Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, December 10, 2012

Binomial Regression Models

Example: Effectiveness of Insecticide

Concentration in log of mg/l x_i	Number of insects n_i	Number of killed insects y_i
0.96	50	6
1.33	48	16
1.63	46	24
2.04	49	42
2.32	50	44

- \rightarrow the response is the number of killed insects: $Y_i \mid x_i \sim Bin(n_i, p_i)$
- \rightarrow our main interest is in the proportion of insects that survive
- → while this could be treated as a logistic regression problem with repeated measurements, we gain efficiency by working with grouped data and a binomial regression approach

Model and Estimation

The goal is to find a relation:

$$p_i(x) = P(Y_i = 1 | X = x) \sim \eta_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

We will again use the logit link function such that $\eta_i = g(p_i)$

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$$

Here, p_i is the expected value $E[Y_i / n_i]$, and thus, also this model here fits within the GLM framework. The log-likelihood is:

$$l(\beta) = \sum_{i=1}^{k} \left[\log \binom{n_i}{y_i} + n_i y_i \log(p_i) + n_i (1 - y_i) \log(1 - p_i) \right]$$

Marcel Dettling, Zurich University of Applied Sciences

zh aw

Zurich University of Applied Sciences

Fitting with R

We need to generate a two-column matrix where the first contains the "successes" and the second contains the "failures"

	killed	surviv
[1,]	6	44
[2,]	16	32
[3,]	24	22
[4,]	42	7
[5,]	44	6

> fit <- glm(killsurv~conc, family="binomial")</pre>

Summary Output

The result for the insecticide example is:

```
> summary(glm(killsurv ~ conc, family = "binomial")
```

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.8923 0.6426 -7.613 2.67e-14 ***

conc 3.1088 0.3879 8.015 1.11e-15 ***

----

Null deviance: 96.6881 on 4 degrees of freedom

Residual deviance: 1.4542 on 3 degrees of freedom

AIC: 24.675
```

Proportion of Killed Insects

Insecticide: Proportion of Killed Insects

Global Tests for Binomial Regression

For GLMs there are three tests that can be done:

- Goodness-of-fit test = model evaluation test
 - based on comparing against the saturated model
 - not suitable for non-grouped, binary data
- Comparing two hierachical models
 - likelihood ratio test leads to deviance differences
 - test statistics has an asymptotic Chi-Square distribution
- Global test
 - comparing versus an empty model with only an intercept
 - this is a nested model, take the null deviance

Model Evaluation vs. Saturated Model

Null hypothesis: The fitted model with *p* predictors is correct

→ the residual deviance will be our test statistic!

Paradigm: take twice the difference between the log-likelihood for our current model and the saturated one, which fits the proportions perfectly, i.e. $\hat{p}_i = y_i / n_i$

$$D(y, \hat{p}) = 2\sum_{i=1}^{k} \left[y_i \log\left(\frac{y_i}{\hat{y}_i}\right) + (n_i - y_i) \log\left(\frac{(n_i - y_i)}{(n_i - \hat{y}_i)}\right) \right]$$

Because the saturated model fits as well as any model can fit, the residual deviance given in the summary output measures how close our model comes to perfection.

Evaluation of the Test

Asymptotics:

If Y_i is truly binomial and the n_i are large, the deviance is approximately χ^2 distributed. The degrees of freedom is:

$$k - (\# of predictors) - 1$$

> pchisq(deviance(fit), df.residual(fit), lower=FALSE)
[1] 0.69287

Quick and dirty:

Deviance ≫ *df* : → model is not worth much. More exactly: check $df \pm 2\sqrt{2df}$

 \rightarrow only apply this test if at least all $n_i \ge 5$

Overdispersion

What if $Deviance \gg df$???

1) Check the structural form of the model

- model diagnostics
- predictor transformations, interactions, ...

2) Outliers

- should be apparent from the diagnostic plots
- **3)** IID assumption for p_i within a group
 - unrecorded predictors or inhomogeneous population
 - subjects influence other subjects under study

Overdispersion: a Remedy

We can deal with overdispersion by estimating:

$$\hat{\phi} = \frac{X^2}{n-p} = \frac{1}{n-p} \cdot \sum_{i=1}^n \frac{(y_i - n_i \hat{p}_i)^2}{n_i \hat{p}_i (1-\hat{p}_i)}$$

This is the sum of squared Pearson residuals divided with the df

Implications:

- regression coefficients remain unchanged
- standard errors will be different: inference!
- need to use an F-test for comparing nested models

Results when Correcting Overdispersion

- > phi <- sum(resid(fit)^2)/df.residual(fit)</pre>
- > phi
- [1] 0.4847485
- > summary(fit, dispersion=phi)

Estimate Std. Error z value Pr(>|z|) (Intercept) -4.8923 0.4474 -10.94 <2e-16 *** conc 3.1088 0.2701 11.51 <2e-16 ***

(Dispersion parameter taken to be 0.4847485) Null deviance: 96.6881 on 4 degrees of freedom Residual deviance: 1.4542 on 3 degrees of freedom AIC: 24.675

Global Tests for Binomial Regression

For GLMs there are three tests that can be done:

- Goodness-of-fit test
 - based on comparing against the saturated model
 - not suitable for non-grouped, binary data
- Comparing two nested models
 - likelihood ratio test leads to deviance differences
 - test statistics has an asymptotic Chi-Square distribution
- Global test
 - comparing versus an empty model with only an intercept
 - this is a nested model, take the null deviance

Testing Nested Models and the Global Test

For binomial regression, these two tests are conceptually equal to the ones we already discussed in binary logistic regression.

→ We refer to our discussion there and do not go into further detail here at this place!

Null hypothesis and test statistic:

$$H_{0}: \beta_{q+1} = \beta_{q+2} = \dots = \beta_{p} = 0$$

$$2(ll^{(B)} - ll^{(S)}) = D(y, \hat{p}^{(S)}) - D(y, \hat{p}^{(B)})$$

Distribution of the test statistic:

$$D^{(S)} - D^{(B)} \sim \chi^2_{p-q}$$

Poisson-Regression

When to apply?

- Responses need to be counts
 - for bounded counts, the binomial model can be useful
 - for large numbers the normal approximation can serve
- The use of Poisson regression is a must if:
 - unknown population size and small counts
 - when the size of the population is large and hard to come by, and the probability of "success"/ the counts are small.

Methods:

Very similar to Binomial regression!

Extending...: Example 2

Poisson Regression

What are predictors for the locations of starfish?

- → analyze the number of starfish at several locations, for which we also have some covariates such as water temperature, ...
- → the response variable is a count. The simplest model for this is a Poisson distribution.

We assume that the parameter λ_i at location *i* depends in a linear way on the covariates:

$$Y_i \sim Pois(\lambda_i)$$
, where $log(\lambda_i) = \beta_0 + \beta_1 x_{i1} + ... + \beta_p x_{ip}$