Models with Random Effects

- Levels are a random sample
- Variability between levels is of interest
- Nested vs. crossed factors

One Random Factor

Serum measurements of blood samples Model:

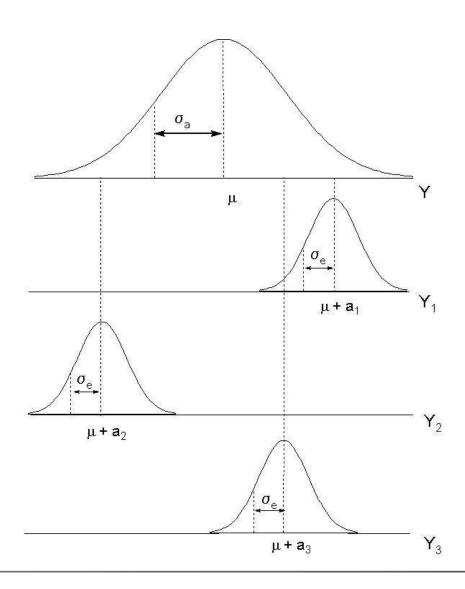
$$Y_{ij} = \mu + a_i + \epsilon_{ij}, \qquad i = 1, \dots, I; j = 1, \dots, J$$

 a_i random effect of sample i, $a_i \sim \mathcal{N}(0, \sigma_a^2)$, ϵ_{ij} error of jth measurement of sample i, $\epsilon_i \sim \mathcal{N}(0, \sigma_e^2)$, a_i and ϵ_{ij} are all independent.

$$Var(Y_{ij}) = Var(a_i + \epsilon_{ij}) = \sigma_a^2 + \sigma_e^2, \quad Cov(Y_{ij}, Y_{ij'}) = \sigma_a^2$$

The variance of Y_{ij} consists of two components. Such models are also called variance components models.

Illustration



Anova Table

$$H_0: \sigma_a^2 = 0 \qquad H_A: \sigma_a^2 > 0$$

Source	SS	df	MS=SS/df
Sample	$SS_a = \sum \sum (y_{i.} - y_{})^2$	I-1	MS_a
Residual	$SS_{res} = \sum \sum (y_{ij} - y_{i.})^2$	N-I	MS_{res}
Total	$SS_{tot} = \sum \sum (y_{ij} - y_{})^2$	N-1	

Parameter estimations

$$\hat{\sigma}_e^2 = MS_{res}$$
 $\hat{\sigma}_a^2 = (MS_a - MS_{res})/J$ can be negative!
 $\hat{\mu} = y_..$ with $Var(\hat{\mu}) = \frac{1}{I}(\sigma_a^2 + \sigma_e^2/J)$

Either Maximum Likelihood estimators or $\hat{\sigma}_a^2 \geq 0$

Variability between Laboratories

$$Y_{ijk} = \mu + a_i + b_j + \epsilon_{ijk}$$

 a_i random effect of lab i, $a_i \sim \mathcal{N}(0, \sigma_a^2)$, b_j random effect of sample j, $b_j \sim \mathcal{N}(0, \sigma_b^2)$, ϵ_{ijk} measurement error, $\epsilon_{ijk} \sim \mathcal{N}(0, \sigma_e^2)$, all random variables are independent.

Source	df	E(MS)	F
Lab	I-1	$\sigma_e^2 + JK\sigma_a^2$	MS_a/MS_{res}
Sample	J-1	$\sigma_e^2 + IK\sigma_b^2$	MS_b/MS_{res}
Residual	$\ll diff \gg$	σ_e^2	
Total	IJK-1		

Parameter Estimation

$$\hat{\sigma}_e^2 = MS_{res}$$

$$\hat{\sigma}_a^2 = (MS_a - MS_{res})/JK$$

$$\hat{\sigma}_b^2 = (MS_b - MS_{res})/IK$$

Model with Interaction Lab:Sample

Source	E(MS)	H_0	F
Lab	$\sigma_e^2 + JK\sigma_a^2 + K\sigma_{ab}^2$	$\sigma_a^2 = 0$	MS_a/MS_{ab}
Sample	$\sigma_e^2 + IK\sigma_b^2 + K\sigma_{ab}^2$	$\sigma_b^2 = 0$	MS_b/MS_{ab}
Lab : Sample	$\sigma_e^2 + K \sigma_{ab}^2$	$\sigma_{ab}^2 = 0$	MS_{ab}/MS_{res}
Residual	σ_e^2		

$$H_0: \sigma_a^2 = 0$$
 Test statistic: $F = MS_a/MS_{ab}$

$$H_0: \sigma_a^2 = \sigma_{ab}^2 = 0$$
 Test statistic: $F = MS_a/MS_{res}$

Crossed factors

Factors A and B are called crossed if every level of B occurs with every level of A. A factorial design involves crossed factors.

