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Binomial Regression Models
Example: Effectiveness of Insecticide

 the response is the number of killed insects:

 our main interest is in the proportion of insects that survive

while this could be treated as a logistic regression problem 
with repeated measurements, we gain efficiency by working 
with grouped data and a binomial regression approach

Concentration
in log of mg/l

Number of
insects 

Number of
killed insects 

0.96 50 6
1.33 48 16
1.63 46 24
2.04 49 42
2.32 50 44
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Model and Estimation
The goal is to find a relation:

We will again use the logit link function such that

Here,     is the expected value             , and thus, also this model 
here fits within the GLM framework. The log-likelihood is:
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Fitting with R
We need to generate a two-column matrix where the first 
contains the “successes” and the second contains the “failures”

> killsurv
killed surviv

[1,]      6     44
[2,]     16     32
[3,]     24     22
[4,]     42      7
[5,]     44      6

> fit <- glm(killsurv~conc, family="binomial")
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Summary Output
The result for the insecticide example is:

> summary(glm(killsurv ~ conc, family = "binomial")

Coefficients:

Estimate Std. Error z value Pr(>|z|)    

(Intercept)  -4.8923     0.6426  -7.613 2.67e-14 ***

conc 3.1088     0.3879   8.015 1.11e-15 ***

---

Null deviance: 96.6881  on 4  degrees of freedom

Residual deviance:  1.4542  on 3  degrees of freedom

AIC: 24.675
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Proportion of Killed Insects
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Global Tests for Binomial Regression
For GLMs there are three tests that can be done:

• Goodness-of-fit test = model evaluation test
- based on comparing against the saturated model
- not suitable for non-grouped, binary data

• Comparing two hierachical models
- likelihood ratio test leads to deviance differences
- test statistics has an asymptotic Chi-Square distribution

• Global test
- comparing versus an empty model with only an intercept
- this is a nested model, take the null deviance
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Model Evaluation vs. Saturated Model
Null hypothesis: The fitted model with predictors is correct

 the residual deviance will be our test statistic!

Paradigm: take twice the difference between the log-likelihood
for our current model and the saturated one, which fits
the proportions perfectly, i.e.

Because the saturated model fits as well as any model can fit, the 
residual deviance given in the summary output measures how 
close our model comes to perfection. 
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Evaluation of the Test
Asymptotics:
If      is truly binomial and the     are large, the deviance is 
approximately     distributed. The degrees of freedom is:

> pchisq(deviance(fit), df.residual(fit), lower=FALSE)

[1] 0.69287

Quick and dirty:
:  model is not worth much. 

More exactly: check

 only apply this test if at least all 
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Overdispersion
What if ???

1) Check the structural form of the model

- model diagnostics
- predictor transformations, interactions, …

2) Outliers

- should be apparent from the diagnostic plots

3) IID assumption for within a group

- unrecorded predictors or inhomogeneous population
- subjects influence other subjects under study

Deviance df

ip
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Overdispersion: a Remedy
We can deal with overdispersion by estimating:

This is the sum of squared Pearson residuals divided with the df

Implications:

- regression coefficients remain unchanged
- standard errors will be different: inference!
- need to use an F-test for comparing nested models
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Results when Correcting Overdispersion
> phi <- sum(resid(fit)^2)/df.residual(fit)

> phi

[1] 0.4847485

> summary(fit, dispersion=phi)

Estimate Std. Error z value Pr(>|z|)   

(Intercept)  -4.8923     0.4474  -10.94   <2e-16 ***

conc 3.1088     0.2701   11.51   <2e-16 ***

---

(Dispersion parameter taken to be 0.4847485)

Null deviance: 96.6881  on 4  degrees of freedom

Residual deviance:  1.4542  on 3  degrees of freedom

AIC: 24.675
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Global Tests for Binomial Regression
For GLMs there are three tests that can be done:

• Goodness-of-fit test
- based on comparing against the saturated model
- not suitable for non-grouped, binary data

• Comparing two nested models
- likelihood ratio test leads to deviance differences
- test statistics has an asymptotic Chi-Square distribution

• Global test
- comparing versus an empty model with only an intercept
- this is a nested model, take the null deviance
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Testing Nested Models and the Global Test
For binomial regression, these two tests are conceptually equal
to the ones we already discussed in binary logistic regression.

We refer to our discussion there and do not go into further
detail here at this place!

Null hypothesis and test statistic:

Distribution of the test statistic:
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Poisson-Regression
When to apply?

• Responses need to be counts
- for bounded counts, the binomial model can be useful
- for large numbers the normal approximation can serve

• The use of Poisson regression is a must if:
- unknown population size and small counts
- when the size of the population is large and hard to come by,
and the probability of “success”/ the counts are small. 

Methods:
Very similar to Binomial regression!
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Extending...: Example 2
Poisson Regression

What are predictors for the locations of starfish? 

 analyze the number of starfish at several locations, for which
we also have some covariates such as water temperature, ...

 the response variable is a count. The simplest model for this is
a Poisson distribution.

We assume that the parameter at location i depends in a linear 
way on the covariates:

, where

i
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