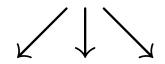
Biochemical Experiment


Serum levels after four medical treatments. Only four people can be treated per day, one for each medication.

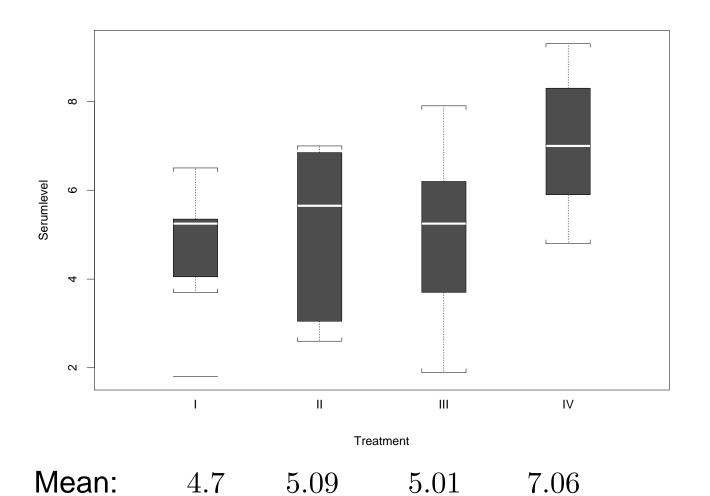
	Day								
	1	2	3	4	5	6	7	8	
Treat.									
		5.3							
II	2.8	3.3	7.0	2.6	5.9	5.4	6.9	6.8	
Ш	4.8	1.9	4.3	3.1	6.2	5.7	6.2	7.9	
IV	6.8	8.7	7.2	4.8	5.1	6.7	9.3	7.9	

Block Design

Subjects

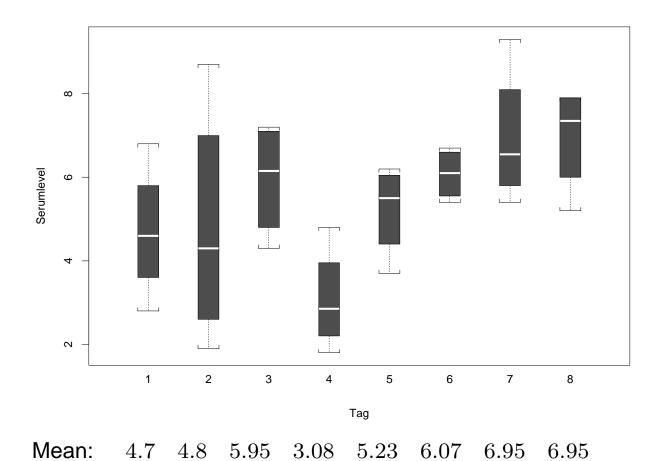
Randomisation

	Block 1	Block 2		Block J
Group 1	×	×		×
Group 2	×	×		×
Group 3	×	×		×
:	:	:	:	:
Group I	×	×		×


Block Randomisation

R: sample(rep(1:8,4)), sample(4) or sample(32)

Subjects


	Day							
Treatment	1	2	3	4	5	6	7	8
	13	3	26	23	4	28	20	21
II	24	18	6	10	9	25	32	1
Ш	19	7	8	22	27	30	16	14
IV	2	11	15	12	31	17	29	5

Serum levels by Treatment

- p. 4/9

Serum levels by Day

Randomized Complete Block Design

- Each treatment in each block equally often.
- Model:

$$Y_{ij} = \mu + A_i + b_j + \epsilon_{ij} \tag{2}$$

 b_j : Effect of block j

■ Fixed-Effects Model:

$$\sum A_i = 0, \ \sum b_j = 0, \ \epsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$$

Mixed Model:

$$\sum A_i = 0, \ b_j \sim \mathcal{N}(0, \sigma_b^2), \ \epsilon_{ij} \sim \mathcal{N}(0, \sigma_e^2)$$
 all b_j and ϵ_{ij} independent.

Random-Effects Model: all factors are random

Block effects: fixed or random?

fixed: a few levels, interest in levels themselves

random: levels are chosen from a population, interest

in variability, blocks for reduction of variability

$$SS_{tot} = SS_{treat} + SS_{blocks} + SS_{res}$$

Source	SS	df	MS	F
Blocks	47.3	J - 1 = 7	6.75	
Treatments	27.9	I - 1 = 3	9.29	
Residual	35.3	(I-1)(J-1) = 21	1.68	
Total	110.4	N - 1 = 31		

Expected mean squares

Fixed-effects model

$$E(MS_{res}) = \sigma^{2}$$

$$E(MS_{treat}) = \sigma^{2} + J \sum_{i} A_{i}^{2}/(I-1)$$

$$E(MS_{block}) = \sigma^{2} + I \sum_{i} b_{j}^{2}/(J-1)$$

Mixed-effects model

$$E(MS_{res}) = \sigma_e^2$$

$$E(MS_{treat}) = \sigma_e^2 + J \sum_i A_i^2 / (I - 1)$$

$$E(MS_{block}) = \sigma_e^2 + I \sigma_b^2$$

F Tests

Fixed-effects Model:

$$H_0: A_i = 0 \quad \forall i, \quad F = \frac{MS_{treat}}{MS_{res}} \sim F_{I-1,(I-1)(J-1)}$$

 $(H_0: b_j = 0 \quad \forall j, \quad F = \frac{MS_{blocks}}{MS_{res}} \sim F_{J-1,(I-1)(J-1)})$

Mixed Model:

$$H_0: A_i = 0 \quad \forall i, \quad F = \frac{MS_{treat}}{MS_{res}}$$
 as above $H_0: \sigma_b^2 = 0 \qquad F = \frac{MS_{blocks}}{MS_{res}}$ usually not tested $MS_{blocks} >> MS_{res}$: Blocking good

 $MS_{blocks} \leq MS_{res}$: Blocking not necessary

Example:

$$F_A = 5.53$$
 Medication significant $MS_{blocks} = 6.75 > MS_{res} = 1.68$ Blocking good