
Dr. Marcel Dettling Applied Statistical Regression SS 2013

Solution to Series 7

1. Poisson Regression

a) Since we have discrete count data (and an unknown maximum), we fit a Poisson regression model.
I.e. we model the logarithm of the rate λ as a linear function of the predictors. We start with the
categorical variable sample as the only predictor, i.e. we estimate the rate in each of the three samples
batches.

> # Read in the data

> count <- c(31,28,33,38,28,32,39,27,28,39,21,39,45,37,

41,14,16,18,9,21,21,14,12,13,13,14,20,24,

15,24,18,13,19,14,15,16,14,19,25,16,16,18,9,10,9)

> probe <- factor(rep(1:3, each = 15))

> vol <- c(rep(40,15), rep(20,30))

> nema <- data.frame(probe,count,vol)

> # Fit Poisson Regression Model

> mod1 <- glm(count~probe, family=poisson, data=nema)

> summary(mod1)

Call:

glm(formula = count ~ probe, family = poisson, data = nema)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.3580 -0.9031 -0.1267 0.8846 2.2417

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.51849 0.04446 79.146 <2e-16 ***

probe2 -0.71311 0.07751 -9.200 <2e-16 ***

probe3 -0.78412 0.07941 -9.875 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 188.602 on 44 degrees of freedom

Residual deviance: 52.528 on 42 degrees of freedom

AIC: 276.14

Number of Fisher Scoring iterations: 4

The residual deviance is on the order of the degrees of freedom, suggesting that the model fits well.
Indeed, we cannot reject the null hypothesis, that the model fits:

> pchisq(deviance(mod1), df.residual(mod1), lower=FALSE)

[1] 0.127964

Also, looking at the Tukey-Anscombe plot, it seems plausible that the Pearson residuals follow a
standard Normal distribution:

> xx <- predict(mod1, type="link")

> yy <- resid(mod1, type="pearson")

> plot(xx, yy, main="Tukey-Anscombe Plot...")

> lines(loess.smooth(xx, yy), col="red")
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b) There is a large difference between probe 1 and the other two. However, probe 1 has a different
volume which could account for the observed difference.

c) We now model the log-rate as a linear function of the log-volume, i.e.

λi = exp(β0 + β1 log voli) (1)

> mod2 <- glm(count~log(vol), family=poisson, data=nema)

> summary(mod2)

Call:

glm(formula = count ~ log(vol), family = poisson, data = nema)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.3580 -0.7674 -0.1267 0.7368 2.0861

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.46223 0.30991 -1.491 0.136

log(vol) 1.07911 0.09197 11.733 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 188.602 on 44 degrees of freedom

Residual deviance: 53.131 on 43 degrees of freedom

AIC: 274.74

Number of Fisher Scoring iterations: 4

Again, judging from the residual deviance, the model fits well.

d) If we re-write the model equation (1) from the last part, we get:

λi = eβ0 · volβ1

i

Hence, for β1 = 1, λ is proportional to vol. We check whether β1 = 1 is reasonable by computing its
confidence interval:

> confint(mod2)

2.5 % 97.5 %

(Intercept) -1.0721154 0.1430996

log(vol) 0.8988966 1.2595331
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The confidence interval for β1 does include 1, so λ = c · vol seems to be a reasonable approximation
(where c = eβ0).

e) We now fit the model λ = c · vol by constraining β1 to 1:

> mod3 <- glm(count~offset(log(vol)), family=poisson, data=nema)

> summary(mod3)

Call:

glm(formula = count ~ offset(log(vol)), family = poisson, data = nema)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.2127 -0.8656 -0.1033 0.8548 2.0091

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.19744 0.03186 -6.196 5.78e-10 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 53.871 on 44 degrees of freedom

Residual deviance: 53.871 on 44 degrees of freedom

AIC: 273.48

Number of Fisher Scoring iterations: 4

We get a very similar residual deviance as before, so also this model fits well.

