
Marianne Müller Applied Analysis of Variance and Experimental Design AS 2013

Solution to Series 2

1. a) Check with an analysis of variance if there are differences between treatments.

R hints:

• Reading data in:

> t.url <- "http://stat.ethz.ch/Teaching/Datasets/WBL/lentil.dat"

> d.len <- read.table(t.url,header=T)

> d.len$BLOCK <- factor(d.len$BLOCK)

> d.len$TR <- factor(d.len$TR)

• Plotting the data:

> plot(as.numeric(d.len$TR),d.len$Y,type="n",xlab="TR",ylab="Y")

> text(as.numeric(d.len$TR),d.len$Y,labels=d.len$BLOCK,cex=1.2)
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The plot shows clearly that there are big differences between the 7 treatments. The control issues
the lowest values, while the values for treatments using no artificial manure (TR = 2, 3, 4) are clearly
lower than treatments using artificial manure (TR = 5, 6, 7).

2-way-ANOVA without interactions:

> r.len <- aov(Y ~ TR + BLOCK, d.len)

> summary(r.len)

Df Sum Sq Mean Sq F value Pr(>F)

TR 6 115792 19299 117.30 6.04e-10 ***

BLOCK 2 3904 1952 11.86 0.00144 **

Residuals 12 1974 165

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The ANOVA table confirms the above conclusion about the treatments (factor TR) being significantly
different. The p-value is smaller than 0.001.
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> par(mfrow=c(2,2))

> plot(r.len)
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Checking the residual analysis plots we can see an extreme value (observation 19) in the Tukey-
Anscombe plot. The normal plot shows no real deviation from the assumption of normality.

b) In order to detect existing differences between treatments, we consider the following contrasts:

Treatment
Contrast λ1 λ2 λ3 λ4 λ5 λ6 λ7

L1 −6 +1 +1 +1 +1 +1 +1
L2 0 −1 −1 −1 +1 +1 +1
L3 0 +2 −1 −1 +2 −1 −1
L4 0 0 −1 +1 0 −1 +1
L5 0 −2 +1 +1 +2 −1 −1
L6 0 0 +1 −1 0 −1 +1

Are these contrasts orthogonal? What question can be answered by testing them?

All contrasts are orthogonal since
∑7

i=1 λji · λki = 0 for all j 6= k:.
Example for contrasts L1 and L2:

7∑
i=1

λ1i · λ2i = −6 · 0 + 1 · (−1) + 1 · (−1) + 1 · (−1) + 1 · 1 + 1 · 1 + 1 · 1 = 0 .

The contrasts describe the following comparisons:
contrast comparison

L1 control vs rest
L2 artificial manure vs no artificial manure
L3 manual weeding vs herbicidal weeding
L4 spray herbicide before vs. spray herbicide afterwards
L5 interaction artificial manure * (manual weeding vs herbicidal weeding)
L6 interaction artificial manure * (spray herbicide before vs. spray herbicide afterwards)

The simplest way to detect orthogonality is by combining the contrasts to a matrix C (e.g. using
cbind) and looking at CTC. The matrix CTC is diagonal if and only if all contrasts are orthogonal.

c) Test the contrasts.

The following procedure only works with orthogonal contrasts.
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> lent.contr <- cbind(c(-6,1,1,1,1,1,1), c(0,-1,-1,-1,1,1,1),

c(0,2,-1,-1,2,-1,-1), c(0,0,-1,1,0,-1,1),

c(0,-2,1,1,2,-1,-1), c(0,0,1,-1,0,-1,+1))

> contrasts(d.len$TR) <- lent.contr

> r.len <- aov(Y ~ TR + BLOCK, data = d.len)

> summary(r.len,split=list(TR=list(L1=1,L2=2,L3=3,L4=4,L5=5,L6=6)))

Df Sum Sq Mean Sq F value Pr(>F)

TR 6 115792 19299 117.300 6.04e-10 ***

TR: L1 1 73201 73201 444.929 7.49e-11 ***

TR: L2 1 34060 34060 207.025 6.25e-09 ***

TR: L3 1 8251 8251 50.149 1.28e-05 ***

TR: L4 1 271 271 1.646 0.22378

TR: L5 1 2 2 0.014 0.90884

TR: L6 1 7 7 0.041 0.84288

BLOCK 2 3904 1952 11.864 0.00144 **

Residuals 12 1974 165

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary.lm(r.len)

Call:

aov(formula = Y ~ TR + BLOCK, data = d.len)

Residuals:

Min 1Q Median 3Q Max

-23.238 -7.571 2.143 6.143 16.762

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 357.143 4.848 73.668 < 2e-16 ***

TR1 24.103 1.143 21.093 7.49e-11 ***

TR2 43.500 3.023 14.388 6.25e-09 ***

TR3 15.139 2.138 7.082 1.28e-05 ***

TR4 -4.750 3.703 -1.283 0.223775

TR5 0.250 2.138 0.117 0.908839

TR6 -0.750 3.703 -0.203 0.842878

BLOCK2 -14.286 6.856 -2.084 0.059240 .

