Split Plot Designs

- Large and small units
- Confounding main effects
- Repeated measures anova

Study in Dental Medicine

- Can measurement of electric resistance help in detecting tooth decay?
- 40 measurements on teeth with and without inflamed gums, with and without special treatment.
- $ightharpoonup 2^2$ factorial with factor A (inflammation) and factor B (special treatment).

Correct anova table?

Source	df	MS	F
Α	1		MS_A/MS_{res}
В	1		MS_B/MS_{res}
AB	1		MS_{AB}/MS_{res}
Residual	36		
Total	39		

Depends on design structure. How many subjects, how many teeth?

8 subjects, one tooth each

One treatment per person, 5 repeated measurements

Stratum	Source	df	F
Person	A	1	$MS_A/MS_{res-person}$
	В	1	$MS_B/MS_{res-person}$
	AB	1	$MS_{AB}/MS_{res-person}$
	Residual	4	
	Total	7	
Measurement	Residual	32	
	Total	39	

5 subjects, 4 teeth each

Each person has 2 inflamed and 2 not inflamed teeth. Each tooth was measured once with special treatment and once without special treatment.

Stratum	Source	С	lf	F
Person	Person		4	
Tooth	А	1		$MS_A/MS_{res-tooth}$
	Residual	14		
	Total		15	
Measurement	В	1		$MS_B/MS_{res-meas}$
	AB	1		$MS_{AB}/MS_{res-meas}$
	Residual	18		
	Total		20	
	Total		39	

Special properties of this design

- Replication on three stages: persons, teeth and measurements.
- One factor varies between teeth, the other between measurements.
- main plot= tooth, sub-plot = measurement

Split-plot design

- A first factor needs to be applied to large plots, called main plots.
- Main plots are split into smaller plots, called subplots. These are assigned to different levels of a second factor.
- Two different levels for comparing factor levels: effects of the first factor must be examined relative to main plot variation, effects of the second factor must be examined relative to subplot variation.

Rice experiment

4 irrigation methods I1-I4 on main plots, 3 fertilizer mixtures x, y, z on sub-plots, 2 complete replicates.

Layout:

	Block I			Block II			
Z	X	У	Z	X	У	Z	X
X	Z	Z	у	Z	X	X	у
У	У	X	Х	У	Z	У	Z
4	12	13	11	12	11	14	I 3

Irrigation is confounded with main plots.

Model

$$Y_{ijk} = \mu + b_i + Irr_j + \epsilon_{ij} + Fert_k + (Irr: Fert)_{jk} + \delta_{ijk}$$

 $i = 1, ..., I; j = 1, ..., J; k = 1, ..., n.$

 b_i : ith block effect

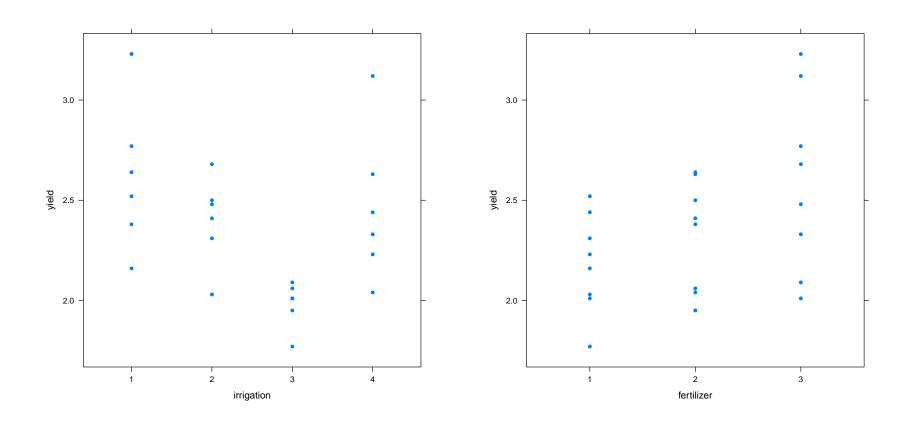
 Irr_j : jth effect of irrigation

 ϵ_{ij} : main plot error

 $Fert_k$: kth effect of fertilizer

 $(Irr: Fert)_{ij}: jk$ th interaction

 δ_{ijk} : sub-plot error


Skeleton Anova

Stratum	Source		df	F
Blocks	Blocks		1	
Main plots	Irr	3		$MS_{Irr}/MS_{res-main}$
	Residual	3		
_	Total		6	
Sub-plots	Fert	2		$MS_{Fert}/MS_{res-sub}$
	Irr:Fert	6		$MS_{Irr:Fert}/MS_{res-sub}$
	Residual	8		
	Total		16	
	Total		23	

Data on crop yield (tonnes/hectare)

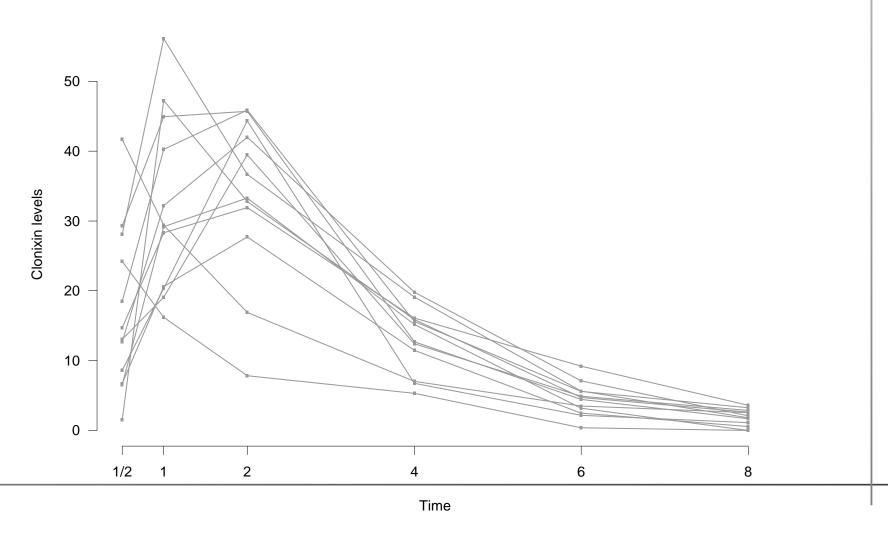
	Irrigation				
Block I	I 1	12	13	14	
Fertilizer x	2.16	2.03	1.77	2.44	
У	2.38	2.41	1.95	2.63	
Z	2.77	2.68	2.01	3.12	
	Irrigation				
		Irriga	ation		
Block I	I 1	Irriga I2	ation 13	I 4	
Block I Fertilizer x		12	I 3	14 2.23	
	2.52	12	13 2.01		