2. a) > library(foreign)

> pension <- read.dta("http://fmwww.bc.edu/ec-p/data/wooldridge2k/pension.dta")

> pension$pctstck <- factor(pension$pctstck)

> pension$choice <- factor(pension$choice)

> pension$female <- factor(pension$female)

> pension$married <- factor(pension$married)

> pension$black <- factor(pension$black)

> pension$prftshr <- factor(pension$prftshr)

> table(pension$choice,pension$pctstck)

0 50 100

0 35 28 24

1 43 57 39

> prop.table(table(pension$choice,pension$pctstck),1)

0 50 100

0 0.4022989 0.3218391 0.2758621

1 0.3093525 0.4100719 0.2805755

> mosaicplot(table(pension$choice,pension$pctstck), color=TRUE,

main="choice vs. pctstck",xlab="choice",ylab="pctstck")
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People with freedom to choose their investment strategy avoid portfolios mainly consisting on
obligations.

b) > pension$inc <- rep(NA,226)

> pension$inc[pension$finc25==1] <- 1

> pension$inc[pension$finc35==1 | pension$finc50==1] <- 2

> pension$inc[pension$finc75==1 | pension$finc100==1 | pension$finc101==1] <- 3

> pension$inc <- factor(pension$inc,labels=

c("below 25'000","25'000 to 50'000", "above 50'000"))
> table(pension$inc,pension$pctstck)

0 50 100

below 25'000 22 9 14

25'000 to 50'000 28 37 28

above 50'000 19 33 15

> prop.table(table(pension$inc,pension$pctstck),1)

0 50 100

below 25'000 0.4888889 0.2000000 0.3111111

25'000 to 50'000 0.3010753 0.3978495 0.3010753

above 50'000 0.2835821 0.4925373 0.2238806

> mosaicplot(table(pension$inc,pension$pctstck), color=TRUE,

main="income vs. pctstck",xlab="income",ylab="pctstck")
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From the mosaic plots we can clearly see that people with a higher income are more likely to
have mixed investment strategies.
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c) > library(nnet)

> pension$pct <- factor(pension$pctstck, levels = c("50","0","100"),

ordered = FALSE)

> str(pension)

'data.frame': 226 obs. of 21 variables:

$ id : int 38 152 152 182 222 226 233 233 253 314 ...

$ pyears : int 1 6 25 20 35 13 2 10 26 5 ...

$ prftshr : Factor w/ 2 levels "0","1": 1 2 2 2 1 2 1 2 1 1 ...

$ choice : Factor w/ 2 levels "0","1": 2 2 2 1 2 1 2 1 1 2 ...

$ female : Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 2 2 1 ...

$ married : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...

$ age : int 64 56 56 63 67 64 64 64 69 60 ...

$ educ : int 12 13 12 12 12 11 12 12 12 14 ...

$ finc25 : int 0 0 0 1 0 0 1 1 0 0 ...

$ finc35 : int 0 0 0 0 1 0 0 0 1 0 ...

$ finc50 : int 1 0 0 0 0 0 0 0 0 0 ...

$ finc75 : int 0 1 1 0 0 1 0 0 0 0 ...

$ finc100 : int 0 0 0 0 0 0 0 0 0 0 ...

$ finc101 : int 0 0 0 0 0 0 0 0 0 1 ...

$ wealth89: num 77.9 154.9 154.9 232.5 179 ...

$ black : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...

$ stckin89: int 1 1 1 1 0 1 0 0 0 1 ...

$ irain89 : int 1 1 1 1 1 0 1 1 0 1 ...

$ pctstck : Factor w/ 3 levels "0","50","100": 1 2 2 3 3 1 3 3 2 2 ...

$ inc : Factor w/ 3 levels "below 25'000",..: 2 3 3 1 2 3 1 1 2 3 ...

$ pct : Factor w/ 3 levels "50","0","100": 2 1 1 3 3 2 3 3 1 1 ...

- attr(*, "datalabel")= chr ""

- attr(*, "time.stamp")= chr " 3 Dec 2001 14:45"

- attr(*, "formats")= chr "%9.0g" "%9.0g" "%9.0g" "%9.0g" ...

- attr(*, "types")= int 105 98 98 98 98 98 98 98 98 98 ...

- attr(*, "val.labels")= chr "" "" "" "" ...

- attr(*, "var.labels")= chr "family identifier" "years in pension plan" "=1 if profit sharing plan" "=1 if can choose method invest" ...

- attr(*, "version")= int 6

Here, we re-arrange the levels because R automatically takes the first one as the baseline.

The predictors age and educ are counts, therefore we transform them:

> pension$age <- sqrt(pension$age)

> pension$educ <- sqrt(pension$educ)

Now we fit a multinomial logit model:

> mod1 <- multinom(pct~choice+age+educ+female+married+black+inc

+wealth89+prftshr, data=pension)

# weights: 36 (22 variable)

initial value 202.144661

iter 10 value 184.319612

iter 20 value 182.233592

iter 30 value 182.021332

final value 182.021109

converged

> summary(mod1)

Call:

multinom(formula = pct ~ choice + age + educ + female + married +

black + inc + wealth89 + prftshr, data = pension)

Coefficients:

(Intercept) choice1 age educ female1

0 -6.506605 -0.4755586 1.5645957 -1.1083136 -0.2291351

100 5.305235 0.1169744 -0.3346569 -0.6171987 -0.2234747

married1 black1 inc25'000 to 50'000
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0 -0.7207851 -0.45888909 -1.274006

100 -0.5213525 0.02713282 -0.557277

incabove 50'000 wealth89 prftshr1

0 -1.0767704 0.0008916188 0.2189576

100 -0.9811298 0.0005537250 1.2438281

Std. Errors:

(Intercept) choice1 age educ female1

0 0.02298326 0.4197700 0.2780089 0.5681811 0.4238711

100 0.02599240 0.4309903 0.2866715 0.5774954 0.4299014

married1 black1 inc25'000 to 50'000 incabove 50'000
0 0.5605508 0.6947724 0.5548439 0.6468224

100 0.5507528 0.6439294 0.5767501 0.6878132

wealth89 prftshr1

0 0.0008073750 0.5448665

100 0.0008984634 0.5120854

Residual Deviance: 364.0422

AIC: 408.0422

d) > mod2 <- multinom(pct~age+educ+female+married+black+inc+wealth89+prftshr, data=pension)

# weights: 33 (20 variable)

initial value 202.144661

iter 10 value 185.178630

iter 20 value 183.167364

iter 30 value 183.084823

final value 183.084802

converged

> pchisq(deviance(mod2) - deviance(mod1), mod1$edf - mod2$edf, lower=FALSE)

[1] 0.3451787

From the deviance differences based Chi-squared test we can see that the predictor choice is not
significant.
Looking at the summary output of mod1, we can see that, on the one hand, the odds of an
investment strategy consisting mainly in obligations versus a mixed one decrease by 42% (e−0.53 =
0.58) when the people have the freedom to choose their investment strategy. On the other hand,
the odds of investment strategies consisting mainly in stocks versus mixed one increase about
14% (e0.13 = 1.14) when the people can choose their strategy.

e) > predict(mod1,type="probs",newdata=data.frame(choice="0",age=

sqrt(60), educ=sqrt(13.5),

female="0",married="0",

black="0",inc="above 50'000",
wealth89=200,prftshr="1"))

50 0 100

0.1775220 0.4199362 0.4025418

> predict(mod1,type="probs",newdata=data.frame(choice="1",age=

sqrt(60), educ= sqrt(13.5),

female="0",married="0",

black="0",inc="above 50'000",
wealth89=200,prftshr="1"))

50 0 100

0.1992342 0.2929292 0.5078366

Or we can also obtain from R the level of the response in which the probability is maximized:

> predict(mod1,type="class",newdata=data.frame(choice="0",age=

sqrt(60), educ=sqrt(13.5),

female="0",married="0",

black="0",inc="above 50'000",
wealth89=200,prftshr="1"))
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[1] 0

Levels: 50 0 100

> predict(mod1,type="class",newdata=data.frame(choice="1",age=

sqrt(60), educ= sqrt(13.5),

female="0",married="0",

black="0",inc="above 50'000",
wealth89=200,prftshr="1"))

[1] 100

Levels: 50 0 100

Note that for this person, the probability of having a mixed investment strategy increases and
of having a strategy mainly consisting on obligations decreases when we specify that he had the
freedom to choose his strategy.

