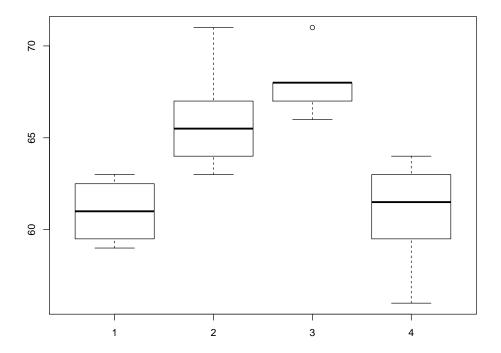
Solution to Series 1

1. Read in the data:

- > blood <-c(62,60,63,59,63,67,71,64,65,66,68,66,71,67,68,68,56,62,60,61,63,64,63,59)
- > tr <- c(1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4)
- > b.data <- data.frame(cbind(blood,tr))</pre>
- > b.data\$tr <- as.factor(b.data\$tr)</pre>
- a) Plot the data and compute overall mean and group means.
 - > plot(b.data\$tr,b.data\$blood)



We see that the coagulation times vary a lot between different diets whereas the variation within a diet group is quite small.

In addition compute the overall mean and the group means. Do this by hand using a calculator.

overall mean = 64

treatment	group means
А	61
В	66
C	68
D	61

b) Compute the group sample variances s_i^2 and the pooled estimate of variance MS_{res} . Do this also by hand. For MS_{res} compute first SS_{res} .

$$SS_{res}$$
=112 MS_{res} =5.6

treatment	s_i^2
Α	3.333
В	8
C	2.8
D	6.85

c) Compute MS_{treat} and compare it with MS_{res} (without formal test). Compute MS_{treat} by hand. First compute SS_{treat} and with it MS_{treat} .

$$SS_{treat}$$
=228 MS_{treat} =76

We see that the estimated variance between groups is substantially bigger then the estimated variance within groups. This could indicate an effect of diet on blood coagulation time.

- d) Construct an analysis of variance table. Use the R-function aov(....).
 - > summary(fit.blood)

Compare your by hand computed SS_{res} , SS_{treat} , MS_{res} and MS_{treat} with the output of summary(fit.blood).

e) Does the diet have a significant effect on coagulation time? From the output above we see that the diet has an significant effect on blood coagulation time.

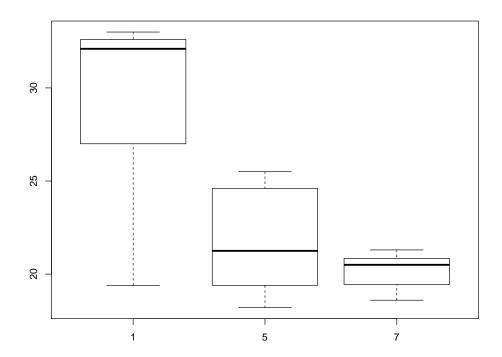
```
F-value = 13.57 P-value = 4.65847098469477e-05
```

- 2. a) Identify the parameters in a one-way analysis of variance model. The parameters in the one-way analysis of variance model $Y_{ij} = \mu + A_i + \epsilon_{ij}$ with $\sum A_i = 0$ are: $\mu = 7.2, A_1 = -2.1, A_2 = -0.9, A_3 = 0.7, A_4 = 2.3$ and $\sigma^2 = 2.8^2$.
 - b) There are 25 randomly selected staff members for each group. What are $E(MS_{res})$ and $E(MS_{treat})$? What do you conclude? $E(MS_{res}) = \sigma^2 = 7.84$ $E(MS_{treat}) = \sigma^2 + 25 \cdot \frac{\sum_{i=1}^4 A_i^2}{3} = 7.84 + 25 \cdot 3.666 = 99.5066$

Therefore we can conclude that the duration of employment has an effect on the job satisfaction. Because $E(MS_{treat})$ is way larger then $E(MS_{res})$.

- 3. Read in the data:

 - a) Plot the data.
 - > plot(r.data\$strain,r.data\$N2)



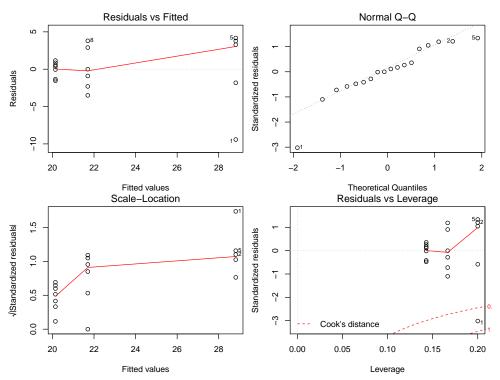
The variance between strains looks larger then the variance within strains. This could be an indicator for a significant difference of nitrogen contents for different Rhizobium strains.

b) Carry out an analysis of variance.

The F-value equals 9.72. By looking at the P-value we see that there are significant differences in nitrogen contents for different strains of Rhizobium.

c) Check the model assumptions.

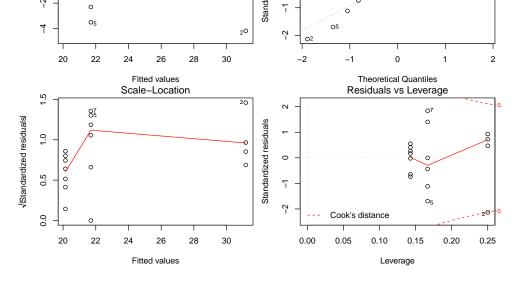
```
> par(mfrow=c(2,2))
> plot(fit.n2)
```



From the diagnostic plots we see that there exists an outlier. On the basis of the plots, observation number 1 can be clearly identified as an outlier. After removing the outlier we repeat the analysis.

```
> rr.data <- r.data[-1,]
> fit.n2mod <- aov(rr.data$N2~rr.data$strain)</pre>
> summary(fit.n2mod)
                 Df Sum Sq Mean Sq F value
                                                 Pr(>F)
                     333.2 166.60
                                         32.6 5.39e-06 ***
                  2
rr.data$strain
                                5.11
Residuals
                 14
                       71.5
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
> par(mfrow=c(2,2))
> plot(fit.n2mod)
               Residuals vs Fitted
                                                          Normal Q-Q
           07
           0
                                        Standardized residuals
Residuals
                                           0
```

-2



We see that now the model assumptions are fulfilled.