
Marianne Müller Applied Analysis of Variance and Experimental Design AS 2012

Solution to Series 4

1. a) Test for treatment differences without taking into account the initial hormone concentration.
Estimate the treatment means.

> feed <- read.table(file="http://stat.ethz.ch/Teaching/Datasets/feed.txt",header=TRUE)

> feed$Feeding <- as.factor(feed$Feeding)

> modF <- aov(Final~Feeding,data=feed)

> summary(modF)

Df Sum Sq Mean Sq F value Pr(>F)

Feeding 2 1083 541.4 0.629 0.54

Residuals 29 24971 861.1

> TukeyHSD(modF,"Feeding", conf.level=0.95)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Final ~ Feeding, data = feed)

$Feeding

diff lwr upr p adj

2-1 11.555556 -20.40036 43.51147 0.6489302

3-1 14.010101 -18.56238 46.58259 0.5446072

3-2 2.454545 -27.79581 32.70490 0.9781225

The treatment means are estimated as shown in the R-output below.

> summary.lm(aov(Final~Feeding-1,data=feed))

Call:

aov(formula = Final ~ Feeding - 1, data = feed)

Residuals:

Min 1Q Median 3Q Max

-55.000 -18.614 4.778 21.136 46.000

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Feeding1 220.444 9.781 22.54 <2e-16 ***

Feeding2 232.000 8.471 27.39 <2e-16 ***

Feeding3 234.455 8.848 26.50 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 29.34 on 29 degrees of freedom

Multiple R-squared: 0.9854, Adjusted R-squared: 0.9839

F-statistic: 653.4 on 3 and 29 DF, p-value: < 2.2e-16

b) Carry out a one-way analysis of variance for the differencesDi = Yi−xi of hormone measurements,
where Yi is the response after treatment and xi the baseline measurement.

> modF2 <- aov((Final-Initial)~Feeding,data=feed)

> summary(modF2)

Df Sum Sq Mean Sq F value Pr(>F)

Feeding 2 101 50.7 0.154 0.858

Residuals 29 9574 330.2

c) Include the baseline measurement in the model as a covariate and do an analysis of covariance
for the responses Yi. Estimate the adjusted treatment means.
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> modF3 <- aov(Final~Feeding+Initial,data=feed)

> summary(modF3)

Df Sum Sq Mean Sq F value Pr(>F)

Feeding 2 1083 541 10.45 0.000408 ***

Initial 1 23520 23520 453.88 < 2e-16 ***

Residuals 28 1451 52

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The estimates for the adjusted treatments means are calculated as follows.

> summary.lm(aov(Final~Feeding+Initial-1,data=feed))

Call:

aov(formula = Final ~ Feeding + Initial - 1, data = feed)

Residuals:

Min 1Q Median 3Q Max

-13.2306 -5.4712 0.3818 4.6875 13.0846

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Feeding1 -280.8018 23.6499 -11.87 1.91e-12 ***

Feeding2 -302.3932 25.1696 -12.01 1.45e-12 ***

Feeding3 -311.6981 25.7274 -12.12 1.19e-12 ***

Initial 2.4254 0.1138 21.30 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.199 on 28 degrees of freedom

Multiple R-squared: 0.9992, Adjusted R-squared: 0.999

F-statistic: 8257 on 4 and 28 DF, p-value: < 2.2e-16

d) Compare and comment the different results.

The results from tasks a) and b) show that the factor feeding is neither significant for the final hormone
concentration nor for the difference between the final and the initial concentration. This can also be
seen in Figure 1.
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Figure 1: Final vs. treatment and final-initial vs. treatment.

On the other hand, if we include the initial hormone concentration as a covariate, the factor feeding
is quite significant, as shown in task c). What is the reason for this?

The model used in b) is
(Final − Initial)ij = µ+Ai + εij ,
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where Ai denotes the effect of feed composition i. This is equivalent to

Finalij = µ+ 1 · Initialij +Ai + εij .

Roughly speaking, this means that we assume that the coefficient of the covariate initial is 1. Figure
2, however, demonstrates that this is not a reasonable assumption. When ploting the final versus the
initial concentration, the points clearly do not lie on the line with slope 1. This holds true for all three
treatment groups. The same argumentation also shows that the model in a) is not adequate since,
there, we effectively assume a coefficient of initial being 0.
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Figure 2: Final vs. initial.

Further, looking at fitted model of task c), we see that the estimated coefficient of initial is about 2.4
which is far from 1.