3. Logistic Regression for Binary Data

a) We fit a logitic regression for the binary variable purchase with predictors income and age:

> car <- read.table("http://stat.ethz.ch/Teaching/Datasets/car.dat",header=T)

> fit <- glm(purchase ~ income + age, data=car, family=binomial)

> summary(fit)

Call:

glm(formula = purchase ~ income + age, family = binomial, data = car)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6189 -0.8949 -0.5880 0.9653 2.0846

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.73931 2.10195 -2.255 0.0242 *

income 0.06773 0.02806 2.414 0.0158 *

age 0.59863 0.39007 1.535 0.1249

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 44.987 on 32 degrees of freedom

Residual deviance: 36.690 on 30 degrees of freedom

AIC: 42.69

Number of Fisher Scoring iterations: 4

We can read off the coefficients from the regression output, thus the regression equation is:
log( p̂

1−p̂ ) = −4.74 + 0.068 · income+ 0.599 · age.

b) exp β̂income = e0.068 = 1.07 and exp β̂age = e0.599 = 1.82 are the relative changes of the odds of
buying a new car for an increase of one unit in income and age respectively. I.e. the odds for buying
a new car increase by 7% for each increase of income by 1000 USD, and increase by 82% for each
additional year of age of the oldest car.

c) > predict(fit, data.frame(age=3,income=50),type="response")

1

0.6090245

d) We first look at the Tukey-Anscombe plot with Pearson residuals:

> xx <- predict(fit, type="response")

> yy <- residuals(fit, type="pearson")

> scatter.smooth(xx, yy, family="gaussian", pch=20, xlab="Fitted Probabilities",

ylab="Pearson Residuals")

> abline(h=0, lty=3)
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There is no evidence that assumptions aren’t satisfied: the expectation does not seem to deviate much
from zero. Also, most residuals have absolute value <2.

Finally, we check for influential observations:

> plot(fit, which=5)
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There seem to be no influential data points, just an outlier without influence.

e) We perform deviance-based significance tests using the function drop1:

> drop1(fit, test="Chisq")

Single term deletions

Model:

purchase ~ income + age

Df Deviance AIC LRT Pr(>Chi)

<none> 36.690 42.690

income 1 44.987 48.987 8.2976 0.00397 **

age 1 39.305 43.305 2.6149 0.10586

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The p-value for age is quite high, so it might not be a significant predictor in this model. However,
these tests are only approximate, so the results should not be overestimated.

f) We first fit a new model with an interaction term, and then perform an Anova:

> fit2 = glm(purchase ~ income + age + income:age, data=car, family=binomial)

> summary(fit2)



9

Call:

glm(formula = purchase ~ income + age + income:age, family = binomial,

data = car)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6096 -0.8222 -0.5334 0.8731 1.9924

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.372993 2.862477 -0.829 0.407

income 0.001326 0.064770 0.020 0.984

age -0.303860 0.890512 -0.341 0.733

income:age 0.028860 0.026493 1.089 0.276

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 44.987 on 32 degrees of freedom

Residual deviance: 35.404 on 29 degrees of freedom

AIC: 43.404

Number of Fisher Scoring iterations: 4

> anova(fit, fit2, test="Chisq")

Analysis of Deviance Table

Model 1: purchase ~ income + age

Model 2: purchase ~ income + age + income:age

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 30 36.690

2 29 35.404 1 1.2855 0.2569

The p-value is large, so we cannot reject the null hypothesis that the two models are equal. Hence,
there does not seem to be a significant interaction between income and age.

4. a) > hyper.tbl <- cbind(n.hyper=n.hyper, n.nohyper=n.total-n.hyper)

> hyper.tbl

n.hyper n.nohyper

[1,] 5 55

[2,] 2 15

[3,] 1 7

[4,] 35 152

[5,] 13 72

[6,] 15 36

[7,] 8 15

Note that the first column denotes the number of “successes”, while the second column the number
of “failures”.

b) > glm.hyp <- glm(hyper.tbl ~ smoking+obesity+snoring,family="binomial")

> summary(glm.hyp)

Call:

glm(formula = hyper.tbl ~ smoking + obesity + snoring, family = "binomial")

Deviance Residuals:

1 2 3 4 5 6

0.50780 0.10458 0.02847 -0.21903 -0.63361 0.32485

7

0.51753
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.6433 0.4090 -6.462 1.03e-10 ***

smokingYes 0.5488 0.3132 1.752 0.07976 .

obesityYes 0.6668 0.3455 1.930 0.05360 .

snoringYes 1.1184 0.3656 3.059 0.00222 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 13.3181 on 6 degrees of freedom

Residual deviance: 1.0924 on 3 degrees of freedom

AIC: 34.011

Number of Fisher Scoring iterations: 4

Here, we model the expected value of the proportion of people with hypertension (using the logit
function) as a function of the predictors smoking, obesity, and snoring.

Now, we use the residual deviance to assess the goodness-of-fit. Note that the number of observations
in every batch is bigger than 5, therefore, the Chi-square test is valid in this case.

> pchisq(deviance(glm.hyp), df.residual(glm.hyp), lower=FALSE)

[1] 0.7789051

The Chi-square test for the Residual deviance gives a p-value larger than 0.05, so we can conclude
that the model fits well.

c) First we perform a Chi-squared test for the Null deviance to check whether any of the predictors have
an influence on the response variable:

> pchisq(glm.hyp$null.deviance,glm.hyp$df.null,lower=FALSE)

[1] 0.03825404

The p-value is smaller than 0.05, which tells us that there is at least one significant predictor in our
model.

Now we do deviance based individual tests for each of the predictors:

> D<- drop1(glm.hyp,test="Chisq")

> D

Single term deletions

Model:

hyper.tbl ~ smoking + obesity + snoring

Df Deviance AIC LRT Pr(>Chi)

<none> 1.0924 34.011

smoking 1 4.2010 35.120 3.1086 0.07788 .

obesity 1 4.8781 35.797 3.7857 0.05169 .

snoring 1 11.4062 42.325 10.3138 0.00132 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The predictor smoking does not have a significant influence on the response, the p-value for obesity
is smaller but still not significant at 5%, and snoring is definitely important to explain the response
variable.

d) First we exclude smoking from the model.

> glm.hyp2 <- glm(hyper.tbl ~ obesity+snoring,family="binomial")

> summary(glm.hyp2)

Call:

glm(formula = hyper.tbl ~ obesity + snoring, family = "binomial")

Deviance Residuals:

1 2 3 4 5 6
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-0.28404 0.32506 -0.44798 0.13068 -1.21440 1.52066

7

-0.09844

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.2676 0.3121 -7.267 3.69e-13 ***

obesityYes 0.7745 0.3225 2.401 0.0163 *

snoringYes 0.9075 0.3240 2.801 0.0051 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 13.318 on 6 degrees of freedom

Residual deviance: 4.201 on 4 degrees of freedom

AIC: 35.12

Number of Fisher Scoring iterations: 4

> drop1(glm.hyp2,test="Chisq")

Single term deletions

Model:

hyper.tbl ~ obesity + snoring

Df Deviance AIC LRT Pr(>Chi)

<none> 4.201 35.120

obesity 1 10.251 39.170 6.0503 0.013904 *

snoring 1 12.303 41.222 8.1021 0.004421 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We note that smoking was covering some of the explanatory power of obesity, which is now
significant. Now we check again the goodness of fit of the model without the predictor smoking.

> pchisq(deviance(glm.hyp2), df.residual(glm.hyp2), lower=FALSE)

[1] 0.3794888

> pchisq(glm.hyp2$null.deviance,glm.hyp2$df.null,lower=FALSE)

[1] 0.03825404

The model without the predictor smoking fits sufficiently well. Moreover, the result of the Chi-squared
test for the Null deviance and both deviance based individual tests are significant. Therefore, we only
include the variables obesity and snoring in our model.

e) > fitted(glm.hyp2)-n.hyper/n.total

1 2 3 4

0.010508367 -0.023805358 0.058457380 -0.003708396

5 6 7

0.051280802 -0.089895669 0.009817867

> data.frame(fit=fitted(glm.hyp2) * n.total, n.hyper, n.total)

fit n.hyper n.total

1 5.630502 5 60

2 1.595309 2 17

3 1.467659 1 8

4 34.306530 35 187

5 17.358868 13 85

6 10.415321 15 51

7 8.225811 8 23