	Factor A					
Factor B	1	2	3	4		
1	XX	XX	XX	XX		
2	XX	XX	XX	XX		
3	XX	XX	XX	XX		

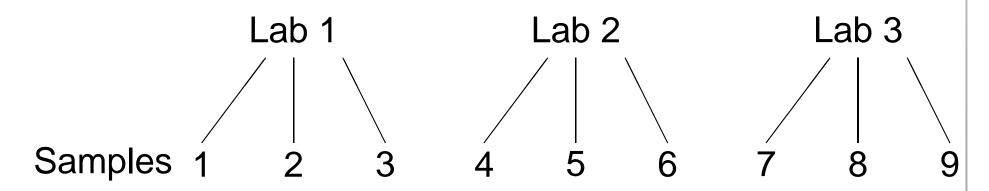
Nested factors

Factors A and B are called nested if there are different levels of B within each level of A. B is nested within A in the following layout.

Α		1			2			3			4	
В	1	2	3	4	5	6	7	8	9	10	11	12
	XX											

Designs with nested factors are called nested designs or hierarchical designs.

Nested Designs



Factors Lab and Sample are not crossed, but nested.

Model for a two-stage nested design:

$$Y_{ijk} = \mu + a_i + b_{j(i)} + \epsilon_{k(ij)}, \qquad i = 1, ..., I; j = 1, ..., J; k = 1, ..., K$$

The subscript j(i) indicates that the jth level of factor B is nested within the ith level of factor A.

Anova table

Decomposition of sum of squares:

$$SS_{tot} = SS_A + SS_{B(A)} + SS_{res}.$$

Source	df	E(MS)
Lab	I-1	$\sigma_e^2 + K\sigma_b^2 + JK\sigma_a^2$
Sample	I(J-1)	$\sigma_e^2 + K \sigma_b^2$
Residual	"diff"	σ_e^2
Total	IJK-1	

Moisture Content of Cowpea

Effect of milling on moisture content. 3 samples of 100g from 5 batches were milled. From each sample 10g are measured.

	sample								
batch		1			2		3		
1	9.3	9.2	8.8	8.6	8.7	9.9	8.9	8.7	8.5
2	8.0	8.2	9.2	9.7	9.4	8.2	9.3	9.5	9.4
3	11.0	10.7	9.9	9.3	13.9	9.2	9.2	10.9	9.7
4	10.1	10.2	9.9	8.6	9.4	8.3	8.3	9.9	9.5
5	12.0	9.3	10.8	12.2	9.6	11.7	11.4	9.8	12.4

Anova Table

 $\hat{\sigma}_h^2 = (7.732 - 1.0984)/9 = 0.737$

```
> mod1=aov(moisture~batch/sample)
> summary(mod1)
               Df Sum Sq Mean Sq F value Pr(>F)
              4 30.928 7.7320 7.0390 0.0004027 **
batch
batch:sample 10 5.911 0.5911 0.5381 0.8491520
Residuals 30 32.953 1.0984
\hat{\sigma}_e^2 = 1.0984
                                           \hat{\sigma}_e = 1.048
\hat{\sigma}_s^2 = (0.5911 - 1.0984)/3 = 0
                                          \hat{\sigma}_s = 0
```

 $\hat{\sigma}_{h} = 0.858$

Linear mixed-effects model fit

```
> summary(lme(moisture~1,random=~1|batch/sample))
Random effects:
 Formula: ~1 | batch
        (Intercept)
StdDev: 0.8666916
 Formula: ~1 | sample %in% batch
         (Intercept) Residual
StdDev: 3.783493e-05 0.9857034
Number of Observations: 45
Number of Groups: batch sample %in% batch
                    5
                                      15
```