Graphical display

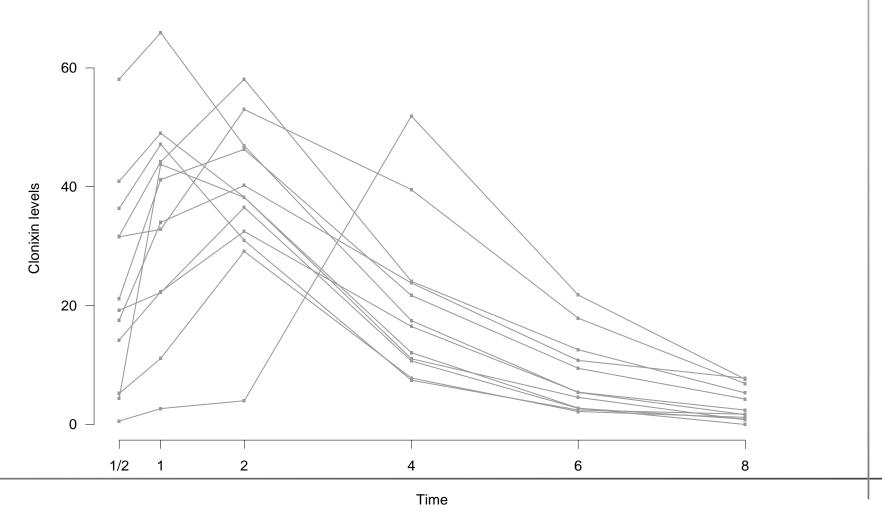
Anova Table

```
> mod2=aov(yield~irrigation*fertilizer+Error(block/irrigation))
> summary(mod2)
Error: block
         Df
               Sum Sq Mean Sq F value Pr(>F)
Residuals 1 0.0003375 0.0003375
Error: block:irrigation
          Df Sum Sq Mean Sq F value Pr(>F)
irrigation 3 1.32971 0.44324 2.0424 0.2862
Residuals 3 0.65105 0.21702
Error: Within
                     Df Sum Sq Mean Sq F value Pr(>F)
fertilizer
                      2 0.67530 0.33765 16.6262 0.001414 **
irrigation: fertilizer 6 0.20110 0.03352 1.6504 0.250110
Residuals
                  8 0.16247 0.02031
```

Repeated measures, Longitudinal data


- Subjects are measured more than once
 - Compare values of an outcome variable before and after a treatment
 - Look at changes over time in an outcome variable
- Measurements at the same unit are correlated with each other

Rheumatoid arthritis


Patients with rheumatoid arthritis and normal controls obtained an anti-inflammatory analgesic. Serum clonixin levels (in mg/ml) were measured 1/2, 1, 2, 4, 6 and 8 hours after administration of a single dose of three 250 mg tablets of clonixin.

	Time (in hours)					
Subject	1/2	1	2	4	6	8
1	12.70	32.20	42.00	19.80	7.09	2.10
2	18.48	40.24	45.87	15.61	5.58	3.25
3	6.70	20.60	27.70	11.49	2.48	0.56
4	24.20	16.20	7.84	5.30	0.38	0.00
:	:					

Patients with arthritis

Controls

How to analyze the data?

- Separate analysis at each time point
- Summary measure: mean, maximal value, time until maximal value, steepest slope, area under curve (AUC)
- Repeated measures anova, split-plot approach: subjects=main plots, subject × time=subplot. Critical assumption is sphericity: same variance of measurements at each time point and the same correlation between measurements taken at different times.
- Correction for deviation from sphericity: Greenhouse-Geisser, Huynh-Feldt

Anova table

Stratum	Source	df		F
Person	Treatment	1		$MS_{treat}/MS_{res-Person}$
	Residual	22		
	Total		23	
Person × Time	Time	5		$MS_{time}/MS_{res-Person \times time}$
	$\textit{Treatment} \times \textit{Time}$	5		
	Residual	110		
	Total		120	
	Total		143	

R Output

```
> mod1 = aov(clonixin ~ time*group + Error(id),data=rheuma.long)
> summary(mod1)
Error: id
         Df Sum Sq Mean Sq F value Pr(>F)
       1 658.4 658.44 3.0483 0.09477 .
group
Residuals 22 4752.0 216.00
Error: Within
                   Df Sum Sq Mean Sq F value Pr(>F)
time
                    5 22152.8 4430.6 42.0703 <2e-16 ***
                    5 138.2 27.6 0.2624 0.9326
time:group
Residuals
                110 11584.5 105.3
```

Other types of split-plot designs

- Repeated splitting: a third factor may be applied to sub-subplots
- Confounding interactions of sub-plot factors in split-plot designs
- Other designs for main plots, e.g. Latin squares
- Strip-plot design
 Block I Block II

 4 2 3 1 2 1 4 3