> summary.lm(modF3)

Call:

aov(formula = Final ~ Feeding + Initial, data = feed)

Residuals:

Min 1Q Median 3Q Max

-13.2306 -5.4712 0.3818 4.6875 13.0846

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -280.8018 23.6499 -11.873 1.91e-12 ***

Feeding2 -21.5914 3.5351 -6.108 1.37e-06 ***

Feeding3 -30.8963 3.8616 -8.001 1.03e-08 ***

Initial 2.4254 0.1138 21.304 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.199 on 28 degrees of freedom

Multiple R-squared: 0.9443, Adjusted R-squared: 0.9383

F-statistic: 158.3 on 3 and 28 DF, p-value: < 2.2e-16

In other words, a model which does not include the initial concentration as covariate has residuals
that are correlated. Consequently, the entire analysis, and in particular significance tests, is flawed. To
see that there is correlation in the residuals, we look at the initial division of the animals in Figure 3.
We can see that animals are not really divided randomly (in the first group example we have smaller
animals). With a randomized division of the animals we probably would have obtained better results
even for the ANOVA-table. When designing such a study aim at dividing probands at random into
the different groups. In any case you have to avoid that all probands with a common feature are in
the same group. This could lead to not noticing relevant effects or worse merging effects that do not
exist!
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Figure 3: Initial vs. treatment.

2. We take the first replicate of the dataset softdrinkANOVA.txt, i.e.

score sugar soda water temp BLOCK

1 159 1 1 1 1 2

3 168 2 1 1 1 1

5 158 1 1 2 1 1

7 166 2 1 2 1 2

9 175 1 2 1 1 1

11 179 2 2 1 1 2

13 173 1 2 2 1 2

15 179 2 2 2 1 1

17 164 1 1 1 2 1

19 187 2 1 1 2 2

21 163 1 1 2 2 2

23 185 2 1 2 2 1

25 168 1 2 1 2 2

27 197 2 2 1 2 1

29 170 1 2 2 2 1

31 194 2 2 2 2 2

We have 16 = 24 observations.
We wants to divide the observations in 16

8 = 2 different blocks such that we have a new factor (BLOCK)
with 2 levels.
Construction of the experiment:
call:

A=sugar-effect

B=soda-effect

C=water-effect

D=temp-effect

E=BLOCK-effect

The values of A,B,C and D are 1 or −1 (or equivalently + or −).
We just have to find the values of the column E to construct our experiment. We know that E = A·B ·C ·D
(because ABCD confounded) hence, the column BLOCK will be determined by multiplying the column of
A,B,C and D. We let 1 correspond to the first block and 2 correspond to the second block. We obtain:

> softBL

score sugar soda water temp BLOCK

1 159 1 1 1 1 2

3 168 2 1 1 1 1
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5 158 1 1 2 1 1

7 166 2 1 2 1 2

9 175 1 2 1 1 1

11 179 2 2 1 1 2

13 173 1 2 2 1 2

15 179 2 2 2 1 1

17 164 1 1 1 2 1

19 187 2 1 1 2 2

21 163 1 1 2 2 2

23 185 2 1 2 2 1

25 168 1 2 1 2 2

27 197 2 2 1 2 1

29 170 1 2 2 2 1

31 194 2 2 2 2 2

Note that there is no reason to divide an already performed experiment in different blocks, but if we have
to redo the experiment and can, for example, just test 8 combinations per day, the above division in blocks
is useful.

Now we make an analysis of variance of the data with the block factor:

> sB.fit <- aov(score~sugar+soda+water+temp+BLOCK,data=softBL)

> summary(sB.fit)

Df Sum Sq Mean Sq F value Pr(>F)

sugar 1 976.6 976.6 26.138 0.000456 ***

soda 1 451.6 451.6 12.086 0.005956 **

water 1 5.1 5.1 0.135 0.720472

temp 1 315.1 315.1 8.433 0.015728 *

BLOCK 1 3.1 3.1 0.082 0.780493

Residuals 10 373.6 37.4

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We conclude that sugar and soda are relevant at a 1% level (and temperature is relevant at a 5% level).
If, additionally, we want to compute the 2-way effects we just have to type

aov(score~(sugar+soda+water+temp+BLOCK)^2,data=softBL)

If we want to compute all the n-way effects we just have to type

> sB.2k <- aov(score~sugar*soda*water*temp*BLOCK,data=softBL)

In this case 3 and 4-way effects are confounded, it follows that we obtain the same result as in the previous
two function calls.
Furthermore, if we want to do an analysis of variance we can not look at all the 1 and 2-way effects because
otherwise we lose all the degrees of freedom for the residuals!

Remark
With sB.2k$coef we can see that the 3 and 4-way effects are confounded (Effects are market with NA).

3. We have the following:

• 8 = 23 = 2k−l runs,

• 5 two-level factors, thus: k = 5,

• consequently we need l = 5− 3 = 2 ”confounding relations”.
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Solution:
STEP 1:
Write down the complete 23 table.

A B C
– – –
+ – –
– + –
+ + –
– – +
+ – +
– + +
+ + +

STEP 2:
Define the ”confounding relations”. (If not specified otherwise confounding relations can be chosen quite
freely).
We try to maximize the resolution without prior information on the dataset and choose: D = −A ·B and
E = −A · C (The − is not necessary, but doing so our first run will be (1)).
We obtain:

A B C D E
– – – – –
+ – – + +
– + – + –
+ + – – +
– – + – +
+ – + + –
– + + + +
+ + + – –

STEP 3:
Now read every row of the matrix marking the factors with + for high level:

A B C D E Treatm.
– – – – – (1)
+ – – + + ade
– + – + - bd
+ + – – + abe
– – + – + ce
+ – + + – acd
– + + + + bcde
+ + + – – abc

Which effects are confounded with each other?
Because l = 2 every effect is confounded with 2l = 22 = 4 effects.
We know: D = −A ·B, so the effects of D and AB are not distinguishable (we write D ∼= AB).