BLOCK3 -33.286 6.856 -4.855 0.000395 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 12.83 on 12 degrees of freedom

Multiple R-squared: 0.9838, Adjusted R-squared: 0.973

F-statistic: 90.94 on 8 and 12 DF, p-value: 1.47e-09

On a 5% level contrasts L1, L2 and L3 are significant. Contrasts L4, L5 and L6 are not significant.

Remark:

• In the case of nonorthogonal contrasts a separate model has to be computed for each contrast.
More precisely: Contrasts which are orthogonal can be combined analysed using the above proce-
dure. All other contrast have to be analysed separately.

• The matrix of contrasts for TR has the form (see also d)):

> [,1] [,2] [,3] [,4] [,5] [,6]

[1,] -6 0 0 0 0 0

[2,] 1 -1 2 0 -2 0

[3,] 1 -1 -1 -1 1 1

[4,] 1 -1 -1 1 1 -1

[5,] 1 1 2 0 2 0

[6,] 1 1 -1 -1 -1 -1

[7,] 1 1 -1 1 -1 1
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d) Write down the design matrix. (Source: R.G. Peterson, Agricultural Field experiments - Design

and Analysis, 1994, p. 113)

> model.matrix(r.len)

(Intercept) TR1 TR2 TR3 TR4 TR5 TR6 BLOCK2 BLOCK3

1 1 -6 0 0 0 0 0 0 0

2 1 1 -1 2 0 -2 0 0 0

3 1 1 -1 -1 -1 1 1 0 0

4 1 1 -1 -1 1 1 -1 0 0

5 1 1 1 2 0 2 0 0 0

6 1 1 1 -1 -1 -1 -1 0 0

7 1 1 1 -1 1 -1 1 0 0

8 1 -6 0 0 0 0 0 1 0

9 1 1 -1 2 0 -2 0 1 0

10 1 1 -1 -1 -1 1 1 1 0

11 1 1 -1 -1 1 1 -1 1 0

12 1 1 1 2 0 2 0 1 0

13 1 1 1 -1 -1 -1 -1 1 0

14 1 1 1 -1 1 -1 1 1 0

15 1 -6 0 0 0 0 0 0 1

16 1 1 -1 2 0 -2 0 0 1

17 1 1 -1 -1 -1 1 1 0 1

18 1 1 -1 -1 1 1 -1 0 1

19 1 1 1 2 0 2 0 0 1

20 1 1 1 -1 -1 -1 -1 0 1

21 1 1 1 -1 1 -1 1 0 1

attr(,"assign")

[1] 0 1 1 1 1 1 1 2 2

attr(,"contrasts")

attr(,"contrasts")$TR

[,1] [,2] [,3] [,4] [,5] [,6]

1 -6 0 0 0 0 0

2 1 -1 2 0 -2 0

3 1 -1 -1 -1 1 1

4 1 -1 -1 1 1 -1

5 1 1 2 0 2 0

6 1 1 -1 -1 -1 -1

7 1 1 -1 1 -1 1

attr(,"contrasts")$BLOCK

[1] "contr.treatment"

2. a) Test the hypothesis, that all types have the same response time.

The model is:
Yij = µ+Ai + εij , εij ∼ N (0, σ2)

We calculate means and treatment effects:

Type Mean Âi

T1 9 12 10 8 15 10.8 -3
T2 20 21 23 17 30 22.2 8.4
T3 6 5 8 16 7 8.4 -5.4
Mean 13.8 0

and the ANOVA-table:
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> v <- rep(1,5)

> y <- c(9,12,10,8,15,20,21,23,17,30,6,5,8,16,7)

> circ <- data.frame(Type=c(v,v*2,v*3),Y=y)

> circ$Type <- factor(circ$Type)

> circ.fit <- aov(formula =Y~Type , data=circ)

> summary(circ.fit)

Df Sum Sq Mean Sq F value Pr(>F)

Type 2 543.6 271.8 16.08 0.000402 ***

Residuals 12 202.8 16.9

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The P-value is smaller than 0.001 (and also smaller than 0.05), that means we reject the hypothesis:
A1 = A2 = A3 = 0.
The same conclusion can be obtained by using the critical F-value instead of the P-value:

F crit
2;12(95%) = 3.89 < 16.083

Consequently the hypothesis that all Ai = 0 is rejected.

Calculations by hand:

543.6 =
∑
i

JiA
2
i = 5 · 32 + 5 · 8.42 + 5 · 5.42

202.8 =
∑
ij

(yij − µ̂−Ai)
2 (where µ̂ = 13.8)

MS =
SS

Df

F =
MStype

MSres
=

271.8

16.9
= 16.08

Remark: If our calculations are correct, the total square error is equal to the sum of the SS, i.e.∑
SS = SStype +SSres = 543.6+202.8 = 746.4SStot =

∑
(yij− µ̂)2 =

∑
(yij−13.8)2 = 746.4

b) Use Tukey’s method to compare pairs of treatment means.

With the function ”TukeyHSD” we can compare pairs of treatment means.

> TukeyHSD(circ.fit,"Type", conf.level=0.95)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Y ~ Type, data = circ)

$Type

diff lwr upr p adj

2-1 11.4 4.463555 18.336445 0.0023656

3-1 -2.4 -9.336445 4.536445 0.6367043

3-2 -13.8 -20.736445 -6.863555 0.0005042

The result can be interpreted as follows:

Type 2 is different from the other two types. The difference between type 1 and 3 is not significantly
different from 0.

c) Construct a set of orthogonal contrasts, assuming that circuit type 2 was different from the other
two.
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i 1 2 3
yi. 10.8 22.2 8.4

Test Contrast λ1 λ2 λ3 L̂ ω :=
∑

i(λ
2
i /J) SSL = L̂2/ω

T2 vs. other L1 1 -2 1 -25.2 1.2 529.2
T1 vs. T3 L2 1 0 -1 2.4 0.4 14.4

with R we can define the contrasts as follows:

> circ.contr <- cbind(c(1,-2,1),c(1,0,-1))

> contrasts(circ$Type) <- circ.contr

d) Test the contrasts.

Using the SSL we calculate the MSL for the contrasts. By dividing MSL by MSres, we obtain the
F-value. The results are listed in the next R output.

Mean Sq =
Sum Sq

Df

F Value =
Mean Sq

MS of the Residuals

With R we obtain:

> circ.ctr.fit <- aov(formula =Y~Type , data=circ)

> summary(circ.ctr.fit,split=list(Type=list(L1=1,L2=2)))

Df Sum Sq Mean Sq F value Pr(>F)

Type 2 543.6 271.8 16.083 0.000402 ***

Type: L1 1 529.2 529.2 31.314 0.000117 ***

Type: L2 1 14.4 14.4 0.852 0.374155

Residuals 12 202.8 16.9

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

3. a) Calculate the overall mean, treatment and block means. Make a 2×3 contingency table with the
residuals.

Model: Yij = µ+ Treati + blockj + εij , εij ∼ N (0, σ2), blockj ∼ N (0, σ2
b ).

Overall mean:
µ̂ =20

Table of residuals and means:
Residuals: A B C Block means
Technician 1 2 1 -3 15
Technician 2 -2 -1 3 25
Treatment means 10 40 10

b) Write down the complete anova table. How large is σ̂?

We can construct the following ANOVA table.

> Po.aov <- aov(formula =Y~TR+TE , data=Po)

> summary(Po.aov)

Df Sum Sq Mean Sq F value Pr(>F)

TR 2 1200 600 42.86 0.0228 *

TE 1 150 150 10.71 0.0820 .

Residuals 2 28 14

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We calculate σ̂ as follows: σ̂ =
√

14=3.74

4. a) Plot the data. With the functions
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> st <- read.table("http://stat.ethz.ch/Teaching/Datasets/strawb.dat",header=TRUE)

> st$land <- as.factor(st$land)

> plot((st$gtype),st$yield,xlab="gtype",ylab="yield")
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and

> plot(st$land,st$yield,xlab="plot of land",ylab="yield")
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we plot the
data.
The first figure shows a plot of gene type (x-axis) against yield (y-axis).

We notice that the gene type ”BB” seems to influence the yield. (Median and box of the gene ”BB”
are quite different from the ones of the genes ”AA” and ”AB”). There is also some variability between
different plots of land as can bee seen in the second graphic.

b) Do an analysis of variance on the data.

> st.a <- aov(formula=yield~gtype+land,data=st)

> summary(st.a)
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Df Sum Sq Mean Sq F value Pr(>F)

gtype 2 289.6 144.82 5.406 0.0145 *

land 9 116.0 12.89 0.481 0.8687

Residuals 18 482.3 26.79

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The factor ”genotype” is significant on a 5% level, but not on a 1% level.
The block factor ”land” does not have much influence on the yield.

c) Do an analysis of variance without taking into account land effects.
We analyse the data without the block factor.

> st.n <- aov(formula=yield~gtype-land,data=st)

> summary(st.n)

Df Sum Sq Mean Sq F value Pr(>F)

gtype 2 289.6 144.82 6.536 0.00484 **

Residuals 27 598.2 22.16

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The factor ”genotype” is now significant on a 1% level.

d) Compare the results in b) and c). Why are the degrees of freedom different? Which result would
you use? The degree of freedom of the residuals are now 27 = 18+9 because we are not considering
block effects any more. With other words ”the effect of the plot is now considered as part of the
error”.

Model c) appears to be favorable, but we would like to find out why blocking was not useful.


