameter is as follows:

If , i.e. the income increases by 1%, then , i.e. the mortality
decreases by . In other words:     characterizes the
relative change in     per unit of relative change in    .

1
0y x E  

log( ), log( )y y x x  0 1y x E       

1

x
1̂ 0.56%  1

y

y x
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The Fitted Relation
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Fitted Values and Intervals
• For predicting the y-value on the original scale, we can just 

re-exponentiate to invert the log-transformation and hence: 

• Beware: this is an estimate of the conditional median, but not 
the conditional mean . If we require unbiased
estimation, we need to use a correction factor :             

• The confidence and prediction intervals are easy:



ˆ ˆexp( )y y

2ˆ ˆ ˆexp( / 2)Ey y  

[ , ]l u [exp( ),exp( )]l u

[ | ]E y x



Conditional Mean and Median
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Confidence and Prediction Interval
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What to do if y=0 and/or x=0?
• We can only take logarithms if . In cases where the

response and/or predictor takes negative values, we should
not log-transform. If zero's occur, they need treatment.

• What do we do with either or ? 
- do never exclude such data points!
- adding a constant value is allowed!

• What about the choice of the constant?
- standard choice: 
- scale dependent, thus not recommended!

 Set        smallest value !
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, 0x y 

0x  0y 

1c 

c  0
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Another Example: Daily Cost in Rehab
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Logged Response Model
We transform the response variable and try to explain it using
a linear model with our previous predictors:

In the original scale, we can write the logged response model 
using the same predictors:

 Multiplicative model

 , and thus,              has a lognormal distribution

0 1log( )y y x E     

0 1exp( ) exp( ) exp( )y x E   

2~ (0, )EE N  exp( )E
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Fit and Residuals after the Transformation
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Original Scale: Fit and Prediction Interval
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Interpretation of the Coefficients
Important: There is no back transformation for the coefficients

to the original scale, but still a good interpretation

An increase by one unit in      would multiply the fitted value
in the original scale with .

 Coefficients are interpreted multiplicatively!

0 1

0 1

log( )
exp( )exp( )exp( )

y x E
y x E

 
 

  


x
1exp( )
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When to Transform?
We have seen a few examples where a log-transformation
of the response and/or the predictor yields a better fit. 
Some general rules about when to apply it:

• If the values are on a scale, that is left-closed (with 0 as
the smallest possible value), but is open on the right.

• If the marginal distribution of the variable (as we can
observe in a histogram) is clearly right-skewed.

• If the scatter, i.e. the magnitude of the uncertainty, 
increases with increasing value – be this due to theoretical
considerations, or due to evidence in the data.
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Transformations: Lynx Data
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Transformations: Lynx Data
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Zurich Airport Data: Re-Evaluation
Both Pax and ATM are variables that only take values .
In our example, we do not observe any right-skewness, but 
we still try to apply the log-transformation:

It also has the advantage that the fit goes through (0/0). 
> fit     <- lm(Pax ~ ATM, data=unique2010)
> fit.log    <- lm(log(Pax) ~ log(ATM), data=unique2010)
> fit.y.orig <- exp(fitted(fit.log)[order(unique2010$ATM)])
> plot(Pax ~ ATM, data=unique2010, pch=20)
> lines(sort(unique2010$ATM), fit.y.orig, col="blue")
> abline(fit, col="red")

The difference in the fitted line is only small, but important!

0

log( ), log( )ATM ATM Pax Pax  
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Zurich Airport Data: Re-Evaluation
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We estimate . 
If ATM increases by 1%
then Pax will increase by
1.655%.

This reflects that during
high season, bigger air-
planes are used, and the
seat load factor is better.

1̂ 1.655 
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Comparing the Residual Plots
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