From D ∼= AB and E ∼= AC we get:

• I ∼= ABD ∼= ACE ∼= BCDE

By multiplication we find:

• A ∼= BD ∼= CE ∼= ABCDE

• B ∼= AD ∼= ABCE ∼= CDE

• C ∼= AE ∼= BDE ∼= ABCD

• D ∼= AB ∼= BCE ∼= ACDE

• E ∼= AC ∼= BCD ∼= ABDE

• BC ∼= ED ∼= ABE ∼= ACD
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• BE ∼= CD ∼= ABC ∼= AED

Remark
The resolution of the experiment can be calculated as follows: take two effects which are confounded and
count the number of letters you have. The minimal result you can obtain is the resolution. In our case:

- B & AD → 3 (letters)

- D & AB → 3 (letters)

- BCD & ACDE → 7 (letters)

- ...

The resolution is 3 (not very high).

Can we improve the resolution by changing the relationships D ∼= AB and E ∼= AC?1

Let us think about it:
We can make 8 observations (7 degrees of freedom). If we want a resolution of 4 there has to be no
confounding between the main effects (with 1 letter) and the 2-way effects (with 2 letters). Naturally we
can not have that A ∼= D or something similar because otherwise the resolution would be 2. Also we
can not have that AB ∼= AC because then B ∼= C. Consequently 3 different 2-way effects can not be
confounded all together without having the undesirable consequence that two main effects are confounded.

Summarising: If we want a resolution of 4:
We have 5 main effects and at least 10/2=5 2-way effect which can NOT be confounded! This makes 10
in total. There are just 7 degrees of freedom (we can look at most at 7 different effects), therefore it is
impossible to find a structure with resolution 4!

4. a) Find n und k for this 2n−k− design. We have: 8 = 23 = 2n−k observations. Furthermore we have
n = 4 different factors and k = 4− 3 = 1.

b) Determine the alias structure of this design. Let us call the effects of ”Side-to-side”, ”Yarn type”,
”Pick density” and ”Air pressure”A,B,C and D respectively. Then we have

A B C D Treatm. Strength
– – – – (1) 24.50
+ – – + ad 22.05
– + – + bd 24.52
+ + – – ab 25.00
– – + + cd 25.68
+ – + – ac 24.51
– + + – bc 24.68
+ + + + abcd 24.23

with the alias D = ABC.
To find out which terms are aliased together it is enough to multiply the terms by I = ABCD. So

D = ABC

A = BCD

B = ACD

C = ABD

AB = CD

AC = BD

AD = BC

1The answer to this question is not required to solve the exercise and it is not trivial.



8

c) Calculate estimates of the effects. Estimates:

Â =
1

4
(−24.5 + 22.05− 24.52 + 25− 25.68 + 24.51− 24.68 + 24.23) = −0.8975

B̂ =
1

4
(−24.5− 22.05 + 24.52 + 25− 25.68− 24.51 + 24.68 + 24.23) = 0.4225

Ĉ =
1

4
(−24.5− 22.05− 24.52− 25 + 25.68 + 24.51 + 24.68 + 24.23) = 0.7575

D̂ =
1

4
(−24.5 + 22.05 + 24.52− 25 + 25.68− 24.51− 24.68 + 24.23) = −0.5525

ÂB = ĈD =
1

4
(+24.5− 22.05− 24.52 + 25 + 25.68− 24.51− 24.68 + 24.23) = 0.9125

ÂC = B̂D =
1

4
(+24.5− 22.05 + 24.52− 25− 25.68 + 24.51− 24.68 + 24.23) = 0.0875

ÂD = B̂C =
1

4
(+24.5 + 22.05− 24.52− 25− 25.68− 24.51 + 24.68 + 24.23) = −1.0625

d) Suppose that additional experimentation shows that only effects whose magnitudes exceed 0.35
are important. Wich factors or interactions have a significant effect on fabric strength? A factor
is significant if its absolute value is larger than 0.35. In this case we have that A,B,C,D,AB and
AD are significant.

e) Suppose that additional experiments show that the AB and AD interactions are not significant.
If the objective of the study is to maximize fabric strength, what setting of of each factor do you
recommend? With the assumption and the calculations of point ?? we do not care about the two
(or more)-way-effects.
The effect of A is −0.8975 < 0 which means that by changing the level of the factor A from low to
high we lose strength. Consequently we choose:

Effect Estimate R 0 Best

A -0.8975 < 0 low
B 0.4225 >0 high
C 0.7575 > 0 high
D -0.5525 < 0